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Abstract: A data warehouse stores a large volume of data extracted from multiple 
sources. A set of materialized views is defined over the base tables in order to 
optimize OLAP (On-Line Analytical Processing) query response time. The 
selection of materialized views may be static or dynamic. The dynamic selection is 
continually controlled by a system that calibrates the set of views. The static 
selection is controlled periodically by the data warehouse administrator who 
provides the parameter values to the view selection program and defines the 
selection period. A short period may increase the system workload if there are 
unnecessary executions of the view selection program. A long period may decrease 
the query response time. In this paper we propose an algorithm to specify when to 
select views to be materialized in a static policy. That is when the view selection 
program should be run. Our main contribution is the use of some tolerance 
parameters to update and reselect the materialized views. The materialized views 
will be updated only when it is necessary. The view selection program will be 
executed either at the end of the selection period, defined by the administrator, or 
when there is a non tolerated increase of the query execution cost. The aim is to 
reduce the materialization cost and to guarantee a high query response time. Our 
experiment results show that, for some values of the tolerance parameters, our 
approach is more profitable than the static view selection algorithms.   

 
 
 

1. Introduction 
A data warehouse stores a large volume of data extracted from multiple sources. A set 

of materialized views is defined over the base tables in order to optimize OLAP (On-Line 
Analytical Processing) query response time. The selection of these materialized views is 
based on a cost model that combines, in general, the view maintenance cost and the query 
execution one. It respects a given limited amount of resources such as materialization time, 
storage space, or total view maintenance time. 

The selection of materialized views may be static [Agrawal et al., 
2000][Gupta,1997][Gupta et Mumick, 1999][Gupta et al., 1997][Harinarayan et al., 1996 
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][Theodoratos et Sellis, 1997] or dynamic [Kim et al., 2003][Kotidis et Roussopoulos, 
1999][Theodoratos et Sellis, 1999]. The static selection is controlled periodically by the data 
warehouse administrator who provides the parameter values to the view selection program. 
The dynamic selection is controlled by an online system that collects information about 
workload, user requirements and data updates to select the appropriate views. 

In general, a data warehouse is constructed to reach some analysis objectives. Also, it 
stores old data that are aggregated and rarely updated. So, we think that a dynamic selection 
is only necessary in some cases like the e-commerce domain and that the static selection is 
more adequate for a data warehouse environment. In order to accelerate the static selection, 
some tasks may be automated like the collection of information and the materialized views 
selection. In this paper we propose an algorithm to specify the moments of materialized view 
selection in a static policy. That is when the view selection program should be run. The goal 
is to re-execute the view selection program only when there is an unacceptable decrease of 
the query response time or when we reach the end of the selection period. 

It's known that, in the static policy, the selection period is defined by the data warehouse 
administrator. A short period may increase the system workload if there are unnecessary 
executions of the view selection program. This is because there is a small change in the 
materialization plan (the set of materialized views) or the users are satisfied by the current 
plan. A long period may decrease the query response time. This is because the current 
materialization plan has become obsolete and the queries are executed on the base tables. So 
there is a problem to define the selection period since the materialization plan is selected 
based on observed values of some parameters.  

To resolve this problem, we propose  firstly defining a long period and then dividing it 
into several short periods. As will be explained in section 4, these short periods correspond to 
the update moments of some materialized views. At the end of each short period, we 
calculate the query execution cost and then we compare it with that estimated when views 
are materialized. If there is a high increase along one of the short periods, we re-execute the 
view selection program else we continue using the current materialization plan until the end 
of the long period. Our idea is to begin by a long selection period P and then, at predefined 
moments included in P, checking the performance of the materialization plan. The goal is to 
reduce the re-materialization cost and to guarantee a good query response time. This is the 
first contribution of our paper.  

The data warehouse maintenance is achieved through two steps. The first step concerns 
the update of the base tables when there is a change in the data warehouse sources. However 
the second concerns the transfer of these updates to the materialized views. Several 
maintenance scenarios and policies are developed [Engström et al., 2003][Engstrom et 
al.,1999][Teschkle et Ulbrich, 1997][Engström et Lings, 2003 ][Engström et al., 
2002][Chakravarthy et al., 2003 ] to carry out these two steps.   [Engstrom et al.,1999] 
distinguishes two major maintenance policies: immediate and deferred. We think that the 
deferred mode is more adequate to a data warehouse for two reasons: i) the data warehouse 
maintenance is highly complex, which affects the system performance if we realize it 
immediately; ii) the stored data are used for analysis and so, it is unnecessary to be usually 
up to date.  

In our approach, we use the concept of tolerated update period (TUP) to decide when 
updating the materialized views. Based on the query text, the data warehouse administrator 
should specify a tolerated period for the update of the sources. For example, for a query Q 
extracting the sales per region and per month, the tolerated period is a month. I.e. the update 

- 162 -RNTI-B-1



Ben Ghezala et al. 

period required to satisfy the users is the month.  The role of the TUP, in our approach, is to 
limit the number of the materialized view updates. That is, we update the materialized views 
only when it is required by their queries.  

The second tolerance parameter, called tolerance fraction and noted θ Є [0,1] is used to 
check the materialization plan performance. Let PQC be the query execution cost calculated 
along a short period SPk and EQC be the query execution cost estimated for SPk when views 
are selected to be materialized. At the end of the short period, if PQC- EQC is greater than 
θ*EQC then the materialization plan should be changed. 

The use of tolerance parameters constitutes the second contribution of this paper. It 
allows reducing the maintenance and the reselection costs of materialized views. The overall 
aim is to optimize the query response time without affecting the system workload. How to 
select views is not the concern of this work. Any selection algorithm can be used in our 
approach test. 

The rest of the paper is organized as follows: section 2 describes the related works. 
Section 3 gives an overview of the materialized view selection. We present in section 4 our 
approach and in section 5 some experimental results. Section 6 is the conclusion.  

 
2. Related works 
 

Recently, there has been a lot of interest on how to select views to materialize in a data 
warehouse and how to update a data warehouse. The view selection task may be static or 
dynamic. The major part of works belongs to the first class [Agrawal et al., 
2000][Gupta,1997][Gupta et Mumick, 1999][Gupta et al., 1997][Harinarayan et al., 1996] 
[Theodoratos et Sellis, 1997]. The second class [Kim et al., 2003][Kotidis et Roussopoulos, 
1999][Theodoratos et Sellis, 1999] concerns particular domains like the e-commerce and is 
in contrast with the known data warehouse characteristics. The static selection approaches 
use a fixed time period to reselect the appropriate set of views.  However in the dynamic 
selection the materialization plan is continually controlled to add [Kotidis et Roussopoulos, 
1999][Theodoratos et Sellis, 1999] or to change [Kim et al., 2003] views. We are not aware 
of any work addressing the problem of when modifying the materialization plan in the static 
selection. 

 
3. Materialized view selection  

 
The data warehouse architecture is represented in figure 1. The data is extracted from 

different sources, integrated and then stored in the data warehouse. In order to accelerate the 
data access, a set of query responses are stored. They are called materialized views.   
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FIGURE 1: Data warehouse architecture 

 
The view materialization goal is to optimize the query response time. This technique 

consists in storing complete or partial query results called views. The materialized view 
management addresses three main tasks: which views to materialize, which update policy to 
apply and where to store the materialized views.  

The first task is called the materialized view selection. It allows identifying a subset of 
views W from a list of candidate views Q. It's based on a cost model and respects some 
constraints like space. The subset W is characterized by an optimal materialization cost and 
by a global size smaller than the reserved space. The cost model includes, in general, the 
query execution cost and the materialized view update one. The query execution cost 
depends on some parameters like the access frequency and the data extraction cost. The 
values of these parameters may be partial that is estimated or complete that is the results of 
some experiments [Chirkova et al., 2001]. Finally, the selection of the materialization plan 
may be periodic or dynamic.     

In the second task, an update policy determines when and how to update the materialized 
views. A policy can, for example, be to recompute a view or to do incremental maintenance; 
and to maintain the view immediately when changes are detected, on-demand when the view 
is queried; or periodically. The choice of a maintenance policy depends on several 
parameters such as the system workload, the data size and the required data freshness. The 
system workload is measured in general by the number and the cost of queries. 

The materialized view storage may be costly. So, only the appropriate and the needed 
views should be materialized. In a distributed architecture, the materialized views may be 
distributed over several nodes. 

Data warehouse 

Materialized Views:  V1, V2……..Vn 

Base tables:   T1,T2,…………...…………………..Tm 

 

Extraction and 
integration 

Source 1 Source 2 
.............. Source t 
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4. Specifying when reselecting views to be materialized  
 
4.1 Approach overview 
 

Our goal is to determine when to re-execute the view selection program. Our approach 
concerns the static materialization where the views are selected periodically. Generally, the 
selection period is defined by the data warehouse administrator. Along this period he collects 
some statistics like the access and the update frequencies needed for the view selection 
program. Since, the views are selected based on these statistics, the choice of the selection 
period will be a complex decision. Keeping a set of materialized views for long or short time 
may be not profitable. A short time may increase the cost of view computation; while a long 
time may increase the query execution cost. Our solution consists in combining both, a long 
time period and a short one. The data warehouse administrator defines a long period to re-
execute the view selection program. This period is divided into several short periods 
corresponding to the update moments of some materialized views. The short periods are used 
to check the performance of the materialization plan. If there is a high increase of the total 
query execution cost along one of the short periods, we should reselect the appropriate set of 
views else we continue using the current materialization plan until the end of the long period. 
Two tolerance parameters are used to determine the short periods and to check the query 
execution cost: the tolerated update period (TUP) and the tolerance fraction. In the rest of 
this section we will demonstrate how to define and how to use these parameters. 
 
4.2  Specification and use of the tolerated update period 
 

As we have already seen within this paper, that the view update may be immediate or 
periodic. We have explained, also, that the periodic mode is more adequate in the case of 
data warehouse. In our approach, we propose to update a materialized view V only when it is 
required by some queries accessing V. From the query formulation, the administrator 
determines the TUPs of the query sources. For example, the sources of a query extracting the 
sales per region and per month must be updated monthly. The TUPs may be calibrated, after, 
based on the query frequencies or on the user exigencies. That is for the queries which are 
rarely asked or their result freshness is not important for the users, we can extend theirs 
TUPs if they are short. The opposite case is also possible also.   

Now, let Q1, Q2 and Q3 be three queries accessing a materialized view V ; and let P1, 
P2, P3 be their corresponding required maintenance periods. So, V should be updated after 
P1, after P2 and after P3. To simplify the problem, we propose choosing the least period to 
be the TUP of V. This solution satisfies automatically the two other queries since theirs 
results will be up to date.       

In general, let: 
{V1, V2,...,Vm}  be the set of materialized views; 
{Q1, Q2,…,Qn}  be the set of queries and P1,P2,…,Pn be theirs corresponding 

maintenance periods defined by the administrator; 
Ri = {Qj / j=1,…,r  and r ≤ n} be the set of queries accessing Vi; 
Si = {Pj / j=1,…,r  and r ≤ n} be the update periods of Ri. 
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It is obvious that Si concerns automatically Vi. We call the tolerated update period of Vi , 
the least period of Si and we note TUPi = min {Pj / Pj є Si} . TUPi is usually less than or 
equal to P, the long period fixed by the administrator to reselect views.  It is said tolerance 
period because it extends the view maintenance period and reduces the number of updates. 
The short periods of P corresponding to the multiples of TUPi will be used to check the 
performance of the materialization plan. For example, if we have: 

P = 4 months  
TUP1, TUP2, TUP3, TUP4, the TUPs of four materialized views V1, V2, V3, V4  are 

respectively 1, 1.5 ,1 and 2 months 
Then the deduced short periods are 1, 1.5, 2 and 3. They correspond respectively to the 

update of the set of views {V1,V3}, {V2}, {V1,V3,V4} and {V1,V2,V3}. At the end of each 
short period, we check the query execution cost. If there is a non tolerated increase, we re-
execute the view selection program else we update the corresponding views and we continue 
using the current materialization plan until the end of the next short period or the end of P. 

 
4.3   Specification and use of tolerance fraction  
 

Two kinds of periods are defined above to reselect the appropriate set of views: a long 
period P and some short periods or sub-periods of P. The idea is to modify the 
materialization plan only if we detect, at a short period SPk ⊂ P, a non tolerated increase of 
the query execution cost or when we reach the end of P. The tolerance fraction is used to 
measure the tolerated increase of the query execution cost. 

In general, the materialization cost includes the update cost of materialized views and the 
query execution cost. It is used to select the optimal materialization plan. However to check 
the performance of a materialization plan after a short period SPk, we use only the query 
execution cost. We eliminate the update cost for two reasons: 

- There is no change, before the materialization, in the determined update frequencies 
that are based on the tolerated periods. 

- In general, the view maintenance is carried out at deferred time. 
The query execution cost depends on the query frequencies, on the number of news 

queries and on the execution cost of each query. These parameters which are estimated at the 
beginning of each P may be changed after the materialization. A high change of these 
parameters may decrease the query response time. 

The following values are needed to check the evolution of the query execution cost: 
- The estimated query execution cost by short period:    
                                EQC (SPk) = (SPk/P)* TEQC  

Where TEQC = total estimated execution cost of all the queries before the 
materialization.  

- The practical (real) execution cost by short period: 
                                 PQC (SPk) = ∑i=1,…,n   (fi* PQCi ) 

Where n = number of all the queries, fi = the query frequency 
along SPk and       PQCi = the real execution cost of the query 
Qi. fi  may be null.  - The tolerance fraction θ є [0,1] specified by the administrator. It is used to 

determine the tolerated increase of the query execution cost. That is if PQC(SPk) –
EQC(SPk) > θ* EQC(SPk)  then we must re-execute the view selection program. 
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The specification of θ depends on some parameters like the view generation cost 
and the system workload (number and frequencies of queries). 

 
4.4  Problem formulation 
 

Based on the above definitions we can formulate the problem of when reselect the 
materialization plan as follows:  

Given a set of materialized views W={V1, V2,…,Vm} , a set of queries 
Q={Q1,Q2,…,Qn}, a selection period P, a tolerance fraction θ, searching  
M={SP1,SP2,…,SPz / SPi <P for i=1,…,z} the set of check sub-periods and then specify the 
adequate moment from M∪{P} to re-execute the view selection program. 

 
4.5  Algorithm  
 

In our algorithm, described in figure 2, we use a time counter t which is initiated at each 
re-execution of the algorithm.  t, P and the check sub-periods have the same unit of measure 
(days, weeks, months,…). The algorithm execution begins with searching M the set of short 
periods which will be used to check the query execution cost. For each value of t there is an 
action to be carried out:  

- For t= P, we reselect the materialized views and we restart the algorithm execution. 
- For t∈ M, we verify the query execution cost. If there is a non tolerated increase we 

reselect the materialized views and we restart the algorithm execution else we 
increment t and we start a new iteration of the algorithm. 

- For t ∉ M and t < P, we increment t and we start a new iteration of the algorithm.  
We will not talk about how to select views since it is not the concern of our work and any 

selection algorithm can be used. 

 

 

 

 

 

 

 

 

 
 

FIGURE 2:  An algorithm to specify when reselecting views to be materialized 
 
 

1. t=1 

2. searching M ={SP1,SP2,…,SPz} the set of sub-periods of P   

3. if t= P then go to step 8  

4. if t∉ M then go to step 9 

5. EQC (t) = (t/P)* TEQC  

6. PQC (t) = ∑i=1,…,n   (fi* PQCi ) 

7. if  PQC(t) –EQC(t) ≤ θ* EQC(t) then go to step 9 

8. Re-execute the view selection program. Go to step 1 

9. t=t+1 go to step 3 
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4.6  Example  
 

This example demonstrates the algorithm execution. We will use the week as a time 
measure unit. Suppose we have four queries and three views as follows: 

Q1: the sales per region per term (3 months) 
Q2: the sales per product by month 
Q3: the stored quantity by depot 
Q4: the average unit-price per depot per fortnight (2 weeks). 
The set of materialized views is W ={V1, V2,V3} 
  R1 = {Q3, Q4}, the set of queries accessing V1 
  R2 = {Q4}, the set of queries accessing V2 
  R3 = {Q1, Q2}, the set of queries accessing V3 
 

4.6.1   Specifying the TUPs 
 

To satisfy the users without increasing the views update cost, the administrator must 
define the tolerated update periods of the queries sources as follows: 

P1 = term. That is the sources of Q1 must be updated each 3 months. 
P2 = month. That is the sources of Q2 must be updated monthly.   
P3 = fortnight. This is not clear in the text of Q3 but since this later have a common 

source only with Q4, then its tolerance update period will be automatically 2 weeks. 
P4 = fortnight. That is the sources of Q4 should be updated each 2 weeks. 
Consequently, the possible TUP values of the views are: 
  S1 = {P3, P4}, the tolerance update periods corresponding to V1 
  S2 = {P4}, the tolerance update periods corresponding to V2 
  S3 = {P1, P2}, the tolerance update periods corresponding to V3 
The TUPs of the materialized views are: 
V1: TUP1 = min {P3, P4} = fortnight= 2 weeks. 
V2: TUP2 = min {P4} =fortnight = 2 weeks. 
V3: TUP3 = min {P1, P2} = month = 4 weeks. 
 

4.6.2   Checking the query execution cost 
 

Suppose that: 
- The selection period defined by the administrator is P=12 weeks (3 months). 
- The estimated execution cost of all the queries TEQC = 150000 units of measure. 
- The tolerance fraction θ =0.3 

So the short periods SPk of P corresponding to the view update moments and to the check 
moments are summarized in figure 3. For example, after 4 weeks or 8 weeks we must update 
V1, V2 and V3. 
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  The estimated (EQC) and the practical (PQC) Query execution costs measured at each 

check moment are summarized in table 1. 

 

SPk or t 2 4 6 8 10 

EQC(t) 25000 50000 75000 100000 125000 

PQC(t) 28000 40000 70000 140000 - 
TABLE 1: The EQC and PQC measured at each check moment SPk. 

 
The EQC of SP2=4, for example, is obtained as follows:    
                EQC(SP2) = (4/12)*150000. 
 After SP4= 8 weeks, we have PQC(SP4) –EQC(SP4) >0.3*EQC(SP4). So, the view 

selection program should be re-executed to select a new set of materialized views and we 
restart the algorithm execution. 

   
4.7 Comparison with the dynamic selection 
 

In table 2, we compare the principle of our approach with that of the dynamic selection. 

 

Criterion  Dynamic selection  Our approach 

When checking? Regular periods Irregular periods 

How specifying the periods of 
check? 

Short  Depends on the tolerated 
update periods.  

Number of checks? High  Limited  

What checking?  The materialization cost (use 
and update) of a view  

The total query execution 
cost 

How modifying the 
materialization plan? 

Partially, by adding or 
deleting views  

Researching a complete 
new optimal plan.  

TABLE 2: Comparison between our approach principle and that of the dynamic selection. 
 
 
 

0 2  4 6 8 10  12 weeks

P

FIGURE 3: The view update and the check moments  

SPk
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5. Experiments   
 

The goal of our experiments was twofold. First, we wanted to study the application of our 
algorithm for different values of the tolerance fraction θ and to specify the cases when our 
approach is more efficient. Second, we wanted to compare the query execution costs 
obtained by two different manners. In the first case, we apply a periodic selection using a 
known algorithms such as the Greedy Algorithm [Gupta,1997] and the Inverted-Tree Greedy 
Algorithm [Gupta et Mumick, 1999].In the second case, we apply our approach to specify 
when re-executing the selection algorithm and we use the same algorithms as the first case to 
identify the appropriate set of materialized views. 

To carry out these experiments, we used a data warehouse, organized in a star schema, 
with 8 dimensions and a fact table containing more than 2 million tuples. We assumed 20 
complex queries to be executed and more than 20 views organized in an AND-OR graph. 
Our experiments were all run on a Pentium IV 3 GHz running Windows XP with 512 MB 
RAM. 

After each update of some views we calculate the update cost, research the optimal query 
execution plan and evaluate the query execution cost. Since the update frequency of each 
view is pre-specified, we only estimated the query frequencies of each sub-period to evaluate 
the total query execution cost and to apply our algorithm. We don't consider the evaluation 
cost because in most case it is negligible.        

To compare the results of our approach with those of a Greedy Algorithm or of an 
Inverted-Tree Greedy Algorithm, we used a time period of 6 months when there is an update 
of some views at the end of each month. So, the evaluation of the query execution cost and 
the application of the tolerance fraction will be monthly. But, in order to well compare these 
results we extended our study for 2 periods that is along 12 months. 

 
5.1  Applying the Greedy Algorithm 
 

The Greedy Algorithm [Gupta,1997] allows selecting, periodically, the appropriate set of 
views that minimizes the total query response time and the cost of maintaining the selected 
views given a limited space S. In table 3 we present the results of its use and those of its 
integration in our approach for some values of the tolerance fraction θ.   
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Value 
of θ 

 Total 
query 
execution 
cost 

Total 
intervention 
cost 

Number of 
interventions 

Benefit Total 
cost 
reduction 

Greedy 
Algorithm 

 
278175100 

 

 
125100 1  

0.2 

Our 
approach 

247026200 573500 4 

 
 

30700500 

 

 
 

11.03% 

Greedy 
Algorithm 

278175100 125100 1  

0.3 
Our 
approach 

255863500 352400 3 

 
 

22084300 

 

 

7.93% 

Greedy 
Algorithm 

278175100 125100 1  

0.4 
Our 
approach 

269679150 228700 2 

 
 

8392350 

 

 

3.01% 

Greedy 
Algorithm 

278175100 125100 1  

0.5 
Our 
approach 

278175100 125100 1 

 

0 

 

0.00% 

TABLE 3: Benefits of applying our approach with the Greedy Algorithm. 
 

In table 3, the number of interventions is at least 1 because if the tolerated cost increase is 
respected until the end of the first period (P= 6 months), we must research the optimal 
materialization plan.  

The query execution cost measured along each month for θ=0.2, θ=0.3, θ=0.4 are 
represented respectively in the figure 4, figure 5, figure 6. 

θ=0.2

0

10000000

20000000

30000000

40000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
cost

Estimated cost

Greedy algorithm
cost
Our approach
cost

 
FIGURE 4: Query execution costs when using the Greedy Algorithm and when θ=0.2 
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θ=0.3

0

10000000

20000000

30000000

40000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
cost

Estimated cost

Greedy algorithm
cost
Our approach
cost

FIGURE 5: Query execution costs when using the Greedy Algorithm and when θ=0.3 

θ=0.4

0

10000000

20000000

30000000

40000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
cost

Estimated cost

Greedy algorithm
cost

Our approach
cost

FIGURE 6: Query execution costs when using the Greedy Algorithm and when θ=0.4 

 

 
5.2  Applying the Inverted-Tree Greedy Algorithm 
 

The Inverted-Tree Greedy Algorithm (I.T.G. Algorithm) [Gupta et Mumick, 1999] allows 
to select, periodically, the appropriate set of views that minimizes the total query response 
time and the cost of maintaining the selected views given a limited view maintenance time. 
In table 4 we present the results of its use and those of its integration in our approach for 
some values of the tolerance fraction θ.   
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Value 
of θ 

 Total 
query 
execution 
cost 

Total 
intervention 
cost 

Number of 
interventions 

Benefit Total 
cost 
reduction 

I.T.G. 
Algorithm 

 
242062420 

 

 
132000 1  

0.2 

Our 
approach 

222131140 275800 2 

 
 

19787480 

 

 
 

8.17% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.3 
Our 
approach 

233674630 215800 2 

 
 

8303990 

 

 

3.43% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.4 
Our 
approach 

242062420 132000 1 

 
 

0 

 

 

0.00% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.5 
Our 
approach 

242062420 132000 1 

 

0 

 

0.00% 

TABLE 4: Benefits of applying our approach with the inverted-tree greedy algorithm. 
 
The query execution cost measured along each month for θ=0.2, θ=0.3, θ=0.4 are 

represented respectively in the figure 7, figure 8, figure 9. 

 

θ=0.2

0
5000000

10000000
15000000
20000000
25000000
30000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
cost

Estimated cost

I.T.G. algorithm
cost
Our approach
cost

 FIGURE 7: Query execution costs when using the I.T.G Algorithm and when θ=0.2 
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θ=0.3

0
5000000

10000000
15000000
20000000
25000000
30000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
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FIGURE 8:  Query execution costs when using the I.T.G Algorithm and when θ=0.3 
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 FIGURE 9: Query execution costs when using the I.T.G Algorithm and when θ=0.4 

 

 
5.3  Observations 
 

Based on the above results, we can make the following observations: 
- The benefit of applying our algorithm depends, especially, on the used selection 

algorithm and on the value of the tolerance fraction θ. 
- A high benefit is obtained by small values of θ. 
- There is no benefit if θ > 0.5 
- For θ =0.2, we remark, almost, a stability of the query execution cost.  
- Our solution is more adequate for the selection algorithms applying restrictive 

constraints. That is for the algorithms selecting a small set of materialized views that 
may be unrapidly usable. 
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6. Conclusion  
 

In this paper we have proposed an algorithm to specify, in the static policy, when the 
view selection program should be run. Our solution depends on two tolerance parameters 
such as the tolerated update period and the tolerance fraction. The aim is to optimize the 
query response time by reducing the view update cost and by checking, periodically, the 
performance of the materialization plan. We propose to update the materialized views only 
when it is needed and to change the materialization plan when there is a non tolerated 
increase of the query execution cost. 

Our experiments results show that, compared to some view selection algorithms which 
are executed at regular and long periods, our algorithm provide a benefit exceeding 10%. 
This benefit depends, essentially, on the used view selection program and on the tolerated 
increase of the query execution cost. 
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Value 
of θ 

 Total 
query 
execution 
cost 

Total 
intervention 
cost 

Number of 
interventions 

Benefit Total 
cost 
reduction 

Greedy 
Algorithm 

 
278175100 

 

 
125100 1  

0.2 

Our 
approach 

247026200 573500 4 

 
 

30700500 

 

 
 

11.03% 

Greedy 
Algorithm 

278175100 125100 1  

0.3 
Our 
approach 

255863500 352400 3 

 
 

22084300 

 

 

7.93% 

Greedy 
Algorithm 

278175100 125100 1  

0.4 
Our 
approach 

269679150 228700 2 

 
 

8392350 

 

 

3.01% 

Greedy 
Algorithm 

278175100 125100 1  

0.5 
Our 
approach 

278175100 125100 1 

 

0 

 

0.00% 

TABLE 3: Benefits of applying our approach with the Greedy Algorithm. 
 

In table 3, the number of interventions is at least 1 because if the tolerated cost increase is 
respected until the end of the first period (P= 6 months), we must research the optimal 
materialization plan.  

The query execution cost measured along each month for θ=0.2, θ=0.3, θ=0.4 are 
represented respectively in the figure 4, figure 5, figure 6. 
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FIGURE 4: Query execution costs when using the Greedy Algorithm and when θ=0.2 
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θ=0.3
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FIGURE 5: Query execution costs when using the Greedy Algorithm and when θ=0.3 

θ=0.4

0

10000000

20000000

30000000

40000000

1 2 3 4 5 6 7 8 9 10 11 12

Sub-periods of 2 P

Query execution 
cost

Estimated cost

Greedy algorithm
cost

Our approach
cost

FIGURE 6: Query execution costs when using the Greedy Algorithm and when θ=0.4 

 

 
5.2  Applying the Inverted-Tree Greedy Algorithm 
 

The Inverted-Tree Greedy Algorithm (I.T.G. Algorithm) [Gupta et Mumick, 1999] allows 
to select, periodically, the appropriate set of views that minimizes the total query response 
time and the cost of maintaining the selected views given a limited view maintenance time. 
In table 4 we present the results of its use and those of its integration in our approach for 
some values of the tolerance fraction θ.   
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Value 
of θ 

 Total 
query 
execution 
cost 

Total 
intervention 
cost 

Number of 
interventions 

Benefit Total 
cost 
reduction 

I.T.G. 
Algorithm 

 
242062420 

 

 
132000 1  

0.2 

Our 
approach 

222131140 275800 2 

 
 

19787480 

 

 
 

8.17% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.3 
Our 
approach 

233674630 215800 2 

 
 

8303990 

 

 

3.43% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.4 
Our 
approach 

242062420 132000 1 

 
 

0 

 

 

0.00% 

I.T.G. 
Algorithm 

242062420 132000 1  

0.5 
Our 
approach 

242062420 132000 1 

 

0 

 

0.00% 

TABLE 4: Benefits of applying our approach with the inverted-tree greedy algorithm. 
 
The query execution cost measured along each month for θ=0.2, θ=0.3, θ=0.4 are 

represented respectively in the figure 7, figure 8, figure 9. 
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 FIGURE 7: Query execution costs when using the I.T.G Algorithm and when θ=0.2 
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FIGURE 8:  Query execution costs when using the I.T.G Algorithm and when θ=0.3 

θ=0.4
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 FIGURE 9: Query execution costs when using the I.T.G Algorithm and when θ=0.4 

 

 
5.3  Observations 
 

Based on the above results, we can make the following observations: 
- The benefit of applying our algorithm depends, especially, on the used selection 

algorithm and on the value of the tolerance fraction θ. 
- A high benefit is obtained by small values of θ. 
- There is no benefit if θ > 0.5 
- For θ =0.2, we remark, almost, a stability of the query execution cost.  
- Our solution is more adequate for the selection algorithms applying restrictive 

constraints. That is for the algorithms selecting a small set of materialized views that 
may be unrapidly usable. 

 
 

- 174 -RNTI-B-1



Ben Ghezala et al. 

6. Conclusion  
 

In this paper we have proposed an algorithm to specify, in the static policy, when the 
view selection program should be run. Our solution depends on two tolerance parameters 
such as the tolerated update period and the tolerance fraction. The aim is to optimize the 
query response time by reducing the view update cost and by checking, periodically, the 
performance of the materialization plan. We propose to update the materialized views only 
when it is needed and to change the materialization plan when there is a non tolerated 
increase of the query execution cost. 

Our experiments results show that, compared to some view selection algorithms which 
are executed at regular and long periods, our algorithm provide a benefit exceeding 10%. 
This benefit depends, essentially, on the used view selection program and on the tolerated 
increase of the query execution cost. 
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