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Résumé. L’extraction de toutes les requêtes fréquentes dans une base de
données relationnelle est un problème difficile, même si l’on ne considère
que des requêtes conjonctives. Nous montrons que ce problème devient
possible dans le cas suivant : le schéma de la base est un schéma en étoile,
et les données satisfont un ensemble de dépendances fonctionnelles et de
contraintes référentielles. De plus, les schémas en étoile sont appropriés
pour les entrepôts de données et que les dépendances fonctionnelles et
les contraintes référentielles sont les contraintes les plus usuelles dans les
bases de données. En considérant le modèle des instances faibles, nous
montrons que les requêtes fréquentes exprimées par sélection-projection
peuvent être extraites par des algorithmes de type Apriori.

1 Introduction

The general problem of mining all frequent queries in a (relational) database, i.e.,
all queries whose answer has a cardinality above a given threshold, is known to be
intractable, even if we consider conjunctive queries only (Goethals 2004).

However, mining all frequent queries from a database allows for the production
of relevant association rules that cannot be obtained by other approaches, even when
dealing with multiple tables, such as in (Dehaspe and Raedt 1997; Diop et al. 2002;
Faye et al. 1999; Han et al. 1996; Meo et al. 1997; Turmeaux et al. 2003). This is so
because, in these approaches, association rules are mined in the same table. On the
other hand, when mining all frequent queries, it is possible to obtain rules whose left and
right hand sides are frequent queries mined in different tables. The following example,
that serves as a running example throughout the paper, illustrates this point.

Example 1 Let ∆ be a database containing three tables, Cust, Prod and Sales, dea-
ling with customers, products and sales transactions, respectively, and suppose that :

– the table Cust is defined over the attributes Cid, Cname and Caddr, standing
respectively for the identifiers, the names and the addresses of customers,

– the table Prod is defined over the attributes Pid and Ptype, standing respectively
for the identifiers and the types of products,

– the table Sales is defined over the attributes Cid, Pid and Qty where Qty stands
for the quantity of a product bought by a customer.
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If all frequent queries in ∆ can be mined, then it is possible to mine a rule such as : At
least 80% of customers living in Paris buy beer. Indeed, this is stated by the facts that the
queries q1 = πCid(σCaddr=Paris(Cust)) and q2 = πCid(σCaddr=Paris∧Ptype=beer(Cust on
Prod on Sales)) are frequent, and that the confidence of the rule q1 ⇒ q2 is greater than
or equal to 80%.

Notice that, in q1, Cust cannot be replaced with Cust on Prod on Sales because, in
this case, customers with no transactions would not be taken into account. ¤

In this paper, we show that the problem of mining all frequent queries in a database
becomes tractable under restrictions that are met in data warehousing. Indeed, data
warehouses are organized according to star schemes, over which constraints such as
functional dependencies and referential constraints are assumed. The main contribution
of this paper is to show that for a database over a star scheme, all selection-projection
queries that are frequent can be computed based on any level-wise algorithm such as
Apriori (Agrawal et al. 1996), and thus, that this computation is tractable.

In our formalism, a database ∆ satisfying a set FD of functional dependencies is
represented by its weak instance, denoted by ∆FD (Ullman 1988). Roughly speaking,
∆FD is a set of tuples over the set U of all attributes, and the difference between tuples
in ∆FD and standard tuples is that tuples in ∆FD may contain null values.

Using this unique table ∆FD, we consider all queries of the form σS(π↓X(∆FD)),
where S is a conjunctive selection condition, X is any set of attributes and π↓X(∆FD) is
the total projection of ∆FD over X (i.e., all restrictions over X of tuples in ∆FD whose
values over X are constants). Given such a query q, the answer to q in ∆, denoted
by ans∆(q), is the set of all tuples in π↓X(∆FD) that satisfy the selection condition S.
Then, the support of q in ∆, denoted by sup∆(q), is the cardinality of ans∆(q).

Example 2 Referring back to Example 1, assume that Cust satisfies the functio-
nal dependencies Cid → Cname and Cid → Caddr, that Prod satisfies the func-
tional dependency Pid → Ptype and that Sales satisfies the functional dependency
Cid, P id → Qty. Then the scheme of ∆ is a star scheme in which the fact table is
Sales and the two dimensional tables are Cust and Prod.

Denoting by FD the set of the functional dependencies given above, instead of consi-
dering the queries q1 and q2 of Example 1, we consider the following queries

− q′1 = σCaddr=Paris(π
↓
Cid,Caddr(∆FD)), and

− q′2 = σCaddr=Paris∧Ptype=beer(π
↓
Cid,Caddr,Ptype(∆FD)).

We note that, although q′1 and q′2 involve the same table ∆FD, the computation of the
supports (and thus of the confidence) takes into account the fact that there may exist
customers in the table Cust whose identifiers do not occur in the table Sales. ¤

We show that if the scheme of ∆ is a star scheme, then the problem of mining all
frequent conjunctive queries can be treated according to the following two steps, each
of them being based on a level-wise algorithm such as Apriori (Agrawal et al. 1996) :

– Step 1 : compute all frequent queries of the form π↓X(∆FD).
– Step 2 : for each relation scheme X such that π↓X(∆FD) is frequent, compute all

frequent queries of the form σS(π↓X(∆FD)), where S is a conjunction of selection
conditions of the form A = a with A in X and a in dom(A).
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To our knowledge, except in (Goethals 2004), no other work addresses the general pro-
blem of computing all frequent queries in a given database. The work in (Goethals 2004)
considers conjunctive queries, as we do in this paper and points out that considering
no restrictions on the database scheme and no functional dependencies leads to a non
tractable complexity. Although some hints on possible restrictions are mentioned in
(Goethals 2004), no specific case is actually studied. As we shall see, considering a star
scheme with its associated constraints leads to tractable level-wise algorithms.

The approach of (Casali et al. 2003) is also related to our work because data cubes
and star schemes both deal with multi dimensional data. However, the frequent queries
considered in (Casali et al. 2003) involve the fact table only. Therefore, contrary to our
approach, it is not possible to mine frequent queries defined on any set of attributes.
We note however that (Casali et al. 2003) takes into account the hierarchies on the
dimensions, which is not the case in our approach.

As mentioned previously, all approaches dealing with mining frequent queries in
multi-relational databases (Dehaspe and Raedt 1997; Diop et al. 2002; Faye et al. 1999;
Han et al. 1996; Meo et al. 1997; Turmeaux et al. 2003) consider only one table for a
given mining task, and consequently, these approaches fail to mine association rules
as in Example 1. We also note that, except for (Turmeaux et al. 2003), all these ap-
proaches are restricted to conjunctive queries, as we do in this paper.

The paper is organized as follows : In Section 2, we recall the basics of weak instance
semantics and of star schemes. Section 3 deals with the queries that are of interest in
our approach. In Section 4, two algorithms are provided for the computation of frequent
queries and Section 5 concludes the paper.

2 Background

We recall from (Ullman 1988) that, in the relational model of databases, given a
universe of attributes U , every attribute A in U is associated with a set of values called
the domain of A, and denoted by dom(A). Moreover, a relational database scheme
consists of a set S of tables τ1, . . . , τn, where each table τi is associated with an attribute
set, called the scheme of τi and denoted by sch(τi). In a relational database over S
each table τi contains a relation over sch(τi), i.e., a finite set of tuples over sch(τi).

2.1 Universal Relation Scheme Interfaces

Universal relation scheme interfaces were introduced in the early 80s in order to pro-
vide logical independence to the relational model. Given a database ∆ over a universe
of attributes U and a set of functional dependencies FD over U , logical independence is
achieved by associating (∆, FD) to a single table over U , that we denote by ∆FD, and
that is called the weak instance of ∆. We refer to (Laurent et al. 2003; Ullman 1988)
for more details on the contruction of ∆FD, and we simply note here that, contrary to
standard relations, tuples in ∆FD may contain null values.

The weak instance ∆FD can be seen as the only table to which queries on ∆ are
addressed. More precisely, for every relation scheme X, we denote by π↓X(∆FD) the
set of all tuples t over X such that (i) t contains no null value, and (ii) there exists a
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tuple t′ in ∆FD such that t′.A = t.A for every attribute A in X. π↓X(∆FD) is then the
set of all tuples over X that are true in ∆, and so, it is possible to consider all queries
of the form σS(π↓X(∆FD)) where S is a selection condition involving attributes in X.

In this paper, we consider only queries whose selection condition is a conjunction of
selection conditions of the form A = a where A is an attribute in X and a is a constant
in dom(A).

2.2 Star Schemes

An N -dimensional star scheme consists of a distinguished table ϕ, called the fact
table, and N other tables δ1, . . . , δN called dimension tables, such that :

1. If K1, . . . , KN are the (primary) keys of δ1, . . . , δN , respectively, then K = K1 ∪
. . . ∪KN is the key of ϕ ;

2. For every i = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi) (Note that each Ki is a foreign key in
the fact table ϕ).

The attribute set M = sch(ϕ)\K is called the measure of the star scheme. Moreover, we
use the following simplified notation : sch(δ1), . . . , sch(δN ) are denoted by D1, . . . , DN ,
respectively, and sch(ϕ) is denoted by F .

Example 3 The scheme of the database (∆, FD) in our running example is a 2-
dimensional star scheme {δ1, δ2, ϕ} where the two dimension tables are δ1 = Cust
and δ2 = Prod, the fact table is ϕ = Sales and the measure is {Qty}. Moreover :

− Cid is the key of δ1, Pid is the key of δ2, and Cid Pid is the key of ϕ,
− πCid(ϕ) ⊆ πCid(δ1) and πPid(ϕ) ⊆ πPid(δ2). ¤

Now, let (∆, FD) be a database defined over an N -dimensional star scheme and let us
consider its weak instance ∆FD.

We “simplify” the table ∆FD by removing from it all tuples t′ for which there exists
t in ∆FD such that t′.A = t.A for every attribute A over which t′ is a constant. We
feel justified in performing this simplification because doing so does not change the
answers to queries. From now on, the symbol ∆FD will denote the simplified table. It
is important to note that the simplified table contains two kinds of tuples :

– either total tuples, i.e., tuples containing no null value, and there is a one-to-one
mapping between these tuples and the tuples of the fact table,

– or tuples t containing constants over the attributes of a single dimension, say i,
such that the key value t.Ki does not occur in the fact table.

We denote by ∆ϕ
FD the set of all total tuples in ∆FD and by ∆i

FD the set of all tuples
in ∆FD containing constants only over attributes of dimension i, for i = 1, . . . , N .

In the remainder of this paper, we consider a fixed N -dimensional star scheme, with
fact table ϕ and dimension tables δ1, . . . , δN , and a fixed database ∆ over that scheme.
Moreover, for the sake of simplification, we assume that for every i = 1, . . . , N , the key
of dimension i is reduced to a single attribute Ki.

On the other hand, it is well-known that in practice, the cardinality of the fact
table is much higher than that of any dimension table. In order to take this situation
into account, we assume that for every i = 1, . . . , N , |δi| ≤ |ϕ|.
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Example 4 We refer back to the database introduced in Example 1, where the universe
of attributes is U = {Cid, Cname,Caddr, P id, P type, Qty} and the functional depen-
dencies are FD = {Cid → Cname, Cid → Caddr, P id → Ptype, CidP id → Qty}.

Let us consider a database (∆, FD) consisting of the following three relations :
Cust Cid Cname Caddr

c1 John Paris
c2 Mary Paris
c3 Jane Paris
c4 Anne Tours

Prod P id P type

p1 milk
p2 beer

Sales Cid P id Qty

c1 p1 10
c2 p2 5
c2 p1 1
c1 p2 10

The simplified weak instance ∆FD (in which null values are not represented) is the
following :

∆FD Cid Pid Cname Caddr P type Qty

c3 Jane Paris
c4 Anne Tours
c1 p1 John Paris milk 10
c2 p2 Mary Paris beer 5
c2 p1 Mary Paris milk 1
c1 p2 John Paris beer 10

Notice that in this example, ∆ϕ
FD and ∆1

FD contain respectively the last four tuples and
the first two tuples of ∆FD, whereas ∆2

FD is empty. Moreover, the answers to queries
q′1 and q′2 of Example 2 are shown below :

ans(q′1) Cid Caddr

c1 Paris
c2 Paris
c3 Paris

ans(q′2) Cid Caddr P type

c2 Paris beer
c1 Paris beer

¤

3 Frequent Queries

3.1 Queries

Definition 1 Given a database ∆ over an N -dimensional star scheme, let X be a rela-
tion scheme. Denoting by ⊥ and > the false and true selection conditions, respectively,
let Σ(X) be the following set of conjunctive selection conditions :

Σ(X) = {⊥,>} ∪ { (A1 = a1) ∧ . . . ∧ (Ak = ak) |
(∀i = 1, . . . , k)(Ai ∈ X and ai ∈ dom(Ai)) and
(∀i, j ∈ {1, . . . , k})(i 6= j ⇒ Ai 6= Aj)}.

Selection conditions of Σ(X) are called selection conditions over X. Moreover, we
denote by Q(X) the set of all queries of the form σS(π↓X(∆FD)) where S ∈ Σ(X), and
by Q(∆) the union of all sets Q(X) for all relation schemes X.

According to Definition 1, we have σ>(π↓X(∆FD)) = π↓X(∆FD) and σ⊥ (π↓X(∆FD)) =
∅. In order to simplify the notations, we denote σS(π↓X(∆FD)) by σS(X) with the
convention that when S = >, π↓X(∆FD) is denoted by (X).
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We compare queries of Q(X) using the standard query-containment pre-ordering
(Ullman 1988) : for all q1 and q2 inQ(X), q1 is contained in q2, denoted by q1 v q2, if for
all databases (over the fixed N -dimensional star scheme), we have ans(q1) ⊆ ans(q2).

Let us define the following two operators Z and Y on selection conditions in Σ(X) :
For all S1 and S2 in Σ(X), define :

– If S1 = ⊥ or S2 = ⊥ then S1 Z S2 = ⊥
If S1 = > (respectively S2 = >) then S1 Z S2 = S2 (respectively S1)
Otherwise if S1 ∧ S2 ∈ Σ(X) then S1 Z S2 = S1 ∧ S2 else S1 Z S2 = ⊥.

– If S1 = ⊥ (respectively S2 = ⊥) then S1 Y S2 = S2 (respectively S1)
If S1 = > or S2 = > then S1 Y S2 = >
Otherwise S1 Y S2 is the conjunction of all elementary selection conditions (Ai =
ai) that occur in both S1 and S2.

It can be seen that for all queries q1 = σS1(X) and q2 = σS2(X) in Q(X) we have :

1. σS1ZS2(X) and σS1YS2(X) are in Q(X)

2. qi v σS1YS2(X) and qi w σS1ZS2(X) for i = 1, 2

3. σS1YS2(X) = minv{q ∈ Q(X) | q1 v q and q2 v q} and
σS1ZS2(X) = maxv{q ∈ Q(X) | q v q1 and q v q2}.

Thus, 〈Q(X),v〉 is a lattice. This property is used in our approach to compute the
frequent queries ofQ(X), using a level-wise algorithm such as Apriori (Agrawal et al. 1996).

3.2 Frequent Queries

Definition 2 Let ∆ be a database over an N -dimensional star scheme. For every
query q in Q(∆), the support of q in ∆, denoted by sup∆(q) (or by sup(q) when ∆ is
understood), is the cardinality of the answer to q in ∆.

A query q is said frequent in ∆ (or frequent when ∆ in understood) if sup(q) is
greater than or equal to a given support threshold σ.

Referring back to Example 4, it is easy to see that we have sup(q′1) = 3 and sup(q′2) = 2.
Thus, for a given support threshold equal to 3, q′1 is frequent whereas q′2 is not.

It turns out that our notion of support is monotonic with respect to v, i.e., for all
queries q1 and q2 in Q(∆) : q1 v q2 ⇒ sup(q1) ≤ sup(q2).

Since q1 v q2 requires that q1 and q2 be over the same scheme, the previous im-
plication can be stated as follows : If q1 = σS1(X) and q2 = σS2(X) are such that
S2 = S1 Z S, and if q1 is not frequent, then q2 is not frequent either. Consequently,
frequent queries of Q(∆) can be computed using any level-wise algorithm. Morever,
notice that if (X) is not frequent then no query of Q(X) is frequent.

On the other hand, given a standard relation r over relation scheme R (i.e., a finite
set of tuples defined on all the attributes of R), for all X and Y such that X ⊆ Y ⊆ R,
we have |πX(r)| ≤ |πY (r)|. However, this property does not hold for partial tuples,
meaning that X ⊆ Y ⇒ sup((X)) ≤ sup((Y )) does not hold in our framework.

Indeed, in the table of Example 4, with X = {Cid, Caddr} and Y = {Cid, Caddr,
Qty}, we have X ⊆ Y , whereas sup((X)) = 4 and sup((Y )) = 3. The following
proposition shows cases of monotonicity.
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Proposition 1 Let X and Y be relation schemes satisfying one of the statements :
either (∀i, j ∈ {1, . . . , N})(X 6⊆ Di and Y 6⊆ Dj)

or (∃i ∈ {1, . . . , N})(X ⊆ Di and Y ⊆ Di).
For every selection condition S over X : X ⊆ Y ⇒ sup(σS(X)) ≤ sup(σS(Y )).

Based on Proposition 1, the frequent queries of the form (X) are computed by consi-
dering the lattice of all non-empty subsets of U , starting by U itself. At each level,
candidate relation schemes of the same cardinality are pruned as follows :

– If for every i = 1, . . . , N , X 6⊆ Di, and if, for some attribute A, (XA) has been
found not frequent, then (X) cannot be frequent.

– If there exists i in {1, . . . , N} such that X ⊂ Di, and if, for some A in Di, (XA)
has been found not frequent in the previous step, then (X) cannot be frequent.

It is important to note that, for a given dimension i, the fact that (DiA) is not frequent
does not imply that (Di) is not frequent. Moreover, Proposition 1 and our assumption
that |ϕ| ≥ |δi| (i = 1, . . . , N), imply the following corollary.

Corollary 1 For every query q in Q(∆), we have : sup(q) ≤ sup((U)).

We use the functional dependencies for further optimization, based on the following :
given a standard relation r over relation scheme R (i.e., a finite set of tuples defined
on all the attributes of R), if X and Y are such that r satisfies X → Y , then |πX(r)| =
|πXY (r)|.

Thus, if X and Y have the same key, then for every selection condition S over X
and Y we have |σS(X)| = |σS(Y )|. Moreover, it can be seen that, in the case of a star
scheme, every relation scheme X has one key, denoted by key(X), and defined by :

− if for every i = 1, . . . , N , Ki ∈ X then key(X) = K1 . . .KN

− else key(X) = X \ {A ∈ X | (∃i ∈ {1, . . . , N})(KiA ⊆ Di ∩X and A 6= Ki)}.
Proposition 2 Let X and Y be two relation schemes such that key(X) = key(Y ). For
every selection condition S over X and Y , sup(σS(X)) = sup(σS(Y )).

Therefore, applying Proposition 2 in the context of a level-wise algorithm, for every can-
didate query (X), if there exists an attribute A not in X such that key(X) = key(XA)
then (X) is frequent if and only if (XA) has been found frequent. The following example
illustrates Proposition 1 and Proposition 2.

Example 5 Consider the database ∆ of Example 4 and a support threshold equal to
3. We recall that the query q′2 = σCaddr=Paris∧Ptype=beer(X) where X = {Cid, Caddr,
P type} is not frequent. Therefore, when computing the frequent queries of Q(Y ), where
Y = {Caddr, P type}, by Proposition 1, we know, without any computation, that the
query σCaddr=Paris∧Ptype=beer(Y ) is not frequent.

On the other hand, since sup((U)) = 4, (U) is frequent. Using Proposition 2, all
queries of the form (X) such that {Cid, P id} ⊆ X are frequent. So, when computing
the frequent queries of the form (X) with |X| = 5, we know, without any computation,
that the following schemes are frequent with a support equal to 4 : {Cid, P id, Caddr,
P type, Qty}, {Cid, P id, Cname, P type, Qty}, {Cid, P id, Cname, Caddr, Qty} and
{Cid, P id, Cname, Caddr, P type}. ¤
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4 Algorithms

4.1 Frequent Queries of the Form (X)

In the algorithm given below, we use the following notations :
– For a given integer k, Cϕ

k denotes the set of candidate relation schemes of car-
dinality k that are not subsets of any Di, Ci

k (i = 1, . . . , N) denotes the set of
candidate relation schemes of cardinality k that are subsets of Di, and Ck denotes
the union of Cϕ

k and of all Ci
k for i = 1, . . . , N .

– Similarly, for a given integer k, Lϕ
k denotes the set of frequent queries whose

corresponding scheme is of cardinality k and not a subset of any Di, Li
k (i =

1, . . . , N) denotes the set of frequent queries whose corresponding scheme is of
cardinality k and is a subset of Di, and Lk denotes the union of Lϕ

k and of all Li
k

for i = 1, . . . , N .
– supϕ((X)) and supi((X)) (i = 1, . . . , N) denote the number of distinct tuples

over X obtained by scanning the tables ∆ϕ
FD and ∆i

FD, respectively. Thus, given
a relation scheme X, if there exists i in {1, . . . , N} such that X ⊆ Di then
sup((X)) = supϕ((X)) + supi((X)), else sup((X)) = supϕ((X)).

Algorithm 1.
Input : The simplified weak instance ∆FD associated to a database ∆ over an N -dimensional
star scheme {D1, . . . , DN , F}. The cardinalities |ϕ|, |δ1|, . . . , |δN | of all tables in ∆. A support
threshold σ.
Output : All queries of the form (X) that are frequent in ∆.
Method :
if |ϕ| < σ then //(1) no computation based on Corollary 1

return ∅
else

k = |U | ; Lk = {(U)} ; Lϕ
k = {(U)}

for each i = 1, . . . , N do Li
k = ∅ end for each

while Lk 6= ∅ or k > mini(|Di|) do

k = k − 1
//(2) generation of candidates of level k by considering all subsets
//of cardinality k of all relation schemes in Lk+1

generate Ck from Lk+1

Cϕ
k = {X ∈ Ck | (∀i = 1, . . . , N)(X 6⊆ Di)}

//(3) pruning based on Proposition 1
Cϕ

k = Cϕ
k \ {X ∈ Cϕ

k | (∃A ∈ U)((XA) 6∈ Lϕ
k+1)}

//(4) pruning based on Proposition 2
same sup = {X ∈ Cϕ

k | (∃A ∈ U)((XA) ∈ Lϕ
k+1 and key(X) = key(XA))}

Cϕ
k = Cϕ

k \ same sup
Lϕ

k = {(X) | X ∈ same sup}
for each i = 1, . . . , N do

Ci
k = ∅

if k ≤ |Di| then
if k = |Di| then //(5) test whether (Di) is frequent

if |δi| ≥ σ then Li
k = {(Di)} else Li

k = ∅ end if

else

Ci
k = {X ∈ Ck | X ⊂ Di}

RNTI - 1

RNTI-E-3 338



Jen et al.

//(6) pruning based on Proposition 1
Ci

k = Ci
k \ {X ∈ Ci

k | (∃A ∈ Di)((XA) 6∈ Li
k+1)}

//(7) pruning based on Proposition 2
same sup = {X ∈ Ci

k | Ki ∈ X and (∃A ∈ Di)((XA) ∈ Li
k+1)}

Ci
k = Ci

k\ same sup
Li

k = {(X) | X ∈ same sup}
end if

end if

end for each

//(8) computation or pre-computation of the supports : one pass over ∆ϕ
FD

compute supϕ((X)) for each X ∈ Cϕ
k ∪ C1

k ∪ . . . ∪ CN
k

Lϕ
k = Lϕ

k ∪ {(X) | X ∈ Cϕ
k and supϕ((X)) ≥ σ}

for each i = 1, . . . , N do

//(9) additional pruning
Ci

k = Ci
k \ {X ∈ Ci

k | supϕ((X)) + |δi| < σ}
//(10) computation of the supports : one pass over ∆i

FD

Li
k = Li

k ∪ {(X) | X ∈ Ci
k and supϕ((X)) + supi((X)) ≥ σ}

end for each

Lk = Lϕ
k ∪ L1

k ∪ . . . ∪ LN
k

end while

return
⋃

k(Lk)

end if

We give more details on comments in Algorithm 1. Comment (1) is an immediate
consequence of Corollary 1, and concerning comment (2), we note that all candidates at
level k are obtained by removing one attribute from the frequent schemes at level k+1.
We do not give details about the function generate, but we mention that considering
the attributes according to a fixed ordering allows to efficiently perform this step.

Comments (3) and (6) are consequences of Proposition 1. In particular, it is im-
portant to note that, in the case of comment (6), Ci

k is pruned by considering subsets
of Di only. Similarly, comments (4) and (7) are consequences of Proposition 2.

The test in comment (5) comes from the fact that, for every i = 1, . . . , N , the
support of (Di) is equal to |δi|, and thus requires no computation. Moreover, due to
Proposition 1, all dimensions Di must be considered even if not generated from the
previous step. This comment is also related to the condition in the while loop.

Comments (8) and (10) deal with the count of sup((X)) : if X is not contained
in any dimension scheme Di then sup((X)) = supϕ((X)), and if X is a subset of some
Di, then sup((X)) = supϕ((X)) + supi((X)). In this case, an additional pruning is
mentioned in comment (9). Indeed, for every X ⊆ Di, we know that sup((X)) ≤
supϕ((X)) + |δi|. Therefore, if supϕ((X)) + |δi| < σ, then (X) is not frequent.

Summarizing the remarks just above, it can be seen that Algorithm 1 is a level-wise
algorithm that scans the table ∆FD only once per level, and that more prunings than
in Apriori are possible.

4.2 Frequent Queries of the Form σS(X)

The frequent queries of the form σS(X) are computed by applying the algorithm
Apriori to each frequent query in the output of Algorithm 1. The queries in

⋃
k(Lk)
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are considered in a decreasing ordering of the cardinalities of the schemes, in order to
prune candidate queries based on Proposition 1 and Proposition 2.

In the algorithm given below, we denote by CX
k (respectively LX

k ) the set of all
candidate (respectively frequent) queries of the form σS(X) where S is a selection
condition over X containing exactly k conjuncts (A = a). Moreover, LX denotes the
set of all queries in Q(X) that are frequent.

Algorithm 2.
Input : The simplified weak instance table ∆FD associated to a database ∆ over an N -
dimensional star scheme {D1, . . . , DN , F}. The output

⋃
k(Lk) of Algorithm 1 and the cor-

responding support threshold σ.
Output : All queries of the form σS(X) that are frequent in ∆.
Method :
for each (X) in

⋃
k(Lk) do

if (∃A ∈ U)(key(X) = key(XA)) then //(1) no computation based on Proposition 2

LX = {σS(X) | σS(XA) ∈ LXA and S is over X}
else

k = 0 ; LX
k = {(X)} ; SX

k = >
while LX

k 6= ∅ and k < |X| do
k = k + 1

//(2) generation of all selection conditions based on Definition 1

generate the set SX
k of all selection conditions over X based on LX

k−1

CX
k = {σS(X) | S ∈ SX

k }
//(3) standard pruning

CX
k = CX

k \ {σS(X) | (∃S′)(S = S′ ∧ (A = a) and σS′(X) 6∈ LX
k−1)}

//(4) pruning based on Proposition 1

if (∀i = 1, . . . , N)(X 6= Di) then

CX
k = CX

k \ {σS(X) | (∃A ∈ U)(σS(XA) 6∈ LXA)}
enf if

//(5) computation of the supports : if (∃i ∈ {1, . . . , N})(X ⊆ Di)

//then one pass over ∆ϕ
FD ∪∆i

FD (or δi) else one pass over ∆ϕ
FD

compute sup(σS(X)) for each σS(X) ∈ CX
k

LX
k = LX

k ∪ {σS(X) | σS(X) ∈ CX
k and sup(σS(X)) ≥ σ}

end while

LX =
⋃

k(LX
k )

end if

end for each

return L =
⋃

X(LX)

We review the main steps of Algorithm 2 as follows : as stated in comment (1),
Proposition 2 implies that LX can be obtained from LY , if X ⊆ Y and key(X) =
key(Y ). Concerning comment (2), we simply note that selection conditions at level k
are obtained from the selection conditions in the queries of LX

k−1 in much the same way
as in Apriori. Comment (3) refers to the standard pruning phase of Apriori, and as
noticed in comment (4), Proposition 1 allows for additional pruning, based on the fact
that, when computing LX , if for some superset Y of X, LY has already been computed,
then we know that for every selection condition S over X, sup(σS(X)) ≤ sup(σS(Y )).
Comment (5) specifies the part of the table ∆FD that has to be scanned to compute
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the supports. We note that if X ⊆ Di then scanning δi could be an option, instead of
scanning ∆ϕ

FD ∪∆i
FD.

4.3 Computational Issues

Although we have no experiments to report, we would like to point out some com-
ments on our approach. First, we note that the table ∆FD can be efficiently computed,
using for instance external joins (Ullman 1988). On the other hand, finding all frequent
queries in a database over an N -dimensional star scheme requires at most P + 1 appli-
cations of a level-wise algorithm, if P schemes X are such that (X) is frequent.

However, it is likely that not all frequent queries are of interest for each user. Instead,
some users can be interested in some schemes while other users would like to focuss on
other schemes. We propose the following policy :

– Run Algorithm 1 once for all users. Storing all frequent queries of the form (X)
with their supports could serve as a basis for queries issued by the users.

– Assuming that users ask for frequent queries on different schemes (but rarely all
of them), it is easy to modify Algorithm 2 so that it is restricted to a specified
set of schemes, at the cost of less additional prunings.

– If all frequent queries computed so far are stored with their supports, then addi-
tional prunings are possible, as done in (Diop et al. 2002).

5 Conclusion and Further Work

In this paper, we have considered the weak instance model of relational databases,
in order to design level-wise algorithms for the computation of all frequent queries in
a database over an N -dimensional star scheme. Moreover, we have shown that, in this
case, additional prunings with respect to Apriori are possible.

We are currently implementing our approach, and future research directions include
the following : (i) Considering schemes more sophisticated than star schemes, such as
snowflake or constellation schemes. The work reported in (Levene and Loizou 2003)
provides a suitable theoretical basis for this investigation. (ii) Since our work is closely
related to the approach presented in (Diop et al. 2002), we are investigating the rela-
tionships between the two approaches. (iii) Since data cubes and star schemes are two
notions that deal with multi dimensional data, the relationships between our work and
that of (Casali et al. 2003) must be investigated further.
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Summary

The problem of mining all frequent queries in a database is intractable, even if we
consider conjunctive queries only. In this paper, we show that this problem becomes
tractable under the following restrictions : the database scheme is a star scheme ; the
data in the database satisfies a set of functional dependencies and a set of referential
constraints. We note that star schemes are considered to be the most appropriate
for data warehouses, while functional dependencies and referential constraints are the
most common constraints that one encounters in real databases. Our approach is based
on the weak instance semantics and considers selection-projection queries over weak
instances. In such a context, we show that frequent queries can be mined using level-
wise algorithms such as Apriori.
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