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Abstract. The analysis of gene expression data in DNA chips is an iraport
tool used in genomic research whose main objectives range the study of
the functionality of specific genes and their participatiomiological process
to the reconstruction of diseases’s conditions and thdissguent prognosis.
Gene expression data are arranged in matrices where eaeltgeasponds to
one row and every column represents one specific experihntdition. The
biclustering techniques have the purpose of finding sulifegenes that show
similar activity patterns under a subset of conditions. @pproach consists of
a biclustering algorithm based on local nearness. The idhgorsearches for
biclusters in a greedy fashion, starting with two—genehkibters and including
as much as possible depending on a distance threshold whartargees the
similarity of gene behaviors.

1 Introduction

The DNA Microarray technology represents a great opporywfistudying the genomic
information as a whole, so we can analyze the relations artftangsands of genes simultane-
ously. The experiments carried out on genes under diffe@mditions produce the expression
levels of their transcribed mMRNA and this information isretbin DNA chips.

A biclusteris a subset of genes that show similar activity patterns uadeibset of con-
ditions. The research on biclustering started in 1972 wigitigan’s work, in which the way
of dividing a matrix in sub—matrices with the minimum varanwvas studied (Hartigaet al.,
1972). In that approach the perfect bicluster was the sufpniatmed by constant values, i.e.,
with variance equal to zero. Hartigan’s algorithm, nand@éct clustering divides the data
matrix into a certain number of biclusters, with the minimwvariance value, so the fact of
finding a number of sub-matrices equal to the number of elésn&ithe matrix is avoided.
Another way of searching biclusters is to measure the colerbetween their genes and con-
ditions. Cheng & Church (Chergg al., 2000) introduced a measure, tinean squared residue
(MSR), that computes the similarity among the expressidnegawithin the bicluster. The
ideas of Cheng and Church were further developed by Yangg(¥aml., 2002, 2003) who
dealt with missing values in the matrices. As a result of #pgroach an algorithm named
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FLOC was designed. Other works (e.g (Waetgal.,, 2002)) are based in a quality value as
well, calculated using the expression values of biclussrdo measure their coherence.

Other alternatives in the searching for biclusters haven lstedied in the last years. We
might also consider that a value in the data matrix is the sfitheocontributions of differ-
ent biclusters. Based on the previous idea, Lazzeroni @rarzet al, 2000) presents the
plaid modelsin which the data matrix is described as a linear functiolayérs corresponding
to its biclusters and shows how to estimate a model usingeaatite maximization process.
Shamir (Shamiet al., 2002) proposes a new method to obtain biclusters basedomhina-
tion of graph theoretical and statistical modelling of ddtathis model, a gene responds to a
condition if its expression level changes significantlyrettcondition witch respect to its nor-
mal level. In a recent work (Liet al,, 2004), a generalization of OPSM model, introduced by
(Benet al, 2002), is presented. The OPSM model is based on the sefbithusters in which
a subset of genes induce a similar linear ordering along seswdf conditions. Some tech-
nigues search for specific structures in data matrix to fictlbiers: (Gersteiet al., 2003)
creates a method for clustering genes and conditions simediusly based on the search of
“checkerboard” patterns in matrices of gene expressioa d&eviously the data is processed
by normalization in a spectral framework model (severaksods all built around the idea
of putting the genes on the same scale so that they have the @amage level of expres-
sion across conditions, and the same for the conditiong)lufenary computation techniques
have also been used in this research area. These technggiaspects from natural selection
within computer science, including genetic algorithms)egtee programming and evolutionary
strategies. In (Aguilaget al., 2005) an evolutionary technique, based on the searcitlofiérs
following a sequential covering strategy and measuringriban squared residue, is used.

In this work we propose an algorithm to obtain high qualitglbsters based on local near-
ness, i.e., biclusters with the maximum number of genes mnehich the absolute value of
the difference between two expression values of any paieotg under the same condition
is not greater than a certain value. Therefore, we condidertivo genes whose distance be-
tween each other is lower than a threshold with respect tmiceexperimental conditions,
have similar behavior regarding those conditions. To firelghpropriate distance threshold,
we carried out a preliminary statistical study in order towlthe algorithm to discover high—
quality biclusters. The quality is further evaluated by meeaf the mean squared residue, so
that a comparative analysis with other techniques is plessib

The paper is organized as follows: in Section 2 the defindtimiated to biclustering are
presented; the algorithm is shown in Section 3; in Sectiomeddescribe the method used and
illustrate it with a simple example; experimental results discussed in Section 5, comparing
the quality of those generated by Cheng & Church’s and Agé&ilaivina’s algorithms; finally,
the most interesting conclusions and future researchtéirexcare summarized in Section 6.

2 Definitions

The gene expression data are arranged in matrices. A matdefined as a tripld/ =
(G,C,¢), whereG, C are two finite sets referred to as thtee set of geneandthe set of
conditionsrespectively, and : G x C — R is thelevelfunction. The real numbef(g, ¢) is
also denoted byg, ¢) and represents the level of expression of the genrder the specific
conditionc.
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Next the main concepts of our approach are defined and somgpéesto clarify them are
provided.

Definition 1 Let M = (G,C,¢) be a matrix formed by a set of genes, and a set of
conditionsC'. We say that a pair of non-empty s¢fs J) is a é—bicluster, ifl C G, J C C
and

J={ceC|Vg,q €1,](g,c)— (g, c)|<d}
The absolute value of the difference between two expregaioas of any pair of genes in the
bicluster under the same condition is not greater than ashaids.

Definition 2 Let (1, J) be a bicluster. The residug of an element;; of the bicluster(, J)
is
R(aij) = aij —aiy —arj —ary
wherea;; is the mean of théh row in the biclustera;; the mean of thgth column in the
bicluster, andz; s is the mean of all the elements within the bicluster.
The mean squared residué SR of a bicIuster(I, J)is

=TT 2 )

The M SR is the variance of the set of all the values in the biclustlrs the mean row
variance and the mean column variance. This value is ind&af the coherence of values
across both rows and columns. The lower #& R is, the stronger the coherence.

MSR(I,J) =

Example 1 Consider the matrix/ = (G, C, ¢), where

G = {g1,92793,g4795}:
C = {ci,ca,¢c3,ca}
and/ is defined by:
1 9 3 2
7 8 1 4
(0(girc;))=1]1 6 2 2
5 1 5 7
2 1 3 1

If the thresholds is 5, some of the biclusters a®;, = {{g1,93,94},{c1,¢3,¢c4}}, Ba =
{{91,92,93}, {c2, c3,ca}}, and Bz = {{g3, g4, g5}, {c1, c2, c3} }, where

1 3 2 9 3 2 1 6 2
Bl(gi,cj) = 1 2 2 Bg(gi70j) = 8 1 4 Bg(gi,C]') = 5 1 5
5 5 7 6 2 2 2 1 3

In all biclusters, the absolute value of the difference agibre expression values of every pair
of genes is lower than or equal to the threshélg 5, under the same condition.

Our goal is to obtain biclusters with the maximum number afegeand conditions and
with the minimum value of MSR.
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3 Algorithm

Our approach, named BLN (Biclustering by Local Nearnesshaised on local nearness,
i.e., in the definition ob—bicluster provided above, in Def. 1. Its goal is to obtaiffiedent
biclusters with the maximum number of genes so that all afithave the next two properties:

o the difference between two expression values of any palvexfeé genes under the same
condition in the bicluster is not greater th&n

e the number of conditions of each bicluster is not lower than

The algorithm, illustrated in Figure 1, consists of two pwasin the first part we obtain
a set of valid biclusters with only two gene2g( Biclustej, so that the algorithm analyzes
all possible pairs of genes in the data matrix in order to finght, as we can see in Figure
1 (line 9). This first bicluster set will be used by the algomitin the second part. We have
designed a special tree data structure in which those béckiare stored. In this tree, the nodes
represent conditions and leaves are groups of geri&s diclustershat have a common group
of conditions, ie., to reach them we have to follow the santh jathe tree. The reason why
we use this structure is to minimize the amount of memory émestoring these first biclusters
(they can be many thousands) and also to reduce the runmegTihe aim of the second part

1 Procedure: BLN
2 Input:
3 M (data matrixM = (G, C,¢))
4 § (maximum difference between two expression values)
5 X (minimum length of the set of conditions for every biclugter
6 Output:
7 B (final set of biclusters)
8 Method:
9 Initialize B to contain all the biclusterdl, J)
with | I |=2and| J |> A

105=0

1lrepeat

12 B=B-8

13 Useful_Genesfg € I |V(I,J) € B’}
14 S=1B

15 for eachbicluster(1, J) € B’

16 for “eachg’ € (Useful_Genes f)

17 if Forall "¢” € I there is a biclustef{g’, "'}, J') with J C J’
18  Add(IU{g'},J)toB

19until | B|=| S|

20end BLN

FiG. 1 — The BLN algorithm.

is to create new biclusters containing more than two genleis. Jart is iterative and follows a
greedy methodology to prune the search space. At eachdtegroup of new biclusters is
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created. The process ends when no new bicluster is obtdined 9, the number of biclusters
has not altered). In every iteration, the set of biclusteas has been obtained in the previous
one is analyzed, as we can see in line 15 (in the first iter&ioN starts working with the
biclusters obtained in the first phase). To create a new di@lifrom another one we have
to add it new genes. These new genes are gathered from alsetldséful Geneswhich is
formed by the genes from all the biclusters of the set beimdyaed minus the genes from the
bicluster which is being processed at that moment (line188). To add one geng;, to
a bicluster(Z, J), BLN has to check that for every gene in the biclustgr, a2g_Bicluster
formed byg’ andg” exists and its group of associated conditions has to beegrézn or
equal to the conditions of, i.e., the conditions of the new possible biclusféincludes that
of the former! (line 17). In this way, BLN ensures that the difference betwthe expression
value of the new gen and the others is always lower than

A simple example based on the data mafvix= (G, C, ¢) described in Example 1. We
apply BLN to M usingd = 5 and\ = 2. After the algorithm’s first phase we have obtained
a group of 2-gene biclusters shown in Table 1. The secondwitidnalyze every bicluster

Genes| Conditions|| Genes| Conditions
{1,2} [ {2,3,4} {2,4} | {1,3,4}
{1,3} | {1,2,3,4} || {2,5} | {1,3,4}
{1,4} | {1,3,4} {3,4} | {1,2,3,4}
{1,5} | {1,3,4} {3,5} | {1,2,3,4}
{2,3} | {2,3,4} {4,5} | {1,2,3}

TAB. 1 — Example of2g_Biclustergyeneration.
of that group trying to generate new ones. We choose oneptkiiminary biclusterB; =

{{91795}7{01,637(/‘4}}
B1(gi7cj):(§ g ?)

In this case the group df se ful_Genes will be {¢2, g3, 94}. For every gene of this set we
try to create a new bicluster checking if it can be part of thedulster we are processing; .
We start withg2, and as the biclustering being consideredgs, g5}, we check if{¢2, g1}
and{g2, g5} are biclusters, and then if these biclusters have the rigidiitions to include;2

in {g1, g5}

Genes | Conditions
{2,1} |{2,3,4}
{2,5} | {1,3,4}
{1,5} |{1,3,4}

The first combination of gene§y2, g1), generates a bicluster with a group of conditions in-
compatible with the conditions d8;, so we cannot adg to the bicluster. The same happens
with the gengy4.

Genes | Conditions
{4,1} |{1,3,4}
{4,5} | {1,2,3}
{1,5} |{1,3,4}
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However, the geng3 is appropriate to be included in the bicluster.

Genes | Conditions
(3,17 | {1,2,3,4}
3.5} | {1,2,3,4}
{1,5} |{1,3,4}

The group of conditiongcl, ¢2, ¢3, c4} is compatible with the conditions d8;: {c1, ¢3, c4}
for every pair of genes formed by each gend3gfand the gene3 of theUse ful_Genes set.
As aresult, a new bicluster is creaté®hew = {{g1, 93,95}, {c1, c3,ca} }, where

(Bnew(gi, ¢j) =

[NCRE =

3 2
2 2
31

4 Method

In this section we describe the method used to obtain baisisiased on local nearness
using the algorithm BLN. The aim is to generate the greatestber of biclusters with the
maximum number of genes and a low value of MSR. To do this we hawdetermine first
the correct value of the parameters of our algorithm, pagjperial attention to the distance
threshold between expression valués:As this value is critical, we have designed carefully
the method in order to provide valid and high—quality bitdus.

We have developed our experiments with a well known datéiseSaccharomyces Cere-
visiaecell cycle expression dataset. Theastdataset consist of a data matrix composed by
2884 genes (rows) and 17 experimental conditions (columfis)have to gathered statistical
information about this data matrix to decide which paramsesee suitable for our purposes.
If we analyze theyeastdata matrix we find that the maximum distance between express
values is 596. We consider the half of that value, that is, 2898he maximum distance that we
are going to allowy_maz. We divided this value by 100, creating 100 different ingds\for .
The next step is to run an special version of BLN which goad ishitain statistical information
about the number of biclusters generated after the first @coingl parts. This version carried
out a test for every : 2, 98 x4, with 7 ranging from 1 to 100 and for every number of minimum
conditions allowed, from 1 to 17. These runs are only a simulation so the comipuzit
cost is lower than a normal BLN run. We recorded the numberabfisters generated after the
first and second phasesifo * 17 different situations. Also, we compiled information about
the mean of the number of genes and the maximum number of géeeshe second part. To
reduce this amount of data we focus on a minimum number ofitiond ranging from 10 to
17.

The number of bicluster generated with these tests valeeifiastrated in the graphics of
Fig. 2. The first graph (left) shows the evolution of the numifedifferent biclusters created
for every test values after the first phase, with a maximumbemof biclusters of 364.713
with 6 = 35.76 and\ = 10 and a minimum number of biclusters of 10 with= 2.98 and
A = 17. The second graph (right) shows the same information witheet to the second part
of the algorithm, generating the next extreme values: @R withé = 35.76 and\ = 10,
and 21 withd = 2.98 and\ = 17. Obviously, the restrictive conditions that make the numbe

RNTI-E-6 - 686 -



J. S. Aguilar-Ruiz et al.

400000

Min Cond.=10
Min Cond.=11
Min Con
350000 - Min Cont
Min Con
Min Con
Min Cond.=16 —e—
300000 - Min Cond.=17 —a—
250000 -
200000 m
150000 -
100000 4
50000 4
o ke/;/'/;/'i
o 5 10 15 20 25 30 35 40
1.2e+007
Min Cond.=10 —+—
Min Cond.=11 —=—
Min Con —*—
Min Cond.=13 —&—
Min Cond.=14 —=—
1e+007 - Min Con ——
Min Cond.=16 —e—
Min Cond.=17 —&—
8e+006
6e+006 -
4e+006
2e+006 |-
0 ,
o 5 10 15 20

FIG. 2— Number of biclusters with different valuesiofin X—axis) and\ (curves identify the
minimum number of conditions): after the first phase of Bldéitand after the second phase
of BLN (right), respectively. When the threshdlihcreases, the number of biclusters also
does. When the minimum number of conditions increasesytheer of biclusters decreases.
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FiG. 3 — Mean of the number of biclusters with different value§ oX—axis) and\.

of biclusters lower are a lowvalue and high value of. In fact, if A is equal to the number of
experimental conditions, then we would find clusters imgte@biclusters, although allowing
overlapping among clusters, in contrast with traditiorlaktering techniques. It is worth to
note that for every pair of test valueg,and \;, the number of biclusters generated after the
first and second parts are related, in such a way that thedassdirectly proportional to the
first one in all the cases. We gathered information about tmeher of genes, although only
for the second part of the process (in the first part we onlygee2g_Biclusterk

In Figure 3 we can observe the average number of genes of thestairs for our test
values. It is interesting that the mean of genes decreaseeasthe value af grows for all
the minimum number of conditions until the value 25. Thisés&use the number of biclusters
increases witld while the number of their genes does not change. From the miohias the
value of 25 the number of genes in the biclusters grows anchéan as well. Fromi = 34, the
mean starts increasing. For this reason, we have choselilne 35.76 for our experiments,
as there are more choices to select good biclusters. 3\th35.76 and A = 10 the mean of
genes reaches to its biggest value.

We can see the evolution of the maximum number of genes initheskers in Figure 4.
This value is constant for all the test values until $healue is about 27. From this moment,
we find biclusters with more genes. The number of genes redatshmaximum value, 17, with
0 = 35.76 and\ = 11 or A = 10 (both graphs are identical).

The main conclusion from this previous analysis is that teimum number of genes is
reached with the valugé = 35.76. The correct value fok is 10 or 11. We finally choose 10 as
the minimum number of conditions allowed because with 35.76 and\ = 10 the algorithm
generates more biclusters than with= 11. Once the correct parameters have been chosen the
next step is to run BLN and study the results.

5 Experimental Results
We compare BLN with the Cheng and Church algorithm (CC) arith wie SEBI algo-

rithm which is an evolutionary—based algorithm that exsdiiclusters following a sequential
covering strategy (Aguilaet al., 2005).
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FIG. 4 — Maximum number of genes in biclusters varying the valuég¥faxis) and\.

Bicluster | Genes| Conditions| MSR | Row Variance
433315 17 10 105.87 231.52
462795 15 10 95.69 166.08
548356 15 10 81.56 173.35
682571 16 12 87.10 292.20
755312 14 10 69.85 153.78
847161 14 10 91.65 355.04

1031000 14 10 89.62 159.25

8604074 14 10 73.84 127.69

9509611| 15 10 73.93 182.27

TAB. 2 — Information about biclusters generated by BLN. In the fition every bicluster is
identified by its generation number. The second and thirdrook show the number of genes
and conditions, respectively. The MSR value is reportedurtfi column and the last column
is related to the row variance.

After the analysis done in the previous section, the algoriBLN is run using) = 35.76
and\ = 10. As a result, BLN generates 10.215.022 different biclsstéth various gene set
sizes. The overlapping between biclusters is obvious, gad many of them are included in
others, so only 9.147 biclusters were finally generatedaioimy a number of genes greater
than or equal to 14. The first phase of BLN took 41 seconds. €bersl phase, 12.200
seconds (9.684 without graphics and genetic files genejatithe average number of genes
in biclusters was 8. The biclusters generated covered 98&3he genes and 100% of the
conditions, i.e., 93.93% of the elements of the expressiatnira The BLN algorithm has been
implemented in Java and run on a Win—Xp platform.

The criteria used to measure the quality of biclusters azertaximum number of genes,
the minimum mean squared residue, and the maximum numbemndiitons, in this order.
Following these criteria we have selected the best 1004tieta among all having a number of
genes between 14 and 17. The features of some of them candrwed Table 2.

In Table 2, the biclusters selected present a small MSR yagigit exists a great coher-
ence across both genes and conditions. This similar beheaiobe observed in the graphics
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FiG. 5— An example of biclusters generated by BLN. The shapes ofréphg show the
quality of biclusters.

Alg. MSR Vol. | Num. of Genes| Num. of Cond.
CcC 204.29 | 1576.98 166.71 12.09
SEBI | 202.68 | 204.67 13.20 15.44
BLN 70.02 | 166.84 15.34 10.88

TAB. 3— Performance comparison between CC, SEBI and BLN. Firstneol@algorithm),
second column (average mean squared residue), third cojamamage volume), fourth column
(average number of genes), fifth column (average numbemaigy@nd sixth column (average
number of conditions).

on Figure 5. These graphics show the evolution of the exjmesslues of the set of genes
under the set of conditions. We obtain biclusters with higmber of genes as well, being 17
the maximum value. In th¥eastdata set this number of genes and the MSR value vary with
the parameters, i.e., when the distance threshold growsh&nchinimum number of condi-
tions decreases (less restrictive experimental condifjahen the number of genes increases
substantially.

In Table 3 we compare our 100 best biclusters and their ageralges with those obtained
by the algorithms of Cheng & Church (CC) and Aguilar & DivirsEBI).

BLN obtains better results with regard to the MSR value thendther two algorithms.
The averaged volume, i.e., the number of genes multiplieéyumber of conditions, and
the average of conditions in biclusters are lower. The @enamber of genesis 15.34, greater
than that of SEBI's. The most interesting property of bitdus found by BLN is that it pro-
vides biclusters with very low mean squared residue in caoispa to the other techniques
while maintaining the number of genes between 14 and 17. dWevariance shows that the
algorithm is able to find interesting patterns, which anestitated in Figure 5. In Figure 5 are
represented six biclusters, with genes ranging from 14 toThié values of expression level
for the genes in the biclusters are very close to each othesepving the threshold set by the
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algorithm. It is specially interesting that the range ofues is very small regarding the range
of expression levels, as it is shown in the graphs. In addittome shapes show significant
patterns in data, as the bicluster at the top—right cornEigafre 5.

6 Conclusions

Our technique for finding biclusters is based on local nesayiee., on the distance between
the expression values of genes, under the same condititirinwhe biclusters. We find groups
of genes that have a similar behavior under a subset of GonglitA previous statistical study
of the data determine the suitable parameters for our appreemed BLN, which provides
a group of different biclusters with highly—related gened &ery low mean squared residue.
Compared to previous algorithms our approach obtains dtieta with fewer genes than CC
and very low mean squared residue. Relative to SEBI, BLN awgs the average number of
genes maintaining its very low mean squared residue. Ceapbkamples of biclusters are
provided and they show similar behavior for the genes iruistelrs.

Future research will focus on improving the efficiency ofatgorithm by means of pruning
techniques and to validating the biclusters with biolobikceowledge, such as Gene Ontology.
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Résumé

L'analyse des données d’expression de génes dans I’ADNhesttil important utilisé dans
la recherche génomique dont les objectifs principaux steat de I'étude du caractére fonc-
tionnel des géenes spécifiques et leur participation dansrteessus biologiques a la recons-
truction des conditions de maladies et a leur pronostigas.données d’expression de génes
sont arrangées dans des matrices ou chaque géne correspoadigne et chaque colonne
représente une condition expérimentale spécifique. Lémimees de "biclustering” ont pour
but de trouver des sous-ensembles de génes qui montrermdEdan d’activité similaires sous
un sous-ensemble des conditions. Notre approche congiste @gorithme de "biclustering”
basé sur la proximité locale. L'algorithme cherche desltsiers" d’'une maniére gloutonne.
Il commence avec des "biclusters” qui contiennent deuxgéniaclut ensuite autant de génes
que possible en respectant un seuil de distance garantissamilarité de comportements des
génes.
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