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Abstract. This paper presents a sensitivity analysis for the dimensioning of
real-time systems in which sporadic tasks are executed according to the preemp-
tive Earliest Deadline First (EDF) scheduling policy. The timeliness constraints
of the tasks are expressed in terms of late termination deadlines. A general case
is considered, where the task deadlines are independent of the task sporadicity
intervals (also called periods). New results for EDF are shown, which enable us
to determine the C-space feasibility domain, such that any task set with its worst-
case execution times in the C-space domain is feasible with EDF. We show that
the C-space domain is convex, a property that can be used to reduce the number
of inequalities characterizing the C-space domain.

1 Introduction

This paper considers the problem of correctly dimensioning real-time systems. The correct
dimensioning of a real-time system strongly depends on the determination of the task Worst-
Case Execution Times (WCETs). Based on the WCETs, a Feasibility Condition (FC) (1),
(10), (5) can be established to ensure that the timeliness constraints of all the tasks are always
met, regardless of their release times, when they are scheduled by either a fixed or a dynamic
priority-driven preemptive scheduling algorithm. The timeliness constraints are expressed in
terms of late termination deadlines imposed on the completion times of the tasks. The task
model is the classical sporadic model. A sporadic task setτ = {τ1, ..., τn} is composed ofn
sporadic tasks, where a sporadic taskτi is defined by:

• xi: its worst-case execution time (WCET).

• Ti: its minimum inter-arrival time (also called, by extension, the period).

• Di: its relative deadline (a task released at timet must be executed by its absolute
deadlinet + Di).

In the sequel, we assume the general case where deadlines and periods are independent.
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A recent research area called sensitivity analysis aims at providing interesting information on
the feasibility of a system when changing task WCETs, task periods (4), or task deadlines
(9). This permits, for example, finding a feasible task set, if the current one is not feasible, by
modifying the task parameters (WCETs, periods, or deadlines) or determining the impact of
an architecture change on the feasibility of a task set (WCET change). In this paper, we are
interested in the sensitivity on WCETs. We want to determine the C-space feasibility domain
as defined by Bini and Buttazzo (3) when tasks are scheduled with non preemptive Earliest
Deadline First. The C-space is a region ofn dimensions where each dimension denotes the
WCET of a task such that for any vectorX = {x1, . . . , xn} in the C-space, task setτ is feasi-
ble.

In the case of Fixed Priority scheduling, when deadlines are less than or equal to periods, Bini
and Di Natale (4) have shown how to compute the maximum expansion factorα applied to
all the WCETs of the tasks to remain in the C-space at a reasonable cost (see Section 3), such
that∀τi ∈ τ , i = 1 . . . n, the WCET ofτi is α xi. They finally propose a parametric equa-
tion of the C-space, detailed in Section 3. In the general case, when deadlines and periods
are independent,α can be computed by successive iterations, where each iteration requires a
pseudo-polynomial time complexity. In this paper, we show how to derive from an analysis of
EDF in a time interval[min(D1, . . . , Dn), lcm(T1, . . . , Tn)) the C-space region parametric
equation.

The rest of the paper is organized as follows. Section 2 reviews classical concepts for unipro-
cessor scheduling. Section 3 presents the state of the art in real-time scheduling with a focus on
Fixed Priority (FP) scheduling sensitivity analysis and EDF scheduling. In Section 4, we intro-
duce new results on EDF scheduling that can be useful for a sensitivity analysis of the WCETs.
We then establish the C-space feasibility region parametric equations. In Section 5, we show
in an example how to determine the C-space domain. Finally, we give some conclusion.

2 Concepts and notations

We recall classical results in the uniprocessor context for real-time scheduling.

• A task is said to be non-concrete if its request time is not known in advance. In this
paper, we only consider non-concrete request times, since the activation request times
are supposed to be unpredictable.

• Given a non-concrete task set, the synchronous scenario corresponds to the scenario
where all the tasks are released at the same time.

• EDF is the preemptive version of Earliest Deadline First non-idling scheduling. EDF
schedules tasks according to their absolute deadlines: the task with the shortest absolute
deadline has the highest priority. Ties are broken arbitrarily.

• FP is a preemptive Fixed-Priority scheduling according to an arbitrary priority assign-
ment.

• For FP,hp(i) denotes the subset of tasks with a priority higher than or equal to that ofτi

exceptτi.



Hermant et al.

• A task set is said to be valid with a given scheduling policy if and only if no task occur-
rence ever misses its absolute deadline with this scheduling policy.

• U =
∑n

i=1
xi

Ti
is the processor utilization factor, i.e., the fraction of processor time spent

in the execution of the task set (8). IfU > 1, then no scheduling algorithm can meet the
task deadlines.

• Wi(t) = xi +
∑

τj∈hp(i)

⌈
t

Tj

⌉
xi.

• W (t) =
∑n

j=1

⌈
t

Tj

⌉
xj .

• The processor demandh(t) is the amount of processing time requested by all tasks,
whose release times and absolute deadlines are in time interval[0, t] in the synchronous
scenario (1), wherebxc returns the integer part ofx. We have for a given task setτ :

h(t) =
∑n

j=1 hj(t)xj wherehj(t) = Max
{

0, 1 +
⌊

t−Dj

Tj

⌋}
• Dmin is the minimum deadline(Dmin = Min{D1, . . . , Dn}).

• P is the least common multiple of the task periods (P = LCM{T1, . . . , Tn}).

• The synchronous scenario corresponds to the scenario where all the tasks are released at
the same time (at time 0).

3 State of the art

For Fixed-Priority (FP) scheduling, necessary and sufficient FCs have been proposed, based on
the computation of the task worst-case response times (6), (10). The worst-case response time
is obtained in the worst-case synchronous scenario and is computed by successive iterations. A
task set is then declared feasible if the worst-case response time of any task in the synchronous
scenario is less than or equal to its deadline.
In the case of deadlines less than or equal to periods for all tasks, the worst-case response time
ri of a taskτi is obtained in the synchronous scenario for the first release ofτi at time 0 and is
the solution of the equation (6)ri = Wi(ri). ri is computed by successive iterations and the

number of iterations is bounded by1 +
∑

τj∈hp(i)

⌊
Di

Tj

⌋
. The FC has been revisited by Bini

and Buttazzo (3), who show that a necessary and sufficient feasibility condition for a task set
is: ∃t ∈ S, such thatWi(t)/t ≤ 1, whereS = ∪τj∈hp(i){kTj, k ∈ N} ∩ [0, Di]. For any task
τi, the times to check correspond to the arrival times of the tasks of higher priority thanτi in
time interval[0, Di]. This feasibility has been improved by Bini and Buttazzo (3), who show
how to reduceS. For any taskτi, they show how to significantly reduce the number of times

to check in time interval[0, Di] to at most2i−1 times instead of1 +
∑

τj∈hp(i)

⌊
Di

Tj

⌋
times.

The C-space can be obtained at an acceptable complexity for a reasonable number of tasks
and can be used for a sensitivity analysis. This result can be used to determine the C-space
(n dimensions) feasibility region for the WCETs of a sporadic task set such that any vector
X = {x1, . . . , xn} of WCETs in the C-space region leads to a feasible task set. The C-space
region is then defined as follows:
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Theorem 1. (3) Letτ = τ1, . . . , τn be a set of periodic taks indexed by decreasing priorities.
The C-space region when∀i,Di ≤ Ti is defined as the region such that∀X = {x1, . . . , xn} ∈
R+n:

∀i = 1 . . . n, ∃t ∈ Pi−1(Di), xi +
∑i−1

j=1

⌈
t

Tj

⌉
xj wherePi(t) is defined by the recurrent

equation:{
P0(t) = t

Pi(t) = Pi−1(
⌊

t
Ti

⌋
Ti) ∪ Pi− 1(t)

When deadlines and periods are independent, Tindell et al. (10) show that the worst-case
response time of a sporadic taskτi is not necessarily obtained for the first activation request

of τi at time0. The number of activations to consider is1 +
⌊

Li

Ti

⌋
, whereLi is the length of

the worst-case level-τi busy period defined by Lehoczky (7) as the longest period of processor
activity running tasks of priority higher than or equal toτi in the synchronous scenario. It can

be shown thatLi =
∑

τj∈hp(i)∪τi

⌈
Li

Tj

⌉
xj . From its definition,Li is bounded by U.P (5).

In that case, the complexity depends onLi leading to a pseudo-polynomial time complexity.
In such a context, the characterization of the C-space might be very costly.α is computed by
iterations, but the computation becomes more and more costly. Indeed, whenα increases, the
length of the level-τi busy period tends towardsP as the load utilization tends towards 1. As
a conclusion for FP scheduling, sensitivity analysis can be proposed in the case of deadlines
less than or equal to periods but not in the general case, because increasing the task WCETs
requires the recomputation of the lengths of the busy periods which tend towardsP , a poten-
tially exponential length.

For EDF scheduling, Baruah et al. (1) show that a necessary and sufficient feasibility condition
is ∀t ∈ [0, L), h(t) ≤ t, whereL is the length of the first busy period in the synchronous
scenario. WhenU ≤ 1, L can be computed by successive iterations and is a solution of
L = W (L). With this feasibility test, we have the same drawback as with FP in the general
case of independent periods and deadlines, as the value of L increases and tends towardsP
when we computeα by increasing iterations.
We notice that, in both approaches, the dimensioning strongly depends on the values of the task
WCETs. We now introduce new results for EDF to determine the C-space feasibility domain.

4 Sensitivity analysis for EDF

This section is divided into two subsections. In Section 4.1, we revisit the classical feasibility
condition for EDF based on processor demand and establish new results for the feasibility of a
sporadic task set scheduled with EDF. In Section 4.2, we show how to determine the C-space
feasibility domain. The C-space region is expressed with parametric equation.

4.1 Revisiting the feasibility condition for EDF

The following lemma is an adaption of (1):

Lemma 1. Let τ be a task set.τ feasible with preemptive EDF⇔
Supt∈R+∗

{
h(t)

t

}
≤ 1.
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Proof. The necessary and sufficient feasibility condition for EDF is as follows: Task setτ
is feasible with preemptive EDF if and only if∀t ∈ R+, h(t) ≤ t, which is equivalent to

Supt∈R+∗

{
h(t)

t

}
≤ 1. The conditionU ≤ 1 is clearly necessary asSupt∈R+∗

{
h(t)

t

}
≤ 1 ⇒

U ≤ 1. Indeed,limt→∞

(
Supt∈R+∗

{
h(t)

t

})
= U

We now prove the following theorem, showing how to computeSupt∈R+∗

{
h(t)

t

}
:

Theorem 2. Supt∈R+∗

{
h(t)

t

}
= Max

{
U, Supt∈[Dmin,P )

{
h(t)

t

}}
.

Proof. 1 ♦ Firstly, we show that:Max
{

U, Supt∈[Dmin,P )

{
h(t)

t

}}
≤

Supt∈R+∗

{
h(t)

t

}
.

By definition, we have:limt→+∞

{
h(t)

t

}
≤ Supt∈R+∗

{
h(t)

t

}
, i.e.

U ≤ Supt∈R+∗

{
h(t)

t

}
.

Furthermore, we have:Supt∈[Dmin,P )

{
h(t)

t

}
≤ Supt∈R+∗

{
h(t)

t

}
.

It follows that:Max
{

U, Supt∈[Dmin,P )

{
h(t)

t

}}
≤ Supt∈R+∗

{
h(t)

t

}
.

2 ♦ Secondly, we show that:Supt∈R+∗

{
h(t)

t

}
≤

Max
{

U, Supt∈[Dmin,P )

{
h(t)

t

}}
.

Given thath(t) returns 0 for allt ∈ [0, Dmin), we have:∀t ∈ [0, P ), h(t) ≤ Supt∈[Dmin,P )

{
h(t)

t

}
×

t.

Furthermore, we have:∀(t1, t2) ∈ R+ ×R+, t2 ≥ t1, h(t2, A)− h(t1, A) ≤ W (t2 − t1, A).

Consequently, for all(t, k) ∈ [0, P ) × N, we have:h(t+kP,A)
t+kP ≤ h(t)+W (kP,A)

t+kP .

Hence,h(t+kP,A)
t+kP ≤ Supt∈[Dmin,P ){h(t,A)

t } t

t+kP + U kP
t+kP , andh(t+kP,A)

t+kP ≤

Max

{
U, Supt∈[Dmin,P )

{
h(t)

t

}}
.

It follows thatSupt∈R+∗

{
h(t)

t

}
≤ Max

{
U, Supt∈[Dmin,P )

{
h(t)

t

}}
.

We therefore have the following theorem:

Theorem 3. A task setτ is feasible with premptive EDF⇔
Supt∈R+∗

{
h(t)

t

}
= Max

{
U, Supt∈M

{
h(t)

t

}}
≤ 1, where

M =
⋃n

j=1

{
Dj + kj Tj , 0 ≤ kj ≤

⌈
P−Dj

Tj

⌉
− 1
}

.
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Proof. Straightforward from Lemma 1 and Theorem 2.

SetM =
⋃n

j=1

{
Dj + kj Tj , 0 ≤ kj ≤

⌈
P−Dj

Tj

⌉
− 1
}

corresponds to the deadlines of the

tasks in time interval[Dmin, P ) where functionh(t) varies.

Notice that this test is valid for any WCET configuration and will be used to characterize the
C-space domain in Section 4.2.

4.2 C-space feasibility domain for EDF

Theorem 4. C-space domainDEDF (τ) ⊂ R+n of X = (x1, . . . , xn) is defined as the subset
of X ∈ R+n such that:

Supt∈R+∗

1
t

n∑
j=1

hj(t)xj

 ≤ 1,

This defines all the task sets feasible with EDF. We have:

DEDF (τ) =

X ∈ R+n
,Max

Supt∈M{1
t

n∑
j=1

hj(t)xj},
n∑

j=1

xj

Tj

 ≤ 1


where:

M =
n⋃

j=1

{
Dj + kj Tj , 0 ≤ kj ≤

⌈
P −Dj

Tj

⌉
− 1
}

.

Proof. Straightforward from theorem 2.

From Theorem 3, C-space feasibility domainDEDF (τ) is defined by a set ofm+1 constraints.
The firstm constraints come from the set of times inM, the(m + 1)th constraint comes from
the load utilization. We now show how to reduce the times to consider inM, to extract from
the firstm constraints, the subset of times inM representing the most constrained inequal-

ities, i.e. times whereSupt∈R+∗

{
h(t)

t

}
is obtained. For any timeti, starting from timet1

downtotm, we show how to determine if timeti should be considered or can be removed from
M. We formalize the problem as a linear programming problemPi for each timeti we try
to maximize the objective function

∑n
j=1 hj(ti)xj taking into account them− 1 constraints,

k 6= i,
∑n

j=1 hj(tk) xj ≤ tk. We then check if for timeti,
∑n

j=1 hj(ti) xj < ti. If it is the
case, then adding the constraint

∑n
j=1 hj(ti) xj ≤ ti for time ti will bring the same result,

i.e
∑n

j=1 hj(ti) xj < ti. Henceti can then be removed fromM. Otherwise, timeti must be
kept, indeed,

∑n
j=1 hj(ti) xj ≥ ti. The constraint

∑n
j=1 hj(ti) xj ≤ ti must be taken into

account.
We use thesimplex algorithm to solve for any time the maximization problem. The simplex
algorithm must be applied on convex regions. We can therefore apply it step by step on the
times ofM provided that the C-space region obtained for any timeti is convex (we show this
property in this section).
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Linear Programming problem

We now give in terms of a linear programming problem, the problem of determining if a time
ti in M should be kept or not. To solve this linear programming problem, we maximize step
by step every functionh(ti) =

∑n
j=1 hj(ti)xj , representing an objective function under the

following linear constraints:
m⋃

k = 1
k 6= i

{h(tk) ≤ tk} .

The linear programming problem can be expressed by means of a matrix ofm lines andn
rows where the value at linep and rowq is hp(tq) except for linep = i where it is equal to0.
We multiply this matrix with a times vectorX = {x1, . . . , xn} and check if the result is less
than a time vector such that any linej 6= i, equals totj and linei equals to 0 (the constraint
for line i is always met). The linear problemPi associated to timeti is as follows:

(Pi)



Maximize
∑n

j=1 hj(ti) xj ,

h1(t1) h2(t1) · · · hn(t1)
...

...
...

...
h1(ti−1) h2(ti−1) · · · hn(ti−1)

0 0 0 0
h1(ti+1) h2(ti+1) · · · hn(ti+1)

...
...

...
...

h1(tm) h2(tm) · · · hn(tm)


m,n



x1

...

...

...

...
xn


n

≤



t1
...

ti−1

0
ti+1

...
tm


m

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

Linear Problem 1. Optimisation problemPi associated to timeti

C-space domain convexity

Let Ei ⊂ R+n be the closed region ofX = (x1, . . . , xn) meeting the following property :

1
ti

n∑
j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
xj ≤ 1.

Hence :

Ei =

X ∈ R+n
,

1
ti

n∑
j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
xj ≤ 1

 , ti ∈M.

Lemma 2.
The setEi ∈ R+n is convex. That is :

∀(X, X ′) ∈ E2
i , ∀λ ∈ [0, 1], λ X + (1− λ)X ′ ∈ Ei.

Proof. By definition, we have:
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X ∈ Ei ⇔
n∑

j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
xj ≤ ti,

X ′ ∈ Ei ⇔
n∑

j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
x′j ≤ ti.

Furthermore, we haveλ ∈ [0, 1]. It follows:

λ
n∑

j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
xj + (1− λ)

n∑
j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}
x′j ≤ ti.

Hence, we have:

n∑
j=1

Max

{
0, 1 +

⌊
ti −Dj

Tj

⌋}(
λ xj + (1− λ) x′j

)
≤ ti.

Finally, we have:

λ X + (1− λ) X ′ ∈ Ei.

The C-space regionE ⊂ R+n of X = (x1, . . . , xn) meeting :

Limt→+∞

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ≤ 1,

is denoted:

E =

X ∈ R+n
, Limt→+∞

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ≤ 1

 .

Lemma 3. The C-spaceE ∈ R+n is convex. That is :

∀(X, X ′) ∈ E2, ∀λ ∈ [0, 1], λ X + (1− λ) X ′ ∈ E .

Proof. By definition, we have:

Limt→+∞

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 =
n∑

j=1

xj

Tj
.

Furthermore, we have:X ∈ E ⇔
∑n

j=1
xj

Tj
≤ 1 andX ′ ∈ E ⇔

∑n
j=1

x′j
Tj
≤ 1.

By hypothesis, we have:λ ∈ [0, 1].It follows: λ
∑n

j=1
xj

Tj
+ (1− λ)

∑n
j=1

x′j
Tj
≤ 1.

Hence, we have:



Hermant et al.

n∑
j=1

λ xj + (1− λ) x′j
Tj

≤ 1.

Finally, we have:

λ X + (1− λ) X ′ ∈ E .

The C-space feasibility domainDEDF (τ) ⊂ R+n of X = (x1, . . . , xn) meeting the following
inequation:

Supt∈R+∗

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ≤ 1,

is denoted:

DEDF (τ) =

X ∈ R+n
, Supt∈R+∗

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ≤ 1

 .

Corollary 1. The C-space regionDEDF (τ) ∈ R+n is convex. That is :

∀(X, X ′) ∈ DEDF (τ)×DEDF (τ), ∀λ ∈ [0, 1], λ X + (1− λ)X ′ ∈ DEDF (τ).

Proof. From theorem 4, we have:

Supt∈R+∗

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj


=

Supt∈[Dmin, P [∪{+∞}

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj


=

Max

Supt∈M

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ,
n∑

j=1

xj

Tj

.

By definition, we have:

DEDF (τ) =

X ∈ R+n
, Supt∈R+∗

1
t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

 ≤ 1

 .

It follows:
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DEDF (τ) =

{
X ∈ R+n

, Supt∈M

{
1

t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

}
≤ 1 ∧

n∑
j=1

xj

Tj
≤ 1

}
.

Therefore we have:

DEDF (τ) =

(
m⋂

i=1

Ei

)⋂
E .

The intersection of a finite number of convex C-space regions inR+n is a convex region in
R+n.

Corollary 2. The C-space feasibility domainDEDF (τ) is the intersection of a finite number
convex and closed regions. It is therefore aconvex polytopein R+n.
Furthermore, the C-space domainDEDF (τ) is a closedconvex polytope. It is thereforeconvex
polyhedrain R+n.

5 Numerical applications

Let us consider a sporadic task setτ = {τ1, τ2, τ3}, composed of three non concrete tasks
where for any taskτi, Ti andDi are fixed andxi ∈ R+ the WCET of the task is a parameter.
τ1 : (x1, T1, D1) = (x1, 7, 5), τ2 : (x2, T2, D2) = (x2, 11, 7) andτ3 : (x3, T3, D3) =
(x3, 13, 10).
We have with this example:P = 1001 andDmin = 5. From Theorem 3, we must consider
the setM of times for the computation ofh(t) in time interval[5, 1001[ whereM is given by:

M = {5 + 7 k1, k1 ∈ {0, . . . , 142}}∪
{7 + 11 k2, k2 ∈ {0, . . . , 90}}∪
{10 + 13 k3, k3 ∈ {0, . . . , 76}} .

In this example, we havem = Card(M) = 281 times inM.
We recall that the C-space feasibility domainDEDF (τ) for EDF is defined by a set ofm + 1
linear constraints:

DEDF (τ) =

{
X ∈ R+n

, Supt∈M

{
1

t

n∑
j=1

Max

{
0, 1 +

⌊
t−Dj

Tj

⌋}
xj

}
≤ 1 ∧

n∑
j=1

xj

Tj
≤ 1

}
.

Applying the simplex algorithm on the Linear Problem 1, for any timeti ∈ M, starting from
time t1 down to timetm, we obtain the following subsetS1 of times inMmaximizing h(t) for
any vector of durationsX = {x1, . . . , xn} ∈ R+n. We solve this problem with the classical
simplex algorithm implemented in the Maple 11 computer algebra system.

S1 = {5, 7, 10, 12, 19, 40, 62} ⊆ M.
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We have:

Supt∈R+∗

{
h(t)

t

}
= Max

{
x1

5
,
x1 + x2

7
,
x1 + x2 + x3

10
,
2 x1 + x2 + x3

12
,

3 x1 + 2 x2 + x3

19
,
6 x1 + 4 x2 + 3 x3

40
,
9 x1 + 6 x2 + 5 x3

62

}
.

As: {
x1 + x2 ≤ 7
2 x1 + x2 + x3 ≤ 12 ⇒ 3 x1 + 2 x2 + x3 ≤ 19, x1 + x2 + x3 ≤ 10

2 x1 + x2 + x3 ≤ 12
6 x1 + 4 x2 + 3 x3 ≤ 40

⇒ 9 x1 + 6 x2 + 5 x3 ≤ 62.

We can still reduce the times to test toS2, valid for any configuration ofX in the C-space
domain whereS2 = {5, 7, 10, 12, 40} ⊆ S1.
Finally, if we considerh(t)/t for every times inS2, and from Theorem 3 we have:

Supt∈R+∗

{
h(t)

t

}
= Max

{
x1
5 , x1+x2

7 , x1+x2+x3
10 , 2 x1+x2+x3

12 , 6 x1+4 x2+3 x3
40 , x1

7 + x2
11 + x3

13

}
.

Hence,

DEDF (τ) =
{

X ∈ R3, Supt∈R+∗

{
h(t ; τ)

t

}
≤ 1
}

,

DEDF (τ) =

0 ≤ |x1| ≤ 5,

0 ≤ |x2| ≤ 7− |x1|,

0 ≤ |x3| ≤
Min

{
10− |x1| − |x2|, 12− 2 |x1| − |x2|, 1

3 (40− 6 |x1| − 4 |x2|), 1
77 (1001− 143|x1| − 91|x2|)

}
.

We show in figure 1 a graphical representation of the C-space obtained with our example.

FIG. 1 – C-space feasibility domainDEDF (τ)
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6 Conclusion

In this paper, we have presented new results for a sensitivity analysis of preemptive EDF.
We have considered sporadic tasks with independent periods and deadlines. Our goal was to
express the C-space feasibility domain with parametric equations. We have also shown that the
C-space domain can be obtained from an analysis of EDF in a time interval of duration bounded
by the least common multiple of the task periods. From this analysis, a linear programming
problem is identified and solved with the simplex algorithm. We have shown on an example
that this enables us to significantly reduce the complexity of the C-space domain equation.
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