Reliable and Precise WCET and Stack Size Determination
for a Real-life Embedded Application

Philippe Baufreton®, Reinhold Heckmann**

*Hispano-Suiza, Etablissement de Réau BP 42
F-77551 Moissy-Cramayel Cédex, France
philippe.baufreton @hispano-suiza-sa.com

http://www.hispano-suiza-sa.com/

** AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbriicken, Germany
heckmann @absint.com
http://www.absint.com/

Abstract. Failure of a safety-critical application on an embedded processor can
lead to severe damage or even loss of life. Here we are concerned with two kinds
of failure: stack overflow, which usually leads to run-time errors that are difficult
to diagnose, and failure to meet deadlines, which is catastrophic for systems
with hard real-time characteristics. Classical software validation methods like
simulation and testing with debugging require a lot of effort, are expensive, and
do not really help in proving the absence of such errors.

AbsInt’s tools StackAnalyzer and aiT (timing analyzer) provide a solution to
these problems. They use abstract interpretation as a formal method that leads
to statements valid for all program runs. Both tools have been used success-
fully at Hispano-Suiza to analyze applications running on a Motorola PowerPC
MPC555. They turned out to be well-suited for analyzing large safety-critical
applications developed at Hispano-Suiza. They can be used either during the
development phase providing information about stack usage and runtime be-
havior well in advance of any run of the analyzed application, or during the
validation phase for acceptance tests prior to the certification review.

1 Introduction

Failure of a safety-critical application on an embedded processor can lead to severe dam-
age or even loss of life. Therefore, utmost carefulness and state-of-the-art machinery have to
be applied to make sure that an application meets all requirements. Classical software vali-
dation methods like simulation and testing with debugging require a lot of effort and are very
expensive. Furthermore, they cannot really guarantee the absence of errors. In contrast, ab-
stract interpretation (Cousot and Cousot, 1977) is a formal verification method that yields
statements valid for all program runs with all inputs, e.g., absence of violations of timing or
space constraints, or absence of runtime errors.

Reliable and Precise WCET and Stack Size Determination

Nowadays tools based on abstract interpretation are commercially available and have proved
their usability in industrial practice. For example, stack overflow can be detected by AbsInt’s
StackAnalyzer, and violations of timing constraints are found by AbsInt’s aiT tool (Ferdi-
nand et al., 2001) that determines upper bounds for the worst-case execution times of the tasks
of an application. These tools have been successfully used at Hispano-Suiza to analyze large
safety-critical avionics applications running on Motorola PowerPC MPC555.

Section 2 introduces value analysis, section 3 describes stack analysis with the tool Stack-
Analyzer, and section 4 presents the WCET analyzer aiT. Section 5 describes Hispano-
Suiza’s application that was analyzed by StackAnalyzer and aiT, section 6 presents the results
of applying StackAnalyzer to it, and in section 7, the results obtained from aiT are compared
with the results of measurements. Section 8 concludes.

2 Value Analysis

Among other things, StackAnalyzer and aiT perform a value analysis to determine the
values stored in the processor’s memory for every program point and execution context. Value
analysis is a static analysis method based on abstract interpretation. It produces results valid
for every program run and all inputs. Therefore, it cannot always predict an exact value for a
memory location, but determines abstract values that stand for sets of concrete values.

There are several variants of value analysis depending on what kinds of abstract values
are used. In constant propagation, an abstract value is either a single concrete value or the
statement that no information about the value is known. In interval analysis, abstract values
are intervals that are guaranteed to contain the exact values. Value analysis in AbsInt’s tools is
currently based on interval analysis, but extensions are being studied that would record known
equalities between otherwise unknown values, or more generally, upper and lower bounds for
their differences, or even more generally, arbitrary linear constraints between values.

Value analysis, even in its simple form as interval analysis, has various applications as an
auxiliary method providing input for other analysis tasks including stack and WCET analysis,
which are presented in the next few sections.

3 Stack Usage Analysis

A possible cause of catastrophic failure is stack overflow that usually leads to run-time
errors that are difficult to diagnose. The problem is that the memory area for the stack usually
must be reserved by the programmer. Underestimation of the maximum stack usage leads to
stack overflow, while overestimation means wasting memory resources. Measuring the max-
imum stack usage with a debugger is no solution since one only obtains a result for single
program runs with fixed inputs. Even repeated measurements cannot guarantee that the maxi-
mum stack usage is ever observed.

AbsInt’s tool StackAnalyzer provides a solution to this problem: By extracting the value
of the stack pointer from value analysis, the tool can figure out how the stack increases and
decreases along the various control-flow paths. This information can be used to derive an upper
bound for the maximum stack usage of the entire application provided that the call depths of

P. Baufreton and R. Heckmann

recursive routines are specified by user annotations. An overestimation of the maximum stack
usage may be caused by unreachable code.

The results of StackAnalyzer are documented in a report file and presented as annotations
in a combined call graph and control-flow graph with stack analysis results at routines and for
the entire application. Each routine has a local result and a global result. The local result at a
routine R indicates the stack usage in R considered on its own: It is an interval showing the
possible range of stack levels within the routine, assuming value 0 at routine entry. The global
result for routine R indicates the stack usage of R in the context of the entire application. It
is an interval providing bounds for the stack level while the processor is executing instructions
of R, for all call paths from the entry point to R. Thus, the global result at routine R does not
include the stack usage of the routines called by R.

StackAnalyzer provides automatic tool support to calculate precise information on the
stack usage. This not only reduces development effort, but also helps to prevent runtime errors
due to stack overflow. Critical program sections are easily recognized thanks to color coding.
The analysis results thus provide valuable feedback in optimizing the stack usage of an appli-
cation. The predicted worst-case stack usages of individual tasks in a system can be used in an
automated overall stack usage analysis for all tasks running on one Electronic Control Unit, as
described in Janz (2003) for systems managed by an OSEK/VDX real-time operating system.

4 WCET Analysis: Worst-Case Execution Time Prediction

Many tasks in safety-critical embedded systems have hard real-time characteristics. It is
essential that the worst-case execution time (WCET) of such tasks is known in order to ensure
that the system works correctly. However, determining the worst-case execution time is a
challenge. Simply measuring the execution time of a task for a given input is typically not
safe. It is mostly impossible to prove that the conditions leading to the maximum execution
time have been taken into account. Modern processor components like caches and pipelines
complicate the task of determining the WCET considerably since the execution time of a single
instruction may depend on the execution history.

Several industrial timing tools and academic prototypes are described and discussed in
Wilhelm et al. (2007). Here we concentrate on AbsInt’s WCET analyzer aiT, which was
used successfully at Hispano-Suiza to analyze time-critical software. The aiT tool statically
analyzes a task’s intrinsic cache and pipeline behavior based on formal cache and pipeline
models, which leads to correct and tight upper bounds for the worst-case execution time. More
precisely, aiT requires as input the executable to be analyzed, user annotations like targets of
indirect function calls and upper bounds on loop iteration counts, a description of the memories
and buses, i.e., a list of memory areas with minimum and maximum access times, and the
start address of the task to be analyzed. User annotations are only necessary if the required
information cannot be detected automatically by aiT. They may appear in a separate parameter
file called AIS file, or as special comments in the C source.

aiT determines the WCET of the given task in several phases (Ferdinand et al., 2001) (see
Figure 1). In the first step a decoder reads the executable and reconstructs the control flow
(Theiling, 2000). Then, value analysis determines lower and upper bounds for the values in
the processor registers for every program point and execution context (see section 2), which
lead to bounds for the addresses of memory accesses (important for cache analysis and if

Reliable and Precise WCET and Stack Size Determination

Executable
program
AlS
| CFG Builder

| Loop Trafo I

ILP-Generator
LP-Solver

Value Analyzer

Loop Analyzer

Cache/Pipeline
Analyzer

WCET
Visualization

FI1G. 1 — Phases of WCET computation.

memory areas with different access times exist). Value analysis can also determine that certain
conditions always evaluate to true or always evaluate to false. As consequence, certain paths
controlled by such conditions are never executed. Thus value analysis can detect and mark
some unreachable code.

WCET analysis requires that upper bounds for the iteration numbers of all loops be known.
aiT tries to determine the number of loop iterations by loop bound analysis (Ferdinand et al.,
2007), but succeeds in doing so for simple loops only. Bounds for the remaining loops must
be provided as specifications in the AIS file or annotations in the C source.

In the general analysis framework of AbsInt, an optional cache analysis follows, which
classifies the accesses to main memory into hits, misses, or accesses of unknown nature. Since
MPC555 processors are not equipped with a cache, cache analysis is not included in aiT for
MPC555, which was used to analyze Hispano-Suiza’s applications.

Pipeline analysis models the pipeline behavior to determine execution times for sequential
flows (basic blocks) of instructions as done in Schneider and Ferdinand (1999). It takes into
account the current pipeline state(s), in particular resource occupancies, contents of prefetch
queues, grouping of instructions, and classification of memory references by cache analysis.
The result is an execution time for each basic block in each distinguished execution context.

Using this information, path analysis determines a safe estimate of the WCET. The pro-
gram’s control flow is modeled by an integer linear program (Li and Malik, 1995; Theiling
and Ferdinand, 1998) so that the solution to the objective function is the predicted worst-case
execution time for the input program.

P. Baufreton and R. Heckmann

aiT’s results are documented in a report file and as annotations in the control-flow graph
that can be visualized using AbsInt’s graph viewer aiSee. This viewer supports the visual-
ization of the worst-case program path and the interactive inspection of all pipeline and cache
states at arbitrary program points.

5 Characteristics of the Analyzed Application

StackAnalyzer and aiT were used at Hispano-Suiza to analyze a safety-critical applica-
tion running on Motorola PowerPC MPC555. This application consists of two different and
complementary executables corresponding to the application software (AS) and the operat-
ing system (OS). The application software was automatically generated with SCADE™ KCG
from Esterel Technologies and implements the main functionality of the system. The operating
system essentially is manual code providing the main interface between hardware and applica-
tion software. The whole system (AS+OS) represents about 28 300 lines of C code (6 738 for
the OS and 21 562 for the AS — comments excluded).

Both executables are loaded into external flash memory accessible in burst mode, which
ensures high-level performance for the communication with the processing unit. The internal
RAM of the processor is used only for holding the stack. Several external RAM components
with different access times are added on different chip selects. The entire application runs
in supervisor mode. There are no interrupts except for interrupts from the Periodic Interrupt
Timer PIT, which are used for periodic scheduling. In particular, there are no interrupts for
communication protocols. The Time Processor Units (TPUs) are not used. The software per-
forms a few DMA accesses, which cannot be analyzed by aiT; their time must be added to
aiT’s results.

6 Results of Stack Usage Analysis

StackAnalyzer works on executable files in elf-format. A human operator has to set up
a so-called project file specifying the name of the executable, the entry points of the analysis,
some annotations providing information necessary for a successful analysis (limits on the call
depths of recursive functions, stack usage of external functions, ...), and some more annota-
tions describing the exact context of use of the analyzer. The latter can be used to instruct the
analyzer to examine the stack usage of a specific mode of the analyzed software. In our case,
there are two modes: an initialization mode and an operational mode.

A StackAnalyzer project file was set up for each of the two modes and each of the two
executables (AS+OS). The results of the AS analysis were transformed by a Perl script into
annotations for the OS analysis. These annotations were needed to inform StackAnalyzer
about the stack usage of the AS functions called in the OS. Thanks to the Perl script and
the batch mode possibilities of StackAnalyzer, the process of analyzing Hispano-Suiza’s
application has been fully automated. Table 1 shows the analysis results in comparison with
the project resource allocation specified by the system developers. A comparison with the
results of measurements showed an overestimation of less than 5 %.

Reliable and Precise WCET and Stack Size Determination

AS oS AS+0OS

Analysis results for initialization mode 144 328 472
Analysis results for operational mode 1984 256 2240
Overall project allocation 2000 400 4000

TAB. 1 — Stack sizes.

Frame Measured time (j4s) Analyzed Over-
min avg max time (us) estimation
0 3673 3688 3760 4502 19.73 %
1 3741 3741 3760 4458 18.56 %
2 3762 3763 3771 4368 15.83 %
3 3740 3741 3750 4458 18.88 %
4 3667 3701 3722 4503 20.98 %
5 3745 3746 3755 4458 18.72 %
6 2776 3437 3442 4207 22.23 %
7 3746 3747 3747 4458 18.98 %
8 3669 3673 3690 4503 22.03 %
9 3741 3742 3742 4458 19.13 %

Average: 19.51 %
TAB. 2 — Application software analysis results.

7 Results from Using aiT at Hispano-Suiza

7.1 Analysis of the Application Software

In operational mode, the application software is driven by a periodic scheduler dividing
time into identical major cycles. Each of these major cycles is divided into 10 minor cycles
or time frames in which different routines are called. The routines are enabled or disabled
by so-called condacts in the SCADE™ code. If the user does not add some annotations to
explain the system behavior, the worst-case path selected by aiT will contain almost all of
the routines and the resulting WCET would be overestimated. In particular, some annotations
must be added to specify the number of the time frame to be analyzed. Apart from this,
the automatically generated application code is well understood by the analyzer thanks to its
regular structured form so that few more annotations are needed. In particular, code generated
by the SCADE 5 code generator does not contain loops, which removes the need for loop
bound annotations.

After writing the necessary annotations, the batch mode of aiT was used to automatically
run the analysis for the 10 time frames. Completing the full analysis required less than 45
minutes with a 2.8 GHz Celeron with 512 MB RAM. Table 2 compares the analysis results
with measurements done with HP Agilent on an MPCS555 target. Each frame was measured
many times. The table shows the minimum, average, and maximum result for each frame.
The WCET bound computed by aiT was compared with the maximum measurement result.

P. Baufreton and R. Heckmann

The average difference between maximum measured time and analyzed time is about 19%.
Possible reasons may be the inclusion of control-flow paths that can never be executed in
reality, imprecise knowledge of the addresses of memory accesses in presence of memory areas
with different access times, and an imprecise modelling of the bus protocol. The measurements
might also be too optimistic because they may miss the worst case. Therefore the difference
between the real WCET and the WCET estimation computed by aiT may be less than 19%.

The overestimation of the WCET could have been reduced if we had looked at every con-
dact structure of the system in order to fit exactly the behavior of the real system. This task
has been only done for the “root” functions of the system; in this case, aiT was informed about
mutually exclusive functions by means of flow annotations.

7.2 Analysis of the Operating System

The manual code of the operating system has a different behavior in the analyzer. The
code is built from re-use libraries and contains some loops whose iteration bounds are not
automatically found by the analyzer. In the analyzed executable, 62 loops had to be examined
manually in order to specify the loop bounds. These loops could be partitioned in a few classes
consisting of similar loops with analogous annotations so that the overall annotation effort was
moderate after some practice.

aiT’s precision was evaluated at some part of the operating system including the OS tasks
executed at the beginning of each frame without being called from any AS task, and some OS
services such as ARINC reset orders. The measurement was performed by measuring the OS
CPU time in absence of any OS requests from the application software, and by measuring the
times of most OS services offered to the AS. A few OS services were not included in the mea-
surement. The CPU time used for OS failure (memorization in NOVRAM) was not taken into
account because it is dominated by AS failure memorization, and OS and AS failure memo-
rization exclude each other. Periodic backup was also excluded since it is mutually exclusive
with the handling of requests from the AS, which takes more time. The actual measurement is
initiated by calling the OS scheduler from the external interrupt vector. The time required by
the interrupt management and the scheduler call is not taken into account in the measurement.

The overestimation observed for the OS software is higher than the one for AS software:
The measured execution time was 855 us, while aiT calculated 1322 s, which means an
overestimation of 55 %. The reason may be the complex control-flow structure of the OS code
with more possibilities for control-flow paths that are never executed in reality.

As in stack analysis, some Perl scripts were used to combine AS and OS analysis. This
process may become simpler by using a new version of aiT that can analyze several executables
together (recall that AS and OS software reside in different executables).

8 Conclusion

Tools based on abstract interpretation can perform static program analysis of embedded
applications. Their results hold for all program runs with arbitrary inputs. Employing static
analyzers is thus orthogonal to classical testing, which yields very precise results, but only for
selected program runs with specific inputs.

Reliable and Precise WCET and Stack Size Determination

AbsInt’s tools StackAnalyzer and aiT (timing analyzer) have been used at Hispano-Suiza
to analyze applications running on a Motorola PowerPC MPC555. Both tools turned out to be
well-suited for analyzing the safety-critical applications developed at Hispano-Suiza. They
can be used either during the validation phase for acceptance tests, or during the development
phase providing information about stack usage and runtime behavior well in advance of any
run of the analyzed application.

References

Cousot, P. and R. Cousot (1977). Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the
4th ACM Symposium on Principles of Programming Languages, Los Angeles, California.

Ferdinand, C., R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm (2001). Reliable and precise WCET determination for a real-life processor.
In Proceedings of EMSOFT 2001, First Workshop on Embedded Software, Volume 2211 of
Lecture Notes in Computer Science, pp. 469-485. Springer-Verlag.

Ferdinand, C., F. Martin, C. Cullmann, M. Schlickling, I. Stein, S. Thesing, and R. Heckmann
(2007). New developments in WCET analysis. In T. Reps, M. Sagiv, and J. Bauer (Eds.),
Program Analysis and Compilation, Theory and Practice, Volume 4444 of Lecture Notes in
Computer Science, pp. 12-52. Springer-Verlag.

Janz, W. (2003). Das OSEK Echtzeitbetriebssystem, Stackverwaltung und statische Stackbe-
darfsanalyse. In Embedded World, Nuremberg, Germany.

Li, Y.-T. S. and S. Malik (1995). Performance Analysis of Embedded Software Using Implicit
Path Enumeration. In Proceedings of the 32nd ACM/IEEE Design Automation Conference.

Schneider, J. and C. Ferdinand (1999). Pipeline Behavior Prediction for Superscalar Processors
by Abstract Interpretation. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems, Volume 34, pp. 35-44.

Theiling, H. (2000). Extracting Safe and Precise Control Flow from Binaries. In Proceedings
of the 7th Conference on Real-Time Computing Systems and Applications, Cheju Island,
South Korea.

Theiling, H. and C. Ferdinand (1998). Combining abstract interpretation and ILP for microar-
chitecture modelling and program path analysis. In Proceedings of the 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, pp. 144—-153.

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-
dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
strom (2007). The worst-case execution time problem - overview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems 5, 1-47.

Acknowledgement

The authors would like to thank Mr. Vincent Lacroix for his valuable contribution in the
frame of his internship at Hispano-Suiza.

