
Formal models of Fractal Component Based Systems for
performance analysis

Nabila Salmi∗,∗∗ Patrice Moreaux∗ and Malika Ioualalen∗∗

∗LISTIC - Université de Savoie - BP 80449, 74944 Annecy le Vieux Cedex, France
{nabila.salmi,patrice.moreaux}@univ-savoie.fr, http://www.listic.univ-savoie.fr

∗∗LSI - USTHB - BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie
ioualalen@lsi-usthb.dz, http://www.lsi-usthb.dz

Abstract. Component based system (CBS) development is now a well accepted
design approach in software engineering. Although specific tools used for build-
ing CBS perform several checks on the built system, few of them provide formal
verification of behavioural properties nor performance evaluation. In this con-
text, we have developed a general method associating to a CBS a formal model,
based on Stochastic Well formed Nets, a class of high level Petri Nets, allow-
ing qualitative behavioural analysis and performance evaluation of the CBS. The
definition of the model heavily depends on the (run time) component model used
to describe the CBS. In this paper, we apply our method to Fractal CBS and its
reference Java implementation Julia, concentrating on performance evaluation.
The main interest of our method is to take advantage of the compositional defi-
nition of such systems to carry out an efficient analysis, starting from the Fractal
architectural description of a CBS.

1 Introduction
Component based technology (Szyperski et al., 2002) is an attractive paradigm, widely

used for the development of software and hardware systems. In this paradigm, components
are developed in isolation or reused from previous works, and are then assembled to build
a Component Based System (CBS). Since the mid’70, a lot of component models have been
proposed in the literature, among them EJB, CCM and CORBA, COM+/.NET, Fractal (Sun
Microsystems, 2007; Object Management Group, 2000; Microsoft, 2007). CBSs are either
directly defined by the code of their components or they are built with the help of sets of
tools associated to each component model. These tools allow description of the CBS through
Architecture Description Languages (ADL) (Medvidović and Taylor, 2000) and provide the
architect with several checking tools mainly based on syntactic analysis of the description
and the source code of the elementary units of the component model. Beyond this “static”
analysis, the complexity of many CBSs requires verification of behavioural properties such as
deadlock-freeness, reachability of some states and so on. This is achieved by defining a formal
semantics to the component model and by (model) checking required properties against the
semantic model of the CBS. We emphasize that such an analysis should be based on a runtime

Formal models of Fractal CBS for performance analysis

component model and not only on an architectural component model. Formal semantics of the
component model is most often given by a Labelled Transition Systems (LTS) either directly
or derived from a higher formal model such as process algebras or state based models (for
instance Statecharts, Petri Nets) generating a LTS. To cope with the classical problem of the
state space explosion (huge size of the LTS of the system), model checking should be based
on the formal models of the components and their composition, allowing several levels of
component behaviour models (abstraction) (da Silva and Perkusich, 2005) and merging of
several component models into a single one (hierarchy) (Kupferman and Vardi, 1998).

For what concerns performance analysis of CBSs, it is usually carried out through measures
on existing systems, whereas predictive performance evaluation remains an important field of
application in the perspective of software performance engineering (Smith, 1990). This is the
context of our work and we develop stochastic models of CBSs to provide, during the design
phase, performance indices about them. Here also we should try to take into account the
specific, component based, architecture, as for instance (Rugina et al., 2006) in the context of
dependability modelling using the description language AADL.

Among component models that gained attention these last years, the Fractal model (Brune-
ton et al., 2004) offers a hierarchical and reflective component model with dynamic configu-
ration, component composition, management and sharing capabilities. In the present paper,
we focus on performance analysis of Fractal CBSs based on formal models of the components
and systematic building of the formal model of these CBSs. As a completely specified runtime
Fractal CBS cannot be modelled without taking into account specific implementation details,
we develop the method for Julia Fractal CBSs. The main advantage of our approach is to
exploit as much as possible, the compositional architecture of the system in order to reduce
complexity of performance indices computation.

Components and the global system are modelled with the Stochastic Well formed (SWN)
formalism (Chiola et al., 1993), a special class of high level Petri nets, useful to express sym-
metrical behaviours and allowing performance analysis. Although we can take into account
both functional and non-functional (re-configurations) aspects of a Fractal CBS within our
approach, we concentrate in this work on “stable” configurations (Fractal architectures after
initialization phase or between reconfiguration phases) since we compute steady-state perfor-
mance indices.

The paper is twofold: first, we present a translation of a CBS architecture description,
and of the SWN models of its primitive components, into a global SWN of the CBS. Sec-
ond, we show how to evaluate performances of the CBS through application of a structured
compositional method. This method requires us to derive from the architecture of the CBS,
a compositional view of the system at the SWN level. We apply then a modified version of
our previous works (Delamare et al., 2003a,b) which proposed a structured analysis for ei-
ther a synchronous or asynchronous decomposition of SWNs. These methods are based on a
combined aggregation/tensorial representation of the underlying Markov chain of the global
SWN.

The organization of the paper is as follows. Section 2 reminds main features of the Fractal
component model and introduces an illustrative example. Then, we describe in section 3 the
translation of a Fractal CBS into an SWN based formal model both as a global SWN and as a
collection of sub-SWNs. We also explain the structured performance analysis based on these
SWNs. Section 4 presents some results obtained for the illustrative example. We conclude and

N.Salmi and al.

describe future work in section 5.

2 The Fractal Component model
Fractal (Bruneton et al., 2004) is a general component model developed within the con-

sortium ObjectWeb by France Telecom R&D and the INRIA. It is intended to implement,
deploy and dynamically configure complex software systems, including operating systems and
middlewares.

A Fractal component is a runtime entity that interacts with its environment (i.e. other
components) through well-defined interfaces. An interface is an access point to a component,
that specifies provided services or required services exposed by other components. There are
two kinds of interfaces: server interfaces correspond to points accepting incoming operation
invocations, and client interfaces support outgoing operation invocations.

A Fractal component possesses two parts: a content part and a controller part. The content
part consists of a finite number of other components, called sub-components, making the model
recursive and allowing components to be nested at an arbitrary level. At the lowest level, a
Fractal component is a black box, called base or primitive component, that doesn’t provide
introspection or intercession capabilities. A Fractal component whose content is not empty is
said composite.

The controller part, termed the membrane, provides a set of control interfaces, supporting
introspection (monitoring) and reconfiguration of internal features of the component, such
as suspending and resuming a sub-component, or adding and removing sub-components. It
has external interfaces reachable from outside the component, and internal interfaces only
reachable from its sub-components and not visible from the outside. External interfaces of a
sub-component are exported as an external interface of the composite parent component.

Building an application requires to connect Fractal components with bindings. In order
to define the architecture of a Fractal application, an open and extensible language has been
developed: the Fractal Architecture Description Language (ADL), an XML based ADL. As
its name implies, an ADL definition describes a component architecture, made of an open
and extensible set of ADL modules, where each module defines an abstract syntax for a given
architectural “aspect”: interfaces, bindings, attributes, containment relationships.

Along the paper, we use an effective example to illustrate our method. This example con-
sists of a minimal HTTP Server, Comanche, used in (Bruneton) to illustrate how to implement
and deploy Fractal component based applications.

3 Modelling and analysis of Julia Fractal CBS
As mentioned in the introduction, we have developed a general method for behavioural

qualitative and performance analysis of CBSs. Our method is based on the Stochastic Well-
Formed Petri Net model (SWN), a high level (coloured) model of Petri net with probabilistic
extensions for performance analysis. Our choice of the SWN formalism is first motivated by
the fact that we need a state based model to be able to evaluate performance indices related to
configurations of the systems (number of requests pending in some part of the system, mean
usage time of some resource, etc.). Petri Nets are state based models which are well known for

Formal models of Fractal CBS for performance analysis

being able to model complex systems with concurrency and conflicts, even in the stochastic
context, in contrast with Queuing networks or process algebras models for instance. More-
over, although Petri Nets are not by themselves a compositional model, interaction between
Petri nets representing sub-components may be easily defined as transition or place “fusion”
(merging). If complex primitive components are involved, high level Petri Nets are almost
inevitably required so that the SWN model is nicely adequate. SWNs are also a well studied
class of high level stochastic Petri nets and benefit from a large set of analysis algorithms and
tools. Finally, the SWN model can take advantage of behavioural symmetries of system’s en-
tities if there are such symmetries, by compacting its reachability graph, leading to a Symbolic
Reachability Graph (SRG). An SRG is composed of symbolic markings, where each sym-
bolic marking represents a set of ordinary (coloured) markings having equivalent behaviours
(see (Chiola et al., 1993) for more details).

The method consists of two important phases: assuming that the Fractal CBS under study
is defined through an ADL description and a set of Java classes corresponding to the primitive
components, the first phase builds the global SWN of the CBS, viewed as a composition of
SWN models of components and interconnections. Then, a structured analysis of the global
swn is applied.

3.1 General considerations

Modelling a Fractal CBS requires considering the following points:
1. The architecture of a Fractal CBS is defined first by an initial configuration and then may
evolve through runtime reconfigurations. In this paper, we do not address the verification
of the reconfiguration behaviours of a CBS, since switching from a configuration to another
probably corresponds to a “short” time period (transient phase), whereas performance indices
of software systems are mainly computed over long periods (steady-state analysis). Hence, we
do not model control interfaces which are used in initialization and reconfiguration phases.
2. Since we wish to derive performance indices of a Fractal CBS, the architecture description of
the CBS must be complemented with information from the implementation of the component
model. Studying Fractal implementations found in the literature, we noted that they differ
significantly, namely with regard to interactions semantics. For instance, Fractive (Baude et al.,
2003) uses an asynchronous (late) operation invocation which allows the client to continue
processing until it needs results returned by the service. In contrast, others like Julia use a
classical synchronous (blocking) method call. In this paper, we model the Julia implementation
of Fractal.
3. Basic colour classes can model either data entities or active entities (execution flows) of
components. In the Comanche example, sockets, HTTP requests, files, streams, and even
threads are considered as our basic colour classes. Precisely, we use UC for modelling HTTP
User requests, IDS for scheduled threads, IDL for Log requests, IDF for File requests, and IDE
for Error identifications.

3.2 Translation to SWN models

Building the G-SWN of a Fractal CBS starts from the low level of architecture, and goes
up into the higher levels of architecture until reaching the highest level. Primitive components

N.Salmi and al.

with their functional interfaces are modelled by an expert with an SWN model termed a Com-
ponent SWN or C-SWN. C-SWN models of composites are also built. The obtained C-SWNs
are then modified to be composable with others, in the Petri net composition context (fusion
of places or transitions). This modification should not impact the semantics of the modelling.
The set of obtained models are called Composable Component SWNs (CC-SWNs). Finally,
the CC-SWNs are composed together, following their associated interactions, through fusion
of element interfaces, providing the global SWN model corresponding to the whole system,
termed G-SWN. Automatic building of these SWNs is progress.

3.2.1 Functional interfaces

A functional interface of a component can be a client or server interface. They are each
modelled with a set of coloured places and transitions as given by the following mapping rules.

FIG. 1: SWNs models of interfaces

Mapping rule 1: A server interface of a compo-
nent offering a set M of methods parameterized with a
set of parameters P = {p1, . . . , pk} is modelled with
the SWN of figure 1 (right), where M and P are basic
colour classes inside the SWN. Possibly, a colour class
R is used for modelling resources needed during the ex-
ecution of a service.
Mapping rule 2: A client interface of a component
identified by a set of colours UR modelling possible re-
quest threads or resources of the client component is
modelled with the SWN of figure 1 (left).
Mapping rule 3: An external functional interface of a
component is defined as the functional interface of its
subcomponent to which it is bound through an export
or import binding.

A functional interface is modelled with two parameters: the server methods and their pa-
rameters Depending on the impact of parameters on desired performance indices, the modeller
can omit to model these parameters to simplify the model. For instance, when the modeller
interest is to know whether the size of data sent between components impacts the overall per-
formance of the architecture, he should model the data parameter.

When a server interface of a component is bound to several client interfaces of other com-
ponents, the C-SWN of the server must be modified in order to be composable at the same
time with several models of client components, in the sense of Petri nets composition (fusion
of places or transitions). This modification leads to a server CC-SWN and client CC-SWNs.
So, we apply mapping rule 4. Finally, mapping rule 5 complements client interface.

Mapping rule 4: A server interface that have multiple bound clients is modified as follows: (i)
the input and output transitions (ReceiveRequest and SendResult transitions in figure 1 (right))
are duplicated as many time as there are client interfaces to be connected. (ii) An IDC colour
class is introduced to distinguish between several client components.

Mapping rule 5: A client interface is modified by adding a place and its arcs to the C-SWN.
Colour domain of the added place comprises the basic colour IDC for multiple clients.

Formal models of Fractal CBS for performance analysis

Note that the resulting CC-SWNs have same semantics as the corresponding C-SWNs.

3.2.2 Primitive components

Modelling a primitive component leads to a C-SWN, built through several steps.
• Initially, we model the “core” of the component behaviour by an SWN. This is done by an
expert which analyzes the Java code of the component Obviously, abstraction may be used
by selecting an appropriate level of details . At the highest abstraction level, the content of
a primitive component can be modelled by a very simple SWN with two transitions and one
place for each client or service interface, and two places for internal states.
• Then we model functional interfaces following mapping rules 1 and 2, and add them to the
SWN obtained in previous step. Note that, if interfaces have been modelled explicitly at the
previous stage (transition without input place for provided service or without output place for
required service), they must also follow mapping rules 1,2.
• The obtained C-SWN is then possibly modified following mapping rules 4 and 5, giving rise
to a CC-SWN model.

Let us illustrate building of the CC-SWN of a primitive component with the analyzer com-
ponent of the Comanche application. The analyzer receives requests on its server interface
using three basic colours classes IDA, MA and PA, modelling respectively identified analysis
requests, related invoked methods, and method parameters. It invokes two other operations
through two client interfaces: a log operation, and a handle operation. First, we model the core
of the component, getting its basic SWN model. Then, we add explicit server and clients inter-
faces introducing request and result transitions for each interface. Next, this one is completed
with places and arcs to get the CC-SWN. We build in the same way the CC-SWNs of the six
other components of the Comanche application. We note that there is no multiclients server
interface in this application so that identities of the client component are not modelled in the
CC-SWNs.

3.2.3 Composite components

A composite component is made up of a set of interconnected sub-components being prim-
itive or composite themselves. We assume built CC-SWNs of sub-components. Building the
SWN model of the composite requires connecting sub-components’ CC-SWNs and modelling
external interfaces.

In the Julia context, binding of interfaces are directly translated by transition fusion of
the CC-SWNs interfaces: associated transition are pairwise merged; Fusion of two transitions
consists in defining a unique transition and keeping associated arcs of fused transitions. Colour
classes of the two transitions are mapped in one to one correspondence for common parameters
of the interface (name of a method for instance) and specific colour classes of each transition
are kept. Hence, the colour domain of the fused transition is the Cartesian product of its
colour classes, without repetition, together with the specific colour classes of each transition.
This fusion definition is different from the proposed approach of (Bernardi et al., 2001) where
several transitions can be fused but some arcs may be duplicated on several fused transitions.
We have then a CC-SWN partially modelling the composite component. It is completed by
modelling external interfaces as specified in mapping rule 3. We can also build an abstract
model of the composite from this CC-SWN.

N.Salmi and al.

When assembling CC-SWN models of sub-components, name conflicts (of place, transi-
tion or colour class) may occur. They are eliminated by renaming. Such a renaming requires to
translate analysis results (obtained properties and computed performance indices on the con-
structed global SWN) in the initial context of the CBS. Note that, together with the CC-SWN
of the composite, we keep track of the CC-SWNs of its sub-components; They will be used
during the analysis phase.

3.2.4 Modelling the highest composite component

Starting from the first level of composite components, we successively build the CC-SWNs
of the composite up to the highest level. The resulting CC-SWN is then completed to provide
the G-SWN of the application: since we model applications with finite state space models, we
need to “close” interfaces of the composite corresponding to the application as a whole. This
is a classical method, allowing to limit the number of entities in the model. In the Petri net
context, we add a Petri net to each external interface of the application with an adapted initial
marking, generally an upper bound of the number of entities. This net comprises a place for
idle resources, one place for returned resources and one transition connecting these places.

Going back to our Comanche example, we can build the CC-SWN of the request handler
composite component, then that of the Frontend and Backend composites, and finally we build
the G-SWN.

3.3 Performance Analysis of Fractal CBSs

Qualitative analysis has been proposed for Fractal CBSs: (Barros et al., 2006) proposes
an approach for specification and verification, but based on LTS derived from communicating
automata networks (Arnold, 2002). However, this work is devoted to the Fractive implementa-
tion of the Fractal component model and does not allow us to compute performance indices of
Fractal CBSs, which is the purpose of this paper. Performance analysis of a Fractal CBS can
be performed through the analysis of the G-SWN obtained from the assembly of components.
This approach has been followed in (Bernardi et al., 2001) for analysis of a different compo-
sition process of SWNs, and implemented in the Algebra tool of the GreatSPN package (P.E.
Group, 2002). In our approach, we rather try to benefit from the compositionality features
of the CBS, in order to provide an efficient steady-state performance analysis with regard to
computation time and memory costs.

For this purpose, we rely on previous work (Delamare et al., 2003a,b) which defines a struc-
tured analysis method allowing to avoid the explicit construction of the aggregated Markov
chain corresponding to the global SWN. The structured analysis method was defined to apply
on a global SWN N . The main idea in this method is to start from a global SWN, decompose
it into several subnets, and study each subnet augmented with “parts” aggregating interactions
with other subnets. These separated studies are then used to derive a tensorial representation
of the generator of the underlying aggregated Markov chain of the global net, and so to com-
pute performance indices. For this purpose, two kinds of decompositions into SWNs were
defined: a “synchronous” decomposition modelling a complex synchronization (Haddad and
Moreaux, 1996a) of type “Rendez-vous” between two SWNs, and An “asynchronous" decom-
position (Haddad and Moreaux, 1996b) corresponding to an asynchronous method call or a

Formal models of Fractal CBS for performance analysis

message sending/receiving between two or more SWNs. Each kind of decomposition requires
a set of conditions which can be checked at the SWN definition level.

Composition of SWNs We have extended and adapted this initial decomposition method to
CBS. Adaptation was faced to three problems:
• The first problem is to compose SWN models of components, as we start from the definition
of components in the case of a CBS. This is in contrast to the previous method where a global
SWN is decomposed into several subnets. Composition of SWNs in the Fractal framework has
been explained above.
• The second problem is to try bringing an interconnection of components into a synchronous
or asynchronous composition of SWNs. This problem depends on the component model. In
the context of Julia Fractal CBSs, we model interactions between Fractal components with
synchronous compositions of their corresponding SWN models as shown in section 3.
• The third problem consists of studying the impact of having synchronous and asynchronous
compositions in the same global model, as the structured method was defined for either a
synchronous composition or else asynchronous composition of SWNs. This problem does not
appear in the present work since Fractal components interact only through synchronous calls
which leads to synchronous composition of SWNs.

Structured CBS analysis algorithm Assuming that the G-SWN model of the application
and the CC-SWNs of the components denoted by Nk (1 ≤ k ≤ K ′) are defined, the algorithm
is the following:
1. Checking applicability conditions on the G-SWN for a structured representation of the SRG
and its aggregated generator. if they are fulfilled, goto 2, else merge some of the CC-SWNs
which do not satisfy applicability conditions to new SWNs trying to fulfill conditions. Each
new SWN replaces the SWNs it stands for. Then goto to 1.
2. Extension of the SWNs Nk to autonomous SWNs N̄k (said extended nets), in order to
consider interaction with other subnets (see (Haddad and Moreaux, 1996a) for details).
3. Generation of the SRGs of these extended SWNs.
4. Computation of the synchronized product of these SRGs and of the tensorial representation
of the generator of the underlying aggregated Markov chain.
5. Computation of the steady state distribution of the aggregated model and computation of
the required performance indices.
6. Expression of the results in the initial context of the components.

Application to Julia Fractal CBSs We apply the previous method to SWN models of Julia
Fractal CBSs. For what concerns conditions for synchronous composition of SWNs (point 3.3),
one important property must be verified: a possibly synchronized entity of a subnet (i.e. linked
to an entity of another subnet during common actions) must be, at any time, either not syn-
chronized, or else synchronized with only one entity of another subnet. This means, at the
programmatic level, that such entities should not be duplicated, for instance with concurrent
threads, in a given component.

N.Salmi and al.

Colour classes Cf1 Cf2 Cf3 Cf4 Cf5 Cf6 Cf7 Cf8
|UC|=|IDS| 3 5 10 2 3 5 10 20
|IDC| 1 1 1 2 2 2 2 2
|M| 2 2 2 2 2 3 3 3
|P| 2 2 2 2 2 2 2 2
|MS|=|PS| 2 2 2 2 2 2 2 2
|IDA| 1 1 1 2 2 3 3 3
|MA|=|PA| 2 2 2 2 2 2 2 2
|IDL|=|ML|=|PL| 2 2 2 2 2 5 5 5
|IDD| 1 1 1 2 2 3 3 3
|MD|=|PD| 2 2 2 2 2 3 3 3
|IDF| 2 2 2 2 3 5 5 5
|MF| 2 2 2 2 2 5 5 5
|PF| 2 2 2 2 2 2 2 2
|IDE| 2 2 2 2 3 5 5 5
|ME| 2 2 2 2 2 4 4 4
|PE| 2 2 2 2 2 2 2 2

Component Transition Rate
Receiver ReceiveRequest 0.60
Scheduler ScheduleRequest 0.90
Analyzer AnalysisRequest 0.60
Analyzer T10 0.75
Logger LogRequest 0.90
Dispatcher DispatchRequest 0.90
Dispatcher T29 0.90
Dispatcher T30 0.10
File Handler FileHRequest 0.90
Error Handler ErrorHRequest 0.10

TAB. 1: Various configurations for the Comanche example (left), Transition rates of the studied
(fourth) configuration (right)

Config NbS NbO TGreat(s) TComp(s) MGreat (B) MComp (B)
Cf1 82 35144 4 0 402 1484
Cf2 136 239392 5 0 510 1652
Cf3 271 16139264 12 0 780 2072
Cf4 406 2392068 1191 1 6305 5336
Cf5 784 24279944 4919 1 7095 6008
Cf6 1540 3656635680 - 2 - 7368
Cf7 3430 3113239552 - 3 - 10728
Cf8 7210 999926785 - 22 - 17448

Legend
NbS: number of symbolic markings
NbO: number of ordinary markings
TGreat: computation time of GreatSPN
TComp: computation time of compSWN
MGreat: memory used by GreatSPN
MComp: memory used by compSWN

TAB. 2: State space sizes and computation times for SRG generation of the Comanche example
for various configurations

4 Application to the Comanche example

The obtained G-SWN of the Comanche application satisfies conditions of structured anal-
ysis. So, we did not need to merge some CC-SWNs. We used our tool compSWN to apply
our method and compute steady-state probabilities. We also used the GreatSPN environment
on the G-SWN to compare results of both analysis methods. We ran the two tools on Suse
linux 9.2 workstation (1.7GHz Pentium IV CPU with 512 MB of main memory).

Before giving some performance indices of the Comanche example, we first show time and
memory savings due to the use of the structured analysis. To this end, we vary the cardinalities
of our basic colour classes, and we study the behaviour of the solvers for several configuration
(Cfi) summarized in table 1. We report in table 2 behaviours of the two solvers (GreatSPN and
compSWN) for what concerns memory usage (in bytes) and computation times for the SRG
generation phase only of the resolution, i.e. without computing steady-state probabilities nor
performance indices (probabilities were found identical with the two tools, within numerical
errors). We also indicate the state space sizes of the global net. We note that our method allows

Formal models of Fractal CBS for performance analysis

us to compute the SRG of the model and its steady-state probabilities for all given configura-
tions, whereas we were not able to compute these results with GreatSPN for configurations
Cf6, Cf7 and Cf8 due to the large state space size.

We also present some of the results we have gathered and refer the reader to a forthcoming
research report for a fully detailed performance analysis of the example. The results are given
for only one configuration (Cf4) of the system. This choice is motivated by the facts that first
its computation time is three orders of magnitude greater than configurations 1, 2 and 3; second
performance analysis can however be processed with the two tools.

Parameters of the system We take fixed rate values of a critical set of transitions, then, we
vary some transition rates, and study the evolution of response time from obtained steady-state
probabilities. Main transitions rate values are given in table 1 and transitions not appearing in
this table have rate 1 (i.e. faster than all other transitions, rates being given in the same unit).

FIG. 2: Response time (sec) versus request
arrival rate (top), and request analysis rate
(down)

Response time variations We are mainly in-
terested in computing variations of the response
time with respect to several parameters: the load
induced by client’s requests, the rate of the anal-
ysis request, the rate of file or data retrieval and
the error rate. Figure 2 shows response time vari-
ations with respect to the first two parameters.
From the top diagram (with Request analysis tran-
sition rate=0.6), we see that the CBS presents a
slightly better response time as far as the client
requests arrival duration increases. This a priori
contradictory behaviour indicates that the system
is not saturated until request arrival rate of 2. In-
deed, the curve becomes flatter when the request
arrival rate increases. The down diagram (with
Receive request transition rate=0.6 (down) shows
a reduced response time with the increasing of re-
quest analysis rate. This was expected since the
system becomes more powerful with higher re-
quest analysis rate. However, we observe that the
response time first shuts down significantly and
then (0.4 and more) becomes almost stable. This
phenomenon proves that the analysis is no more
the bottleneck of the system for rates higher than
0.4. Response time analysis could be completed
by steady-state probabilities of markings in sev-
eral components of the system.

N.Salmi and al.

5 Conclusion

In this paper, we have presented a method allowing to study, in an efficient way, perfor-
mance indices of Fractal Component Based Systems (CBS), restricted to stable configurations
(i.e. without reconfiguration) of the CBSs. We quote that implementation semantics heavily
impact modelling Fractal CBSs and must be taken into account by any modelling method. In
this work, we model Fractal CBS using Julia, the Java reference implementation of the Fractal
component model.

The presented method is an instance of a general method for analysis of CBSs. We show
that our model of Julia Fractal CBS can indeed be analyzed with this approach which provides
important savings in computation time and memory usage during the analysis. Note that due
to lack of space, Petri nets figures and other technical details are not included in this paper. A
forthcoming report will present full detailed of the study.

Work in progress will first partially automate extraction of information from the description
of the CBS for direct definition of the interfaces of the CC-SWNs. Moreover, gains of the
structured analysis being dependent on the number and the size of SWNs making up the global
SWN, we are studying some heuristic rules to merge subnets of the model for better analysis
times. Finally, we are working on modelling reconfiguration features of Fractal CBSs and
verification of their behaviours.

References
Arnold, A. (2002). Nivats processes and their synchronization. Theor. Comput. Sci. (281(1-2)),

31–36.
Barros, T., A. Cansado, E. Madelaine, and M. Rivera (2006). Model checking distributed

components : The vercors platform. In 3rd workshop on Formal Aspects of Component
Systems, Prague, Tcheque Republic. ENTCS.

Baude, F., D. Caromel, and M. Morel (2003). From distributed objects to hierarchical grid
components. In D. Schmidt, R. M. Z. Tari, and al. (Eds.), On The Move to Meaningful
Internet Systems 2003: Coopis, DOA and ODBASE, Volume 2888 of LNCS, pp. 1226–1242.
Springer Verlag.

Bernardi, S., S. Donatelli, and A. Horváth (2001). Implementing compositionality for stochas-
tic Petri nets. Int. J. STTT (3), 417–430.

Bruneton, E. Tutorial: Developping with fractal. http://fractal.objectweb.org/
tutorial/index.html (dec. 2006).

Bruneton, E., T. Coupaye, and J. Stefani (2004). The fractal component model, version 2.0-3.
Technical report, Fractal team, Online documentation http://fractal.objectweb.
org/specification/ (oct. 2006).

Chiola, G., C. Dutheillet, G. Franceschinis, and S. Haddad (1993). Stochastic well-formed col-
ored nets and symmetric modeling applications. IEEE Transactions on Computers 42(11),
1343–1360.

da Silva, L. D. and A. Perkusich (2005). Composition of software artifacts modelled using
colored Petri nets. Science of Computer Programming 56(1-2), 171–189.

Formal models of Fractal CBS for performance analysis

Delamare, C., Y. Gardan, and P. Moreaux (2003a). Efficient implementation for performance
evaluation of synchronous decomposition of high level stochastic Petri nets. In On-site
proceedings of the ICALP2003 Workshop on Stochastic Petri Nets and Related Formalisms,
Eindhoven, Holland, pp. 164–183. University of Dortmund, Germany.

Delamare, C., Y. Gardan, and P. Moreaux (2003b). Performance evaluation with asyn-
chronously decomposable SWN: implementation and case study. In Proc. of the 10th Int.
Workshop on Petri nets and performance models (PNPM03), Urbana-Champaign, IL, USA,
pp. 20–29. IEEE Comp. Soc. Press.

Haddad, S. and P. Moreaux (1996a). Aggregation and decomposition for performance evalua-
tion of synchronous product of high level Petri nets. Document du Lamsade 96, LAMSADE,
Université Paris Dauphine, Paris, France. .

Haddad, S. and P. Moreaux (1996b). Asynchronous composition of high level Petri nets: a
quantitative approach. In Proc. of the 17th International Conference on Application and
Theory of Petri Nets, Number 1091 in LNCS, Osaka, Japan, pp. 193–211. Springer–Verlag.

Kupferman, O. and M. Y. Vardi (1998). Modular model checking. In Compositionality: The
Significant Difference, Volume 1536 of LNCS, pp. 381–401.

Medvidović, N. and R. N. Taylor (2000). A classification and comparison framework for
software architecture description languages. In In IEEE Trans. On Software Engeneering,
Volume 26, pp. 70–93. IEEE Trans.

Microsoft (2007). .Net 3.0 framework. http://msdn.microsoft.com/
netframework (July 2007).

Object Management Group (2000). Corba concurrency service 1.0. Techni-
cal report, OMG. http://www.omg.org/technology/documents/formal/
concurrency_service.htm (jan. 2007).

P.E. Group (2002). GreatSPN home page: http://www.di.unito.it/~greatspn.
Rugina, A.-E., K. Kanoun, and M. Kaâniche (2006). AADL-based dependability modelling.

Report 06209, LAAS, Toulouse, France.
Smith, C. (1990). Performance Engineering of Software Systems. Reading, Mass.: Addison-

Wesley.
Sun Microsystems (2007). EJB 3.0 specification.
Szyperski, C., D. Gruntz, and S. Murer (2002). Component Software Beyond Object-Oriented

Programming (2nd ed.). Addison Wesley - ACM Press.

