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Abstract. We are interested in the preservation of local properties oftimed com-
ponents during their integration in a timed system. Timed components are mod-
eled as timed automata or timed automata with deadlines. Properties considered
are all safety and liveness properties which can be expressed with the timed
linear logic MITL (Metric Interval Linear Logic), as well as non-zenoness and
deadlock-freedom. Integration of components is a kind of incremental develop-
ment which consists in checking locally the properties of the components, before
integrating them in the complete system, using some composition operator. Of
course, established properties have to be preserved by thisintegration. Checking
preservation can be achieved by means of the verification of timedτ -simulation
relations. Composability, compatibility and compositionality of these relations
w.r.t. composition operators are properties which allow toreduce the cost of
this verification. We examine these properties when integration is achieved with
two different timed composition operators: the classic operator usually taken
for timed systems and which uses a CSP-like composition paradigm, and a non-
blocking operator closer to the CCS paradigm.
Key-words. τ -simulations, component-based timed systems, integration of com-
ponents, preservation of timed linear properties.

1 Introduction

Incremental development methods are a way to cope with the state space explosion prob-
lem of model-checking, which is increased in the case of timed systems due to the presence
of timing constraints. In particular, for component-basedsystems, a way to develop incre-
mentally is to use integration of components. This method isindicated for the verification of
local properties of the components. It consists in checkingthe properties in isolation on the
component before integrating it in its environment, with some parallel composition operator.
Model-checking is there still applicable since the size of the components is generally small
enough. Of course, this method is valid only if established properties of the component still
hold after integration.
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In Bellegarde et al. (2005), we defined twoτ -simulation relations, adapted to timed sys-
tems, with preservation abilities: a timedτ -simulation preserving safety properties, and a
divergence-sensitiveand stability-respecting (DS) timedτ -simulation which preserves all prop-
erties which can be expressed in the linear timed logic MITL (Metric Interval Temporal Logic)
(Alur et al., 1996), strong non-zenoness and deadlock-freedom.
Properties such as composability, compatibility and compositionality of the simulation rela-
tions are essential properties for integration of components. Consider componentsA, B, C

andD. Composability is a major property since it expresses that acomponentA simulates its
composition with another component. The direct consequence is that properties ofA (which
are preserved by the simulation) are automatically preserved by composition. It is thus clearly
essential for integration of components, or for the reuse ofa component. Given some compo-
sition operator‖, compatibility states that ifA simulatesB (and thus, properties ofA also hold
onB) thenA‖C simulatesB‖C. During development, it is beneficial for instance in the case
of the replacement in a system of the componentA by the componentB. Compositionality
is a consequence of compatibility since it expresses that ifA simulatesB andC simulatesD
then,A‖C simulatesB‖D.
Therefore, in this paper, we study if the simulations we defined in Bellegarde et al. (2005)
allow to benefit of these properties, in particular when integration is achieved with one of the
two following operators: the classic parallel compositionoperator used for timed systems and
a non-blocking operator defined in Bornot et al. (1997). The first operator uses a composition
paradigma la CSP (Hoare, 1985). The second one is closer to the paradigm ofCCS (Milner,
1989) and uses a notion of priorities between actions to favour synchronizations. This analysis
shows that the timedτ -simulation is well-adapted to both operators, since we benefit of the
three properties without any assumptions. The DS timedτ -simulation is appropriate in the
case of the non-blocking operator, on some conditions. Thisstudy of the properties of the
simulations with respect to these composition operators isthe contribution of the paper.
The structure of the paper is the following. In section 2, we recall some background on timed
systems. We present timed automata which is the formalism weuse to model timed systems
and the two composition operators we consider for these automata. Section 3 recalls the simu-
lation relations we defined for timed systems in Bellegarde et al. (2005), and their preservation
abilities. Section 4 presents the contributions of this paper. We study whether the simulations
have the composability, compatibility and compositionality properties w.r.t. the two compo-
sition operators. Finally, section 5 presents a synthesis of the results obtained, as well as the
consequences in terms of preservation during integration,and plans some future works.

2 Preliminary definitions

In this section, we recall some background on the models we consider for timed systems,
i.e., timed automata and timed automata with deadlines. We also present the two operators that
we consider in this work for their composition.

2.1 Timed automata

Timed automata were introduced in Alur and Dill (1994). Theyare finite automata with
real-valued variables, called clocks, which model the timeelapsing.
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Clock valuations and clock constraints.Let X be a set of clocks. A clock valuation overX

is a functionv : X → R
+ mapping to each clock inX a value inR+. Letv be a valuation over

X andt ∈ R
+, the valuationv + t is obtained by addingt to the value of each clock. Given

Y ⊆ X , the reset inv of the clocks inY , written [Y := 0]v is the valuation obtained fromv
by setting to zero all clocks inY , and leaving the values of other clocks (∈ X\Y ) unchanged.
The setCdf (X) of diagonal-free clock constraints overX is defined as follows:

g ::= x ∼ c | g ∧ g | true wherex ∈ X , c ∈ N, and∼∈ {<,≤, =,≥, >}.

A valuationv overX satisfies a constraintx ∼ c, writtenv ∈ x ∼ c, if v(x) ∼ c.
Syntax. A timed automaton (TA) is tupleA =〈Q, q0, Σ, X, T, Invar〉, whereQ is a finite set
of locations,q0 is the initial location,Σ is an alphabet of names of actions andX is a finite set
of clocks.Invar is a function mapping a clock constraint to each location, called its invariant.
Each edge of a TA is a tuplee = (q, g, a, r, q′) whereq andq′ are respectively its source and
target location,g is its guard,a is its label andr is a set of clocks to be reset by the edge.
Semantics.The semantics of a TAA is an infinite graph which states are pairs(q, v) whereq

is a location ofA andv is a valuation overX s.t.v ∈ Invar(q). Transitions are either discrete
transitions or time transitions. Consider a state(q, v). Given an edgee = (q, g, a, r, q′) of A,
(q, v)

a
→ (q′, [r := 0]v) is a discrete transition ifv ∈ g. Givent ∈ R

+, time transitions have

the form(q, v)
t
→ (q, v + t). Given a states = (q, v), s + t denotes the pair(q, v + t). A run

of a TA is a path of its semantic graph. A run is said non-zeno iftime can diverge along the
run. A TA is said strongly non-zeno if all its runs are non-zeno.
A variant: timed automata with deadlines. Timed automata with deadlines (TAD) are a
variant of TA introduced in Sifakis and Yovine (1996). The main difference lies in the fact
that time-progress conditions are not given as invariants in locations, but are associated as
deadlines with the edges. The deadline represents the moment when time can not progress any
more before taking the edge. Formally, the syntax of TAD is the same as the one of TA, with
no invariants. Edges are tuples(q, g, d, a, r, q′) whereq, g, a, r andq′ are defined as for TA
andd is a clock constraint representing the deadline.

2.2 Timed parallel composition operators

We consider two composition operators which take into account the timing constraints
of the components. The first one, which is the classic operator for TA, uses a composition
paradigm close to the one of CSP. The second, which we call non-blocking parallel compo-
sition operator, is closer to the paradigm of CCS and uses a notion of priorities between actions.

Classic parallel composition operator. This composition operator, written‖, operates be-
tween TA with disjoint sets of clocks. Intuitively, it is defined as a synchronized product,
where actions with the same label synchronize, other actions interleave and time elapses syn-
chronously between the components. Formally, consider twoTA A =〈QA, q0A

, ΣA, XA, TA,

InvarA〉 andB =〈QB, q0B
, ΣB, XB, TB , InvarB〉, such thatXA ∩ XB = ∅. The classic

parallel composition ofA andB, writtenA‖B, results in a TA which set of clocks isXA∪XB

and which labels are inΣA ∪ ΣB. The setQ of locations is a subset ofQA × QB. The initial
location is the pair(q0A

, q0B
). The invariant of a location(qA, qB) is Invar(qA)∧Invar(qB).

Edges in one TA which label is not the label of any edge in the other TA is an interleaving edge
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in the composition and is still defined with the same guard, label and reset. Synchronized edges
are obtained by the following rule:

(qA, qB) ∈ Q, (qA, gA, a, rA, q′

A
) ∈ TA ,

(qB , gB , a, rB , q′

B
) ∈ TB

((qA, qB), gA ∧ gB , a, rA ∪ rB , (q′

A
, q′

B
)) ∈ T

The main drawback of this operator is that deadlocks are generally introduced during com-
position. For this reason, other operators have been defined, such as the following one.

Non-blocking parallel composition operator. This operator was introduced in Bornot et al.
(1997) to operate between TAD with disjoint alphabets and sets of clocks. It is defined as
a product in which all actions interleave and time elapses synchronously between compo-
nents. Some actions synchronize, according to a synchronization functionp: ΣA × ΣB →
Σsync ∪ {⊥}, whereΣsync is an alphabet disjoint fromΣA andΣB. The function maps to
each pair of labels(a, b) the label inΣsync of the action resulting of the synchronization of
two actionsa andb, or the special symbol⊥ if the two actions do not synchronize. Since all
actions interleave, priorities are used to favour synchronized actions rather than interleaving.
Different synchronization modes can be used. TheAND mode is the classic one. TheMIN

mode corresponds to a synchronization with interruption, i.e., the first enabled action causes
the synchronization even if the other one is not yet enabled.Finally, theMAX mode is a syn-
chronization with waiting, i.e., the first enabled action waits for the other to be enabled for
synchronization to occur.

3 Timed τ -simulations to preserve properties

In Bellegarde et al. (2005), we defined two kinds of simulation relations for timed automata.
The first one, called timedτ -simulation, preserves safety properties. The second one,called
divergence-sensitive and stability-respecting (DS) timed τ -simulation, preserves all properties
expressed with the timed linear logic MITL (Metric Interval Temporal Logic), strong non-
zenoness and deadlock-freedom.
Consider two TAA andB with respective alphabetsΣA andΣB, s.t.ΣA ⊆ ΣB. In B, actions
in ΣB\ΣA are called non-observable and renamed byτ . Other actions, inΣA, are called
observable. In the sequel, we focus directly on the definition of the DS timedτ -simulation
Sds. The definition of the timedτ -simulation, writtenS, can be obtained by removing the
clausesdivergence-sensitivity andstability-respect. The predicatefree (Tripakis, 1998), used
in Definition 1, is defined as follows. Given a locationq, free(q) is the set of all valuations (of
states withq as discrete part) from which a discrete transition can be taken after some delay.

Definition 1 (Divergence-sensitive and stability-respecting (DS) timed τ -simulation Sds) Let
A =〈QA, q0A

, ΣA, XA, TA, InvarA〉 and B =〈QB , q0B
, ΣA ∪{τ}, XB, TB, InvarB〉 be two

TA s.t. XA ⊆ XB . We call SA and SB the respective set of states of A and B. The DS timed
τ -simulation Sds is the greatest binary relation included in SB ×SA. Consider sA = (qA, vA)
in SA and sB = (qB , vB) in SB . We say that sBSdssA if:

1. Strict simulation: sB

a
→ s

′

B ∧ a ∈ ΣA ⇒ ∃s
′

A · (sA

a
→ s

′

A ∧ s
′

B Sds s
′

A).

2. Delays equality: sB

t
→ sB + t ⇒ sA

t
→ sA + t ∧ sB + t Sds sA + t.
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3. τ -transitions stuttering: sB

τ
→ s

′

B ⇒ s
′

B Sds sA.

4. Divergence-sensitivity: B does not contain any non-zeno τ -cycles.

5. Stability-respect: vB 6∈ free(qB) ⇒ vA 6∈ free(qA).

Given two TA A and B, and their respective initial states0A
and s0B

, we say thatA
simulatesB w.r.t. Sds writtenB �Sds

A if s0B
Sdss0A

.

4 Properties of timedτ -simulations w.r.t. timed parallel com-
position

It seems interesting to avoid a systematic verification of the relations to ensure preserva-
tion during an incremental development. For this purpose, composability, compatibility and
compositionality of the relations w.r.t. the composition operators used for integration of com-
ponents are essential properties. Thus, in this section, westudy these three properties for the
timed τ -simulation and the DS one w.r.t. the two operators presented in section 2.2. In the
sequel, we use the following notations. Given a TAA, we noteSA its set of states andΣA

its alphabet. A state ofA is simply writtensA or s′A, which respectively represent the pairs
(qA, vA) and(q′A, v′A). The initial state ofA is writtens0A

.

4.1 Classic parallel composition

We first examine the properties with the timedτ -simulation.

Proposition 1 (Composability) Let A and B be TA. We have: A‖B �S A.

PROOF. By construction ofA‖B, its initial state is the pair(s0A
, s0B

). To prove thatA‖B �S

A, it is enough to prove that(s0A
, s0B

)Ss0A
. By definition,�S is the greatest relation included

in SA‖B×SA which satisfies clauses 1 to 3 of Definition 1. Thus, each relationR ⊆ SA‖B×SA

which satisfies these clauses is included in�S . Consider a relationR ⊆ SA‖B × SA such that
∀(sA, sB) ∈ SA‖B, (sA, sB)R s′A if sA = s′A. Consider((sA, sB), sA) ∈ R.

1. Strict simulation: let (sA, sB)
a
→ (s′A, s′B) in A‖B such thata ∈ ΣA. By construction

of A‖B, a transitionsA
a
→ s′A exists inA. By definition ofR, (s′A, s′B)R s′A andR

satisfies thestrict simulation.

2. Delays equality: same arguments than those for strict simulation can be used.

3. τ -transitions stuttering: consider a transition(sA, sB)
τ
→ (s′A, s′B) in A‖B. Recall that

τ -transitions represent non-observable actions initiallylabelled inΣB\ΣA. By construc-
tion of A‖B, s′A = sA. Thus,(sA, s′B)R sA andR satisfiesτ -transitions stuttering.

�

Proposition 2 (Compatibility) Let A, B and C be TA. If A �S B then A‖C �S B‖C.

PROOF. The structure of the proof is similar to the previous one. A complete version can be
found in Julliand et al. (2007). �
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Proposition 3 (Compositionality) Let A, B, C and D be TA. If A �S B and C �S D then
A‖C �S B‖D.

PROOF. Immediate with Proposition 2. SinceA �S B, thenA‖C �S B‖C. SinceC �S D,
thenB‖C �S B‖D. By transitivity of the relation�S , we haveA‖C �S B‖D. �

The timedτ -simulation allows to benefit of the three properties for free. This is not the
case for the DS timedτ -simulation. Indeed, the operator‖ is known to introduce deadlocks
during composition, which prevents the clause stability-respect of the DS timedτ -simulation
from being established. However, this simulation allows toget the properties when using the
non-blocking parallel composition operator, on some simple conditions.

4.2 Non-blocking parallel composition

First note that the non-blocking parallel composition operates between TAD. Thus, in this
section, we extend the notations�S and�Sds

, initially defined for TA, to TAD. This extension
does not matter since the simulations are defined at a semantic level and that the semantics of
TAD is given by an infinite graph of the same kind than for TA.
Consider two TADA andA′, and suppose thatA′ is obtained fromA by integration of compo-
nents using the non-blocking parallel composition operator, i.e.,A′ = A|B for some automa-
tonB. For a TADA to simulates a TADA′, we imposed in the definition of the simulation that
ΣA ⊆ ΣA′ . Moreover, we suppose that observable actions inA′ (and, in particular, synchro-
nized actions) have the same label than inA. Therefore, without loss of generality, we consider
here that the synchronization function of the operator| is defined byp: ΣA ×ΣB → ΣA ∪{⊥}
such that, givena ∈ ΣA andb ∈ ΣB, a p b = a if the two actions synchronize. In other words,
the label of the synchronized action is the same than the one of the action ofA which takes
part in the synchronization.
We focus directly on the DS timedτ -simulation, and on the most used synchronization mode of
the operator, the AND one. First, the following result is necessary for composability. Complete
proofs for the following propositions can be found in Julliand et al. (2007).

Proposition 4 (Nonτ -divergence preservation)Let A and B be TAD. Actions in ΣB\ΣA

are renamed by τ . If B does not contain any non-zeno τ -cycles, then A|B does not contain
any non-zeno τ -cycles.

Proposition 5 (Composability) Let A and B be TAD. Actions in ΣB\ΣA are renamed by τ

in B. If B does not contain any non-zeno τ -cycles, we have: A|B �Sds
A.

PROOF. This proposition can be proved using the same method than for proposition 1. The
proof for stability-respect is immediate by definition of| and the fact that this operator does
not introduce deadlocks, due to a total interleaving of all the actions. Divergence-sensitivity is
ensured sinceτ -transitions ofA|C are labelled with actions inΣB\ΣA and sinceA �Sds

B. �

Proposition 6 (Compatibility) Let A, B and C be TAD. If A �Sds
B then A|C �Sds

B|C.

PROOF. Similar arguments than in the proof of proposition 2 apply for clauses 1 to 3. The
proof for divergence-sensitivity and stability-respect is immediate as in proposition 5. �
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Classic parallel Non-blocking parallel composition
composition AND / MIN MAX

Properties preserved M ITL , deadlock-freedom,
during integration safety strong non-zenoness none

of components (hyp. div. 1 and 2)

TAB . 1 – Synthesis on the preservation of properties during integration of components

Proposition 7 (Compositionality) Let A, B, C and D be TA. The internal actions of A|C
(i.e. in (ΣA ∪ ΣC)\(ΣB ∪ ΣD)) are renamed by τ . If A �Sds

B, C �Sds
D and A|C does

not contain any non-zeno τ -cycles then A|C �Sds
B|D.

PROOF. Immediate with proposition 6. �

Remark 1 (MIN and MAX modes) Recall that the MIN synchronization mode corresponds
to a synchronization with interruption. As for the AND mode, this paradigm is taken into ac-
count by strengthening the guard of the synchronized action, which implies that the concerned
clauses (strict simulation and delays equality) hold. Therefore, propositions 5 to 7 also hold
when using the MIN mode. The MAX synchronization mode corresponds to a synchronization
with waiting, which means that when one action in the synchronization is enabled, it waits for
the other to be enabled to synchronize. It follows immediatly that the propositions do not hold.
For instance, composability does not hold since synchronized actions (which are observable
actions) can be taken later in A|B than they were in A. Similar arguments can be given for
compatibility and compositionality.

Remark 2 (Timed τ -simulation and |) We focused on the DS timed τ -simulation. The propo-
sitions also hold, without assumptions, in the case of timed τ -simulation, when using AND and
MIN modes. Indeed, the DS timed τ -simulation is obtained from the timed τ -simulation by
adding divergence-sensitivity and stability-respect. As the three properties hold for the DS
timed τ -simulation (modulo assumptions for divergence-sensitivity in the case of composabil-
ity and compositionality), they also hold for the timed τ -simulation.

4.3 Synthesis

TAB. 1 gives an interpretation of these results in terms of properties preserved during an
integration of components. The abbreviationshyp. div. 1 andhyp. div. 2 represent respectively
the assumptions in propositions 5 and 7 for divergence-sensitivity.

5 Conclusion and Future works

In previous works, we definedτ -simulation relations for timed systems, with preservation
abilities. Checking these relations is a way to guarantee the preservation of properties during
incremental development of timed systems, in particular during integration of components.
However, we wish to avoid the verification of the simulations, while still benefiting of their
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preservation abilities. For this purpose, in this paper, westudied the properties of composabil-
ity, compatibility and compositionality of the relations w.r.t. two composition operators for
timed systems: the classic operator, and a non-blocking onewith three different synchroniza-
tion modes. It turns out that the properties hold for the timed τ -simulation with both operators
(except when using theMAX synchronization mode with the non-blocking one). This means
that the preservation of safety properties is ensured for free when using these operators for in-
tegration of components. The divergence-sensitive and stability-respecting timedτ -simulation
has the properties only with the non-blocking operator (except with theMAX mode), on some
conditions for divergence-sensitivity. Thus, MITL properties, deadlock-freedom and strong
non-zenoness, are preserved (on the conditions expressed)during integration of components
with this operator. This is not the case when using the classic operator. The reason is that this
operator does not prevent from introducing deadlocks during composition, which makes the
stability-respecting part of the simulation not guaranteed during integration ofcomponents.
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