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Résumé. Dans les systèmes DSMS (Data Stream Management Systems), les
données en entrée sont infinies et les requêtes sur celles-ci sont actives tout le
temps. Dans le but de satisfaire ces caractéristiques, le fenêtrage temporel est
largement utilisée pour convertir le flux infini de données sous forme de rela-
tions finies. Mais cette technique est inadaptée pour de nombreuses applications
émergentes, en particulier les services de localisation. De nombreuses requêtes
ne peuvent pas être traitées en utilisant le fenêtrage temporel, ou seraient traitées
plus efficacement à l’aide d’un fenêtrage basé sur l’espace (fenêtrage spatial).
Dans cet article, nous analysons la nécessité d’un fenêtrage spatial sur des flux
de données spatio-temporels, et proposons, sur la base du langage de requêtes
CQL (Continuous Query Language), une syntaxe et une sémantique associées
au fenêtrage spatial.

1 Introduction
Data stream management systems (DSMS) have emerged to meet the needs of processing

continuous changing, unbounded data and real-time responses. The applications include stock
quoting, auction processing, network flow monitoring, moving objects monitoring [Abdessa-
lem et al. (2007), Moreira et al. (2000)], etc. In these cases, the common features consist in :
1- the data sources are infinite and real-time changing, 2- queries over data have to produce
continuous responses. To cope with the first feature, the window concept is proposed. The idea
consists in transforming unbounded data stream into bounded data tables, then queries can be
processed as in a traditional database system. For the second feature, query evaluation me-
thods should be executed continuously resulting in a real-time changing of the response. As
we mentioned above, window techniques are proposed for solving two issues in data stream
processing : infinite data sources and continuous query. In current DSMS, the windowing ope-
ration is done using the timestamps of the input data (i.e. temporal attributes). For example,
in a network traffic monitoring application it is not possible to store and analyze online the
whole input data. We can just continuously monitor the situation for a bounded time interval,



Semantics of Spatial Window

for instance the latest 1 hour. In this case, we have an infinite stream of traffic data and a tem-
poral window of 1 hour. The set of data belonging to the specified window is finite. Queries
are then evaluated periodically (for instance, every 2 minutes) on the set of data belonging to
the window. So, the result of the queries will change continuously (every 2 minutes). DSMS
also propose windowed operators such as aggregate operators, join operator, select operator,
etc. to enable answering complex queries. In addition to initial applications of data streams,
the development of location-sensitive devices has also spurred the on-line location-aware ser-
vices and real-time moving objects monitoring applications. Besides the common characteris-
tics of DSMS, these applications further need to process spatial and spatio-temporal data for
location services. In this case, the input data is supposed to be composed of at least two at-
tributes : a spatial attribute and a timestamp. In the previous literatures, two main approaches
are considered for continuous queries processing over spatio-temporal data streams. In the first
approach [Patroumpas et Sellis (2004)], the windowing operation is done using only the ti-
mestamp attribute. Then, spatial restrictions are evaluated on each set of data composing the
obtained windows “temporal windows”. The problem with this approach is that the fixed or-
der of operations(temporal/spatial restrictions) in a query evaluation plan can have a important
impact on the performance of the system [Elmongui et al. (2006)]. In other terms, it may be
inefficient in some cases when the temporal restriction is always done before the spatial one.
In addition, many location services don’t involve temporal attribute at all and only care about
spatial information, e.g. Range or kNN query [Mokbel et Aref (2005)] etc. In the second ap-
proach, as proposed in the PLACE project [Mokbel et al. (2005)], the windowing operation is
done using the spatial attribute. Then, temporal restrictions are evaluated on each set of data
composing the obtained Spatial Windows.

To point out the necessity of spatial windows for spatio-temporal applications, we take the
following example. Given the situation of a vehicle moving on the road. The vehicle sends the
updates of its position periodically to the DSMS, and we would like to know its average speed
in the last 50 kms. Temporal windowing is not efficient to answer this kind of query, because
the size of the temporal window can’t be decided in advance. The time spent by the observed
object to cross the 50 kms may change significantly along the trajectory of the object.

A spatial windowing is more suitable to answer this kind of query. We may fall back on
the spatial window (specified by the criteria “in the last 50 kms”) to catch a finite data rela-
tion from the unbounded data stream. Only the semantics of the windowing operation changes
because we use the spatial dimension instead of the temporal one. When processing the inco-
ming streams, spatial window maintains its contents according to the spatial attribute of the
input data (tuples). Only data within a certain area scope are of interest and are kept in the
window.

In this paper, we focus on the extension of DSMS to the management of spatio-temporal
data. We propose two kinds of spatial windows : a static spatial window and a moving spatial
window. These operations are presented as a possible extension to the query language CQL
(Continuous Query Language) [Arasu et al. (2006); Arasu et Widom (2004)]. Their semantics
are defined based on the abstract semantics of CQL, and their expressiveness is demonstrated
using examples of queries.

This paper is organized as follows. Section 2 presents the CQL query language. Section
3 describes our extension of CQL to support spatial windowing, and section 4 concludes the
paper.
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2 Preliminaries

In this section, we present the data model and the basic operations proposed in CQL. This
query language was defined in the STREAM project [Arasu et al. (2006); Arasu et Widom
(2004)]. Its syntax is close to the SQL-99 syntax and it is especially designed for continuous
data processing over data streams. CQL assumes that the input tuples come in a time ordered
sequence and the windowing operation is processed on the timestamp of each tuple. First,
we present the basic functions and data domains, then we give the definitions of stream and
relation and their related operators.

– T : Time domain ;
T is a discrete, ordered time domain. A time instant is any value from T.
Time attributes belong to T.

– TP : Tuple domain ;
A tuple is a finite sequence of atomic values.

– Σ : Tuple multi-sets domain ;
This is the domain of finite, but unbounded, bags of tuples.

– S : Stream domain ;
This is the domain of multi-sets over TP × T (see Definition 2.1)

– R : Relation domain ;
R : T → Σ, this is the domain of functions that map time instants to bags of tuples (see
Definition 2.2).

– R2ROp : Σ × ... × Σ→ Σ

This the domain of functions that produce a bag of tuples from one or more bags of
tuples. For example, the relational algebra operators (e.g. π, σ, etc.).

– S2ROp : S × T → Σ

This is the domain of functions that converse a stream to bags of tuples. For example,
the CQL operators RANGE and SLIDE.

– R2SOp : Σ × T → S
This is the domain of functions that converse finite bags of tuples to a stream.
Such functions in CQL are IStream, DSream and RStream.

Definition 2.1 :
A stream S is a (possibly infinite) bag (multi-sets) of elements 〈s, t〉, where s is a tuple

belonging to the schema of S and t ∈ T is the timestamp of the element.

Definition 2.2 :
A relation R is a mapping from each time instant t ∈ T to a finite but unbounded bag of

tuples, denoted R(t), belonging to the schema of R.

CQL queries are composed from operators belonging to the three classes : Relation-to-
Relation operators (from R2ROp domain), Stream-to-Relation operators (from S2ROp do-
main), and Relation-to-Stream operators (from R2SOp domain).

Let us rebuild the example given in the Introduction, and consider that we look for the average
speed of a car in the past 60 minutes every 10 minutes. In this situation, sliding temporal
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window can be used to extract tuples of latest 60 minutes with the sliding value of 10 minutes.
By using CQL, query sentence can be expressed as follows :

Q1 :
SELECT RStream (AvgSpd(R))
FROM R=Stream_car [RANGE ‘60 minutes’, SLIDE ‘10 minutes’]
WHERE R.ID=mycar

This query is constructed from three classes of operators : RANGE ‘60 minutes’ and SLIDE ‘10 mi-
nutes’ respectively design the window size and moving step of the spatial window. They belong
to the S 2ROp domain. A relational restriction operator restricts tuples to have the ID value
equal to ‘mycar’ after the conversion of stream to relation. An aggregate operator ‘AvgSpd()’
calculates the average speed of ‘mycar’ in the last 60 minutes by using tuples meeting the
previous restriction. These two operators belong to the R2ROp domain. Finally, an RStream
operator converts the content of result relation(object ID and average speed after previous cal-
culation) to stream and transmits it to users. This operator belongs to the R2SOp domain. The
three classes of operators in this example can be expressed by the semantics of CQL.

The semantics of CQL is specified using a meaning functionM [Arasu et Widom (2004)].
The meaning function takes any query Q belonging to CQL and returns an "input-output"
function M~Q�(r, s, t) after computation by Q. M~Q�(r, s, t) takes the streams and relations
referenced in Q and a time instant t (e.g. now) as the input. Then it specifies the output produced
by Q at time instant t.
Let us consisder the example of query Q1 given above. In the first stage, a Stream-to-Relation
conversion is done on the data stream S tream_car. The meaning function of this operation is
the following :

MS 2R~Stream_car [RANGE ‘60 minutes’, SLIDE ‘10 minutes’]�
=

λStream_car.λt.{tp : (tp, t′) ∈ Stream_car ∧ (tlow ≤ t′) ∧ (t′ ≤ thigh)},
where thigh = bt/10 minutesc × 10 minutes, and tlow = max{thigh − 60 minutes, 0}

The expression thigh = bt/10 minutesc×10 minutes computes the largest time instant multiple of
10 minutes and smaller then t. Intuitively, the Stream-to-Relation conversion defines its output
tuples each 10 minutes, only the tuples within the last 60 minutes are contained in the output.
Based on the obtained output relation, the evaluation of the where operation is done according
the the following meaning function :

MR2R~Where R.ID=mycar� =λR.λ ID.λmycar. {r : r ∈ R∧ r.ID = mycar}

The meaning function of the operator AvgSpd(R) is :

MR2R~AvgSpd(R)� =λ R.{Spd : Spd=distance/60 minutes}

In this case, distance represents the path that the monitored car has passed in the last 60 mi-
nutes. It is calculated using the position information that must contain each tuples in the win-
dow.

Finally, operator RStream of R2SOp domain converts its input relation to a stream. Its meaning
function is :
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MR2S [RStream(R)] = λR.λt{〈e, t′〉 : t′ ≤ t ∧ e ∈ R(t)}

3 Adding a spatial window operation to CQL
In this section, we propose an extension to CQL in order to support spatial windowing.

We consider two categories of spatial windows : stationary windows and moving windows.
The spatial coordinates of a stationary window do not change over time. However, the spatial
coordinates of a moving window can change over time. To illustrate this, let’s consider the
following two spatial queries :

• Stationary Spatial Windows
Suppose that we are interested in monitoring the trajectories of fishing ships in the east
China sea. In this case, the interest area could be regarded as a stationary spatial window
and the trajectory of each fishing ship consists in its continuous positions in that area.

• Moving Spatial Windows
Recall the example of section 1 and expand it :“Query the average speed of a vehicle
in the last 50 kms every time after it moves 10 kms”. The spatial window here has the
window size of 50 kms and the sliding step of 10 kms, which indicates that the spatial
window is moving.

Based on this informal description of spatial windows, we extend in 3.1 the CQL data model
and its basic operations presented in section 2. Then, we define in 3.2 the syntax and the
semantics of the spatial window operation.

3.1 Extending the Data model
To be able to deal with spatial data, we add the following domains to CQL data model.

– G : Space domain ;
This is the domain of spatial values. The spatial attributes of spatio-temporal data stream
belong to this domain.

– R = Rt ∪ Rg : Relation domain ;
Rg : G → Σ, this is the domain of functions that map spatial restriction to bags of tuples
(see Definition 3.2).
Rt : T → Σ, this is the domain of functions that map temporal restriction to bags of tuples
(this domain is denoted R in the CQL data model, see section 2).

– S : Stream domain ;
This is the domain of multi-sets over TP ×G × T (see Definition 3.1)

– S2ROp : S × (G ∪ T )→ R ;
This is the domain of windowing functions that converse a spatio-temporal stream to
bags of tuples. This will correspond to the new windowing operators RANGE BY ...
[RATTR SPACE | TIME] and SLIDE BY ... [SATTR SPACE | TIME].

– R2SOp : Σ ×G × T → S ;
This is the domain of functions that converse finite bags of tuples to a spatio-temporal
stream, by adding a spatial stamp and a temporal stamp to each tuple. This will corres-
pond to the new CQL functions IStream, RStream and DStream.
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A Spatio-temporal data stream consists of a stream of tuples, each one is stamped with a
temporal attribute and a spatial attribute (i.e. each tuple have two stamps). Temporal windowing
operators are executed on the basis of the temporal stamps, and spatial windowing operators
are executed according to the spatial stamps. We define the stream and relation model in the
case of spatio-temporal data as follows.

Definition 3.1 :
A stream S in the spatio-temporal case is a (possible infinite) bag of elements 〈s, g, t〉, where s
is a tuple belonging to the schema of S , g ∈ G is a spatial stamp, corresponding for example to
the spatial coordinates of a moving object, and t ∈ T is the temporal stamp of the element.

Definition 3.2 :
A relation R(g,t) is a mapping from each location g ∈ G and each time instant t ∈ T to a finite
but unbounded bag of tuples, belonging to the schema of R. The content of a relation R changes
over space and time.

In a data stream S, we denote by g the spatial stamp, and we denote by t the temporal stamp,
of each tuple. These stamps are necessary for spatial and temporal windowing operations.
Updates from different sources (for instance, moving objects) can flow in separate streams or
may be incorporated into the same stream. When employing a spatial windowing operation,
tuples will be filtered into bags of tuples according to their spatial stamps. When employing
a temporal windowing operation, they will be filtered according to their temporal stamps. A
continuous query on a spatio-temporal stream may be composed of only spatial or temporal
windowing operations. It can also be composed at the same time of both temporal and spatial
windowing operations.

3.2 Semantics and Syntax of Spatial Window

Since a data stream is infinite and the memory size is limited, the windowing approach is
fundamental for the processing of continuous queries in DSMS [Patroumpas et Sellis (2006)].
In CQL syntax [Arasu et al. (2006); Arasu et Widom (2004)], the window operation is denoted
by the keywords RANGE, ROW and SLIDE. In TelegraphCQ [Chandrasekaran et al. (2003)],
the window operation is denoted by the expression RANGE BY ... SLIDE BY and in [Li et al.
(2005); Maier et al. (2005)] the same CQL keywords RANGE, SLIDE are used to denote the
window operation. In this paper, we use a syntax similar to TelegraphCQ to illustrate our spatial
window operations.

The syntax we consider for the windowing operation is as follows :

RANGE BY v1 RATTR SPACE | TIME, SLIDE BY v2 SATTR SPACE | TIME

Where v1 denotes the window size (range attribute) and v2 denotes a step between two succes-
sive windows (slide attribute). The range and the slide attributes may be temporal or spatial
values. This is indicated by the keywords RATTR SPACE and RATTR TIME for the range attri-
bute, and by the keywords SATTR SPACE and SATTR TIME for the slide attribute. The range
and the slide attribute may belong to the same domain (T or G) or not. In the following, we
only consider the case where these two attributes are spatial values (v1 ∈ G and v2 ∈ G).
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3.2.1 Stationary Spatial Window

Let us take the example of the stationary spatial window given above at the beginning
of Section 3. Since we only care about the trajectories of fishing ships in a certain region
(east China sea), we can use a spatial window corresponding to the east China sea in order to
only catch from the stream the tuples of interest. The trajectories consist of sets of position
information. For a given object o1, the following query gives its trajectory in the east China
sea.

Q2 :
SELECT RStream(Stamps(*))
FROM Moving_Objects_Stream

[RANGE BY East_China_Sea RATTR SPACE]
WHERE ID=‘o1’

In this case, Moving_Objects_Stream denotes a spatio-temporal stream. The schema of this
stream is composed of the ID attribute and some other attributes that indicate the speed and
the orientation of the monitored moving objects. Function Stamps(*) returns the spatial and
temporal stamps (g and t) of each tuple, which indicate the trajectory of the observed object.
This query contains a RANGE BY value without a SLIDE BY. It means that the spatial window
is stationary and do not change over time or space.

Formally, the semantics of the spatial window used in query Q2 is specified by the follo-
wing meaning function :

MS 2R~Moving_Objects_Stream[RANGE BY East_China_Sea RATTR SPACE]�
=

λ Moving_Objects_Stream. λ East_China_S ea.
{(tp, g, t) : (tp, g, t) ∈ Moving_Objects_Stream ∧ (g inside East_China_S ea)}

While processing query Q2, only the tuples within the spatial range East_China_Sea are pre-
served in the window. The content of the window is updated when a new tuple comes in. The
fact that a tuple is qualified for the window or not is determined by the spatial operator inside,
which determines if the spatial location g (spatial stamp) is inside the spatial area denoted
East_China_Sea.

After the Stream-to-Relation operation (windowing operation), further processing on the
window contents will be done. In this example, the Where clause and the Stamps operator
will be performed. The meaning function of the where clause can be deduced easily from the
semantics of CQL presented in section 2. The meaning function of the Stamps operator is as
follows.

MR2R~Stamps(R)� = λR.{(r.g, r.t) : r ∈ R}
At the last stage, the result of query Q2 is returned to the user in a stream format. This is
done by the RStream operation. For each tuple added to its input relation, the RStream operator
will re-evaluate completely its output and return all the tuples composing the output stream.
Formally, the semantics of RStream is as follows :
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F. 1 – Stream-to-Relation operation

F. 2 – Relation-to-Relation opertation for Window Content

MR2S ~RStream(R)� = λR.{e : e ∈ R(g, t)}

Figure 1 shows an example of static spatial window over a spatio-temporal stream (an
S2ROp). Three moving objects (o1, o2 and o3) are observed. Each new tuple represents an
observation and contains the ID of the observed object, its velocity and its orientation. The
temporal stamp of the tuple indicates the instant of the observation, and the spatial stamp indi-
cates the location of the object at that instant. The trajectories shown in figure 1 represent the
successive locations of the monitored objects. Figure 1.a represents the observations received
up to now in the stream, and figure 1.b shows the subset of observations that are located inside
the spatial window area East_China_Sea.

Figure 2 shows the result of the R2ROp filtering operation. The Where clause restricts the
observations to only those corresponding to object o1.

Figure 3 illustrates the conversion from relation to stream by R2SOp. In this example,
RStream will output all the tuples of its input relation. In the case of an IStream operation, the
result relation will be compared to the previous one and only the new tuples will compose the
output.

F. 3 – Relation-to-Stream opertation for Window Content
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F. 4 – Stream-to-Relation operation for Moving Window

3.2.2 Moving Spatial Window

Let us take the example of the moving spatial window given at the beginning of Section 3.
We add additional restrictions to this example, supposing that the car moves in a straight line
and keeps the same direction. This query may be expressed as follows :

Q3 :
SELECT RStream (mycar,AvgSpd(R))
FROM R=Stream_mycar

[RANGE BY ’50 km’ RATTR SPACE, SLIDE BY ’10 km’ SATTR SPACE]

The spatial windowing operation is done by the Stream-to-Relation operation RANGE BY . . .
SLIDE BY. The meaning function of this operation is as follows.

MS 2R~Stream_car [RANGE BY ‘50 kms’ RATTR SPACE, SLIDE BY ‘10 kms SATTR SPACE’]�
=

λStream_car.λt. {(tp, g, t′) : (tp, g, t′) ∈ Stream_car ∧ g ≤ dhigh ∧ g ≥ dlow},
where dhigh = bdt/10 kmsc × 10 kms, dt =

∑t
i=1(gi − gi−1),

and dlow = max{dhigh − 50 kms, 0}

The tuples in the relation are updated according to the parameter RANGE BY and SLIDE BY.
Every time the monitored car moves 10 km ahead, the output result is re-evaluation and only
the tuples having a spatial stamp g located inside the last 50 kms will be preserved in the
window.

Figure 4 illustrates the moving window operation in this example. The monitored car moves
along a road. At time T1, the car completed the first 50 kms and the tuples received in the stream
up to T1 compose the first window. At time instant T2, the query window moves 10 kms ahead,
and only the tuples corresponding to the last 50 kms are kept in the window. Note that the time
needed by the car to cross the "slide by" distance is not constant : T3 − T2 my be not equal to
T2 − T1.

Similarly to query Q1, the Relation-to-Relation operator AvgSpd(R) and the Relation-to-
Stream operator RStream are used here to calculate the average speed and to output the the
result in a stream format. Their meaning functions can be deduced easily from the example of
Q1.
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4 Conlusion
The purpose of this paper was to define the semantics and general language syntax for a

spatial windowing operation over data streams. Spatial windowing operation is useful for the
querying of spatio-temporal data streams. Based on the continuous query language CQL, we
proposed a syntax to express spatial windows and defined the semantics of this operation. this
is the main contribution of this paper. Next steps will be the implementation of the windowing
operation presented in this paper, its performance analysis on a real world application, and the
analysis of more complex spatial windowing cases.
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Summary
In DSMS (Data Stream Management Systems), input data is infinite and the queries over

it are active all the time. In order to cope with these features, Time-based window is widely
used to convert infinite data stream into bounded relations. But, this technique is not adequate
for many emerging applications, especially for location service applications. Many queries
can not be processed by the Time-based windows or may be more efficient using Space-based
windows (Spatial windows). In this paper, we analyze the necessity of a spatial windowing
over spatio-temporal data streams and, based on the DSMS query language CQL (Continuous
Query Language), we propose a syntax and semantics for spatial windows.


