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Résumé. Les arbres de décision sont largement utilisés pour générer des classi-
ficateurs à partir d’un ensemble de données. Le processus de construction est une
partitionnement récursif de l’ensemble d’apprentissage. Dans ce contexte, les at-
tributs continus son discrétisés. Il s’agit alors, pour chaque variable à discrétiser
de trouver l’ensemble des points de coupure. Dans ce papier nous montrons que
la recherche des ces points de coupure par une méthode de ré-échantillonnage,
comme le BOOTSTRAP conduit à des meilleurs résultats. Nous avons testé cette
approche avec les méthodes principales de discrétisation comme MDLPC, FUS-
BIN, FUSINTER, CONTRAST, Chi-Merge et les résultats sont systématique-
ment meilleurs en utilisant le bootstrap. Nous exposons ces principaux résultats
et ouvrons de nouvelles pistes pour la construction d’arbres de décision.

1 Introduction
In the process of knowledge discovery from a raw data set, we first preprocess the data to

remove noise and handle missing data fields. Then data transformation, such as the reduction
of the number of variables and the discretization of attributes defined on a continuous do-
main, is often performed, which is later provided to a data mining algorithm. One of the most
important and complex issues in data mining is related to the transformation process such as
discretization which consists of converting numerical data into symbolic or discrete form. Ku-
siak [9] emphasized that the quality of knowledge discovery from a data set can be enhanced
by discretization because many of the knowledge discovery techniques are very sensitive to
size of data in terms of complexity. Thus, the choice of discretization technique has important
consequences on the induction model used such as CART [2].

In addition, numerical value ranges are not easy enough for evaluation functions to handle
in a nominal domain ; for example, the original versions of the popular machine learning al-
gorithms ID3 could be used only for categorical data and Quinlan [11] had to transform conti-
nuous ones into discrete values in his C4.5 decision tree learner. Many real-world classification
algorithms are hard to solve unless the continuous attributes are discretized. It is hard to de-
termine the intervals for a discretization of numerical attributes that has an infinite number
of candidates. A simple discretization procedure divides the range of a continuous variable
into equal-width intervals or equal-frequency intervals. Fayyad et al. [6] suggested a class de-
pendent algorithm which reduce the number of attributed values maintaining the relationship
between the class and attribute values. Liu et al. [10] classified discretization methods from



five different viewpoints : supervised vs. unsupervised, static vs dynamic, global vs local, top-
down vs bottom-up, and direct vs incremental. Unsupervised methods do not make use of class
information in the discretization process while supervised methods utilize it. If no class infor-
mation is available, unsupervised discretization is the only method possible. Dynamic methods
perform discretization of continuous values during classification process, while static methods
preprocess discretization before classification process. Local methods use the local region of
the instance space while global methods use the entire space. Top-down methods as FUSBIN,
MDLPC and CONTRAST [5-7] start with one interval and split intervals in the process of
discretization and are based mostly on binarization within a subset of training data. While,
bottom-up methods like FUSINTER [5] and Chi-Merge [4] split completely all the continuous
values of the attribute and merge intervals in the process of discretization. In this article, we
focus on these two types of strategies in determining better discretization points and providing
comparisons in terms of quality and prediction rates [1].

Our goal is find a way to produce better discretization points. Previously, various studies
have been done to estimate the discretization points from samples. Significantly, in [1], a set
of learning samples are used to approximate the best discretization points of the whole popu-
lation, but also argue that the learning sample is an approximation of the whole population,
so the optimal solution built on a single sample set is not necessarily the global one. This in-
terpretation leads us to use a resampling approach [3] to determine better distributions of the
discretization points, where each point has a probability to be the exact discretization point
towards the whole population. By doing so, we attempt to improve on the quality of discreti-
zation and better estimation of the discretization points of the entire population, thus, treating
the discretization problem in the statistical area with new results. In this paper, we show that
by performing resampling using bootstrap [8] we determine a better estimate of discretization
point distribution over the entire population, which is shown improving the prediction rate of
the achieved discretization. Moreover, we further improve on the quality and mean predic-
tion rate obtained from resampling by applying a discretization point selection protocol. This
protocol selects the cut points according to some criteria (e.g. entropy) from the resampling
bootstrap frequency point distribution obtained from resampling n times and improves further
on the prediction rate. Furthermore, we compare the prediction rates of different top-down and
bottom-up strategies by using resampling. In section 2, we lay out the framework for discreti-
zation and define the data sets used in our calculations. In 3, we give an illustration of our work
and results by applying the methodology to an example data set and then to a much more de-
tailed, Breiman’s wave dataset [2]. We also compare several top-down and bottom-up strategy
based criteria as in [1], such as Chi-merge based on χ2 Statistical Law, FUSBIN and FUSIN-
TER based on the uncertainty principle, MDLPC based on information gain and CONTRAST
that takes into account the homogeneity of the classes and also the point density. In the end we
conclude with observations, deductions and proposals for future work.

2 Definitions and Notations
Framework and Formulation : Let X(.) be an attribute value on the real line <. For each

example ω of a learning set Ω, X(ω) is the value taken by the attribute X(.) at ω. The attribute
C(.) is called the endogenous variable or class and is usually symbolic and if an example
belongs to a class c, we have C(ω) = c. We also suppose that C(ω) is known for all ω of



the learning sample set Ω. Thus, we try to build a model, denoted by Φ, such that ideally we
have : C(.) = Φ(X1(.), ..., Xp(.))). The discretization of X(.) consists in splitting the domain
Dx of continuous attribute X(.), into k intervals Ij , j = 1, ...., k, with k ≥ 1. We denote
Ij = [dj−1, dj ] with the d′js called the discretization points which, are determined by taking
into account the particular attribute C(.).

Prediction Rate : We measure the quality of discretization by taking into account the
prediction rate, which is calculated as follows :

τj =
card{ω∈Ωt/Ĉ(ω)=C(ω)}

card{Ωt}

We denote by τjs the good prediction rate resulting from the discretization of Xj obtained
by applying the method q on the sample Ωs or τjt by applying on the test sample Ωt.

Data Set : In this article, we use two different data sets. First, we use a small data set
of 110 individuals corresponding to a two-class problem shown in figure 1. The second large
data set used for comparisons and results is the Breiman’s waveform dataset [2] having 4590
individuals and 21 attributes X(.), that correspond to a three class problem.

FIG. 1 – Runs Ri and boundary points dj for a sample of 2 classes "x" and "o".

3 Results and Comparisons

3.1 Illustration using Example Data of Figure 1
Consider a data set of figure 1 of 110 individuals having two classes. We perform FUSBIN

discretization with λ = 0.91 on each random and bootstrap sample of size 30 and generate 500
samples. Figure 2 gives us the discretization point distribution from 500 bootstrap and random
samples. We see that the discretization achieved from bootstrap is seem to be a little more
generalized and well defined over the four small intervals ; 4.5 to 6, 6.5 to 9, 12.5 to 14.5 and
22.5 to 27. While, in random sampling, the point distribution does seem to be poorly defined
in a large region of values from 18 to 27. We further argue that this difference increases as
the data set becomes larger which we shall see in with Breiman’s data set. We also calculated
the mean prediction rate i.e. µv = 1

100

∑100
j=1 τv

j by estimating the mean values of each of
the above 500 samples. We found the rates of bootstrap and random sampling as 22 and 21.1
respectively showing that the bootstrap samples performed better, with this difference further
increasing with added complexity and size of the population as shown in the next subsection.



FIG. 2 – Discretization point distribution from 500 random and bootstrap samples.

Next, we improve the quality and prediction rate by introducing a notion of discretization
point selection protocol. This protocol selects the discretization points from a given point fre-
quency distribution, having higher probability of occurrence, and splits on those points if a
certain criterion (e.g. entropy) is met. To illustrate, from figure 2 we see that the highest pro-
bable point is 25.5 ; so we take that point and split the population if a certain criterion (FUSBIN
entropy) is met. We continue our process on the obtained splits in a top-down manner, until the
criterion allows further splitting or all the points from the frequency distribution have been al-
ready chosen. We applied this protocol on both the bootstrap and random samples and it selec-
ted 6 out of 30 and 8 out of 36 discretization points from both the frequency point distributions
respectively. We calculated the prediction rate as 22 for bootstrap and 19.5 for random sam-
pling, demonstrating the better quality of discretization achieved by selection from bootstrap.
We further argue that sampling gives us a lot of variation in prediction rates i.e. for bootstrap
samples the prediction rate varies from 17 to 26 and thus, it is difficult to obtain a generalized
estimate of the discretization points of original population. Here, our protocol achieves well
defined discretization points and thus, give better estimate of the original discretization points.

3.2 Analysis and Results using Breiman’s Waveform Data

For this section we use the Breiman’s waves data set. We generated 100 bootstrap and
random samples Ωb and Ωs ; s = 1,...,100 of 300 points each and Ωt a test sample of 4590
points. For any ω taken from the sample, we have a vector of 21 components denoted as
(X1(ω), ..., X21(ω)) and a label C(ω). We repeated the process described above with the
waveform data set. We took each variable from the data set and generated bootstrap and ran-
dom samples as above. Then, we performed FUSBIN on both the 100 bootstrap and random
samples and obtained mean prediction rates of 196 and 180 respectively, showing a better per-
formance with bootstrap sampling. Then, we applied our discretization point selection protocol
on the point distribution obtained and selected the best points (using FUSBIN criterion) from
both sampling methods. We found a prediction rate of 309 for points obtained from bootstrap
distribution and a lesser value of 271 for random sampling showing a significant amount of
improvement in the prediction rate by using resampling (or bootstrapping).

Finally we compare FUSINTER, FUSBIN, CONTRAST, MDLPC and Chi-Merge by re-
sampling. This is done in two by two according to the following procedure ; Let u and v be the
two methods to compare. First, we obtain discretization points from 100 bootstrap samples and
create a frequency point distribution for each variable. Then, using our selection protocol, we



Diff in Mean P-Rate MDLPC ChiMerge CONTRAST FUSBIN FUSINTER
MDLPC X 52.7 10.6 6.9 7.3
ChiMerge X -42.1 -45 -45.4
CONTRAST X -3.7 -3.3
FUSBIN X 0.4
FUSINTER X

TAB. 1 – Computed Results : Difference in Mean Prediction-Rate µuv

select discretization points from those point distribution frequencies, by applying the criterion
of the respective method (from which the initial discretization points were obtained). We then
compute prediction rates τjt of the selected discretization points from each method in relation
to the whole test sample Ωt. We form the difference Γuv of the two prediction rates obtained
and conclude that u is better than v if Γuv is significantly superior to 0. Table 1 presents the
comparison in terms of the difference of the means µuv of prediction rates from all the va-
riables. Positive values of µuv indicate that the method in the row is better than the method
in the column. Aside from Chi-Merge method whose results are relatively poor, all the other
methods have relatively smaller differences. However, among those methods MDLPC seemed
to be the best with a much lesser time complexity. FUSBIN and FUSINTER also had a smaller
time complexity in comparison to CONTRAST which had a quadratic complexity which had
to be taken into account when the number of examples becomes too high.

4 Conclusion
The learning sample is an approximation of the whole population, so the optimal discreti-

zation built on a single sample set is not necessarily the global optimal one. Resampling gives
a better estimate of the discretization point distribution in terms of achieving a well-defined
distribution. Applying our discretization point selection protocol on the frequency distribution
achieved by resampling, significantly improves the quality of discretization and prediction rate
and thus, nearing to a global optimal solution. Moreover, the same protocol when applied to
the frequency point distribution of random samples, achieved much lesser improvements in the
prediction rate as compared to bootstrap. We applied our protocol (after resampling) to various
methods. Except for Chi-Merge, all the other methods provide small variations in terms of
prediction rates. MDLPC performs the best and FUSBIN achieves the best time complexity,
which is a key point when dealing with a lot of examples. As future work, we shall apply this
discretization approach in the context of decision trees, to see whether it improves the global
performance or not. But, at the same time carrying out this approach needs to answer some
other questions such as time complexity. This may lead also to apply the potential discretiza-
tion points in the context of fuzzy or soft discretization [12] in decision trees.
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Summary
Decision tree induction has been widely used to generate classifiers from training data

through a process of recursively splitting the data space. In the case of training on continuous-
valued data, the associated attributes must be discretized in advance or during the learning
process. We generate discretization points by performing resampling on the original data set
and then produce a selection of discretization points by using our resampling selection proto-
col. We also generate discretization points using ordinary random sampling and we calculate
the prediction rate of the discretization points obtained using both sampling and resampling
techniques. This process is repeated using the different discretization strategies mentioned
above. Thus, the goal of this paper is to observe whether the resampling technique can lead to
better discretization points, which opens up a new paradigm to construction of decision trees.


