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Abstract. An approach is presented to deal with risk in multiarmed bandit prob-

lems. Specifically, the well known exploration-exploitation dilemma is solved

from the point of view of maximizing an utility function which measures the

decision maker’s attitude towards risk and uncertain outcomes. A link with

the preference theory is thus established. Simulations results are provided for

in order to support the main ideas and to compare the approach with existing

methods, with emphasis on the short term (small sample size) behavior of the

proposed method.

1 Introduction

A “multiarmed bandit problem” can be formulated as follows: given for t = 1, 2 . . . T
a sequence of K-dimensional random vectors r(t) = [r1(t) . . . rK(t)], called rewards and

whose probability distribution is not known a priori, the objective is to determine on line a se-

quence of actions a(t) (also called strategy or policy) where each a(t) is a discrete random vari-

able defined on the set {1, 2, . . . ,K}, that maximizes the expectation of the cumulative gain,

G(T ) = E[
∑T

t=1 ra(t)(t)], by observing for each t one (and only one) realization ra(t)(t)
1.

The main difficulty of the problem consists in the fact that the objective function is not known

in advance. In fact, if the means µa(t) = E[ra(t)] were available, the best strategy would be

obviously to play the action a∗(t) = arg maxa µa(t). Hence, at each time instant t, the choice

of an action is the result of a compromise trying to estimate (learn) the objective function (by

exploring the actions whose mean rewards have not yet been determined with enough confi-

dence) and, at the same time, to maximize it (by exploiting those which, based on the preceding

observations, are estimated to provide for the best rewards).

This represents a prototype decision problem where the decision maker is faced to the so called

exploration/exploitation dilemma: while pursuing the second objective (exploitation) by using,

unavoidably, a suboptimal strategy, he might incur losses that could be avoided if better esti-

mates of the rewards means were available; on the contrary, while pursuing the first objective

(exploration) by using some other suboptimal strategy, he might renounce to play the supposed

1. Italic characters like r and a represent realizations of the corresponding random variables which are denoted by

using roman characters like r and a.
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best action found so far.

This is a problem that, along with many variants, can model basic decision tasks commonly

encountered in resources allocation and marketing. A very popular example is borrowed from

the internet advertising community: the decision maker must periodically display one ad on a

web page (the action) by choosing it from a known set of ads, the objective being the maximiza-

tion of the number of visitors clicks on the displayed ad (the rewards), which in turn translates

into the maximization of the decision maker’s revenues. The exploration-exploitation dilemma

comes from the fact that users interests are not known in advance and thus, in order to judge

which ad attracts the largest number of clicks, each ad must be displayed (tested) a certain

number of times.

In more realistic scenarios, before taking a decision the decision maker could have access to

some kind of side information (often called context) such as, in the above example, a profile

of the user currently visiting the web page, or a list of keywords extracted from the web page.

How this information could be used in order to better choose the ad to display represents an

extension of the bandit problem which is usually called a “contextual bandit problem”. It can

be formalized by introducing an additional sequence of random quantities, the contexts x(t),
and by assuming that a correlation exists between the contexts and the rewards r(t). The ex-

ploration issue consists thus in estimating this correlation in order to better predict which is the

best action to perform conditionally on a given context.

In this paper an approach is proposed to deal with the exploration-exploitation dilemma in

multiarmed bandit problems. Its extension to the more interesting contextual bandit problems

is not pursued. However, it should be clear to the readers interested in such an extension that

the same line of reasoning could be applied without changes also in the presence of a context,

the main difficulties being more of technical rather than conceptual nature (these difficulties

arise, in particular, when dealing with huge data sets requiring simultaneously the application

of classification techniques).

Moreover, here the focus is on the classic framework, in which the rewards r(t) are modeled as

independent and identically distributed (IID) random variables, independent from the decision

maker strategy a(t). Besides these assumptions, only bounded rewards are considered, that is

on the case ra(t) ∈ [0, 1] without loss of generality (this assumption is not really necessary for

the method to work, but it is stated for the sake of comparing it with two other existing ones).

2 Relation to the state of the art

The literature on bandit problems since the seminal work of Robbins (1952) is abundant.

The main recent contributions to the solution of multiarmed bandit problem with IID and

bounded rewards, notably the strategies UCB1 (Auer et al., 2002) and UCB-V (Audibert et al.,

2007), guarantee that the expected cumulative gain G(T ) is lower bounded by a function of

the form G∗(T ) − c log T , where c is some constant and G∗(T ) is the maximum value of the

objective function. As shown in Lai and Robbins (1985), the logarithmic term c log T (called

regret) cannot be improved further in the following sense: any possible strategy suffers a re-

gret which is lower bounded by a function O(log T ). From another point of view, the strategy

SUCCESSIVEELIMINATION (Even-Dar et al., 2006) has been proved to find the optimal action
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FIG. 1 – An example of lower bounds on the average expected cumulative gain for the algo-

rithms UCB1 (solid line) and UCB-V (dashed line). These bounds apply to the case where

rewards are distributed as described in section §4 (the second example with K = 5, the re-

wards have support [0, 1] and G∗(T )/T = 0.6).

a∗ with an arbitrary prespecified probability in a finite number of steps.

All these strategies have been derived by handling (with considerable mathematical insight)

concentration inequalities for sums of random variables. More precisely, such inequalities

state the following: if at time t the action a has been played na(t) times, then its empirical

mean, defined by µ̂a(t) =
∑t

τ=1 1(a(τ) = a)ra(τ)/na(t), is within a distance ε from the true

mean µa with a probability greater or equal than a certain threshold value 1−α. The functional

form of ε and α, depends on the kind of inequality used; however it is generally true that if α
is kept fixed, then ε decreases for increasing na, while if ε is kept fixed, then α increases for

increasing na. Hence, by playing action a once more one is sure to increase the confidence

with which the true mean µa is known. The art of strategy design consists thus in finding the

best trade off between two competing objectives: sampling in order to maximize the gain and

sampling in order to increase the confidence on rewards means.

The regret of the strategies mentioned above has been proved to be very close to the opti-

mal for arbitrary rewards distributions, because they rely on concentration inequalities that

are valid for arbitrary probability distributions. This is, however, also the main drawback of

these approaches, because the confidence regions derived from such inequalities may be, in

some practical case, very conservative, resulting in large constants in front of the log T fac-

tor of the regret term. As a consequence, the lower bounds on the gain become useful only

in the long term, that is the quantity G∗(T ) − c log T is positive only for a sufficiently large

time horizon T . As an example, Figure 1 plots the average lower bounds (that is the quantity

(G∗(T )−c log T )/T ) for the algorithms UCB1 and UCB-V in the particular case when K = 5
and the rewards are distributed as described in section §4, where the results of some numerical

simulations will be presented. Clearly, for T < 200 nothing can be said.

The main criticism that can be addressed to the current approaches to solve bandit problems

is to concentrate all the effort in upper bounding the regret of an algorithm as tightly as possi-

ble, which in fact leaves no room to account for user’s preferences and constraints. Consider, in
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particular, what happens during the first period following the start of a bandit algorithm, where

exploration is the predominant activity. The question becomes when and how to switch from

exploration to exploitation given the information provided by only a finite number of samples.

The answer clearly depends on many factors, the most influential, maybe, being: the available

time horizon (that is how many more samples can be drawn) and the decision maker’s attitude

towards uncertainty and risky choices.

The objective of this paper is thus to propose a strategy design procedure that allows such pref-

erences and constraints to have an impact on algorithm behaviour and to be taken into account

somehow automatically. In particular the exploration-exploitation dilemma will be reformu-

lated as the problem of maximizing an utility function which quantifies the decision maker’s

preferences over a set of appropriate confidence intervals. More precisely, each alternative

confidence interval is associated to an estimation of the future gain that could be obtained by

playing a certain strategy. The role of the utility function is thus to measure the attitude towards

risk and uncertainty, attitude that drives the choice of one confidence interval. A specific utility

function which is designed to express aversion to risky strategies is provided for. The related

algorithm will be called LCB1. The results of some numerical simulations are presented in

order to compare the short term (small time horizon T ) performance of this new algorithm

with that of the algorithms UCB1 and UCB-V cited above.

3 Description of the approach

Pretend for a while that the rewards probability distributions are known. It is possible

to view the problem of maximizing the gain G(T ) as a finite horizon planning problem in a

degenerate markov decision process (MDP), that is the problem of determining the optimal

strategy (often called policy) in a MDP consisting of only one deterministic state 2. It is known

(Puterman, 1987) that the optimal strategy can be found by a backward induction algorithm.

If it is applied here, under the independence assumptions stated in the introduction, it simply

amounts to find for each time instant t the functions Q∗(a, t) (called optimal action-value

functions in the MDP jargon) that solve

Q∗(a, t) = E[ra(t)(t) + max
b

Q∗(b, t + 1) ‖ a(t) = a] Q∗(a, T + 1) = 0 (1)

The optimal action-value function Q∗(a, t) equals the maximum expected gain that can be ob-

tained in the interval [t, T ], conditioned on the fact that at time t action a is played. The above

formula can thus be read as follows: in order to maximize the future gain on the interval [t, T ],
it is sufficient to play at time t the action maximizing the expected reward E[ra(t)] and then to

follow the best strategy in the interval [t + 1, T ]. In other words, the best strategy is to play

with probability one the action a∗(t) = arg maxa Q∗(a, t), for all t ∈ [1, T ]. In this case,

the solution of the backward induction gives obviously Q∗(a, t) = µa + (T − t)µ∗, where

µ∗ = maxa µa, and confirms the above interpretation.

2. In a MDP there is a stochastic process x(t) defined by the transition probabilities P[x(t + 1) = w‖x(t) =
z, a(t) = a] (giving the probability of reaching one possible next state given the current state and action) and the

vector of rewards depend on the current state through the conditional probability P[r(t) = r‖x(t) = z]. The IID

framework considered here is thus obtained when the only allowed transition is form one deterministic state x(t) ≡ z

to itself, irrespective of which action is taken.



S. Perabò et F. Clerot

Now, assume that the decision maker is allowed to play a randomized strategy, that is the

action a(t) is drawn from a random variable taking values in the set {1, 2, . . . ,K}. Define

pa(t) = P[a(t) = a] to be the probability of taking action a at time t, and the quantity

V ∗(t, p(t)) =
∑

a

Q∗(a, t)P[a(t) = a] =
∑

a

µapa(t) + (T − t)µ∗ (2)

where p(t) = [p1(t) . . . pK(t)]. Clearly V ∗(t, p(t)) represents the maximum expected gain

that can be obtained in the interval [t, T ] whenever a randomized strategy is played at time

t. Moreover, V ∗(t, p(t)) ≤ maxa Q∗(a, t) for any choice of p(t), the equality holding when

pa∗(t)(t) = 1 (case in which V ∗(t, p(t)) = Q∗(a∗(t), t), quantity that it is often called optimal

value function). Hence, in a planning problem (that is when rewards distribution are known)

there is no advantage in adopting a randomized strategy with respect to the optimal determin-

istic one obtained by the backward induction outlined above.

Consider then the case of no prior knowledge about the rewards distribution. Neither the

functions Q∗(a, t) nor V ∗(t, p(t)) can be evaluated because the means µa are not known.

However, suppose that for a given α > 0, and for each t, a 100(1 − α)% confidence interval

for V ∗(t, p(t)), say

C(t, p(t)) =
[

V ∗

lo(t, p(t)), V ∗

up(t, p(t))
]

(3)

can be computed based on the set of observation {ra(s)(s)} on the interval [1, t − 1]. Re-

call the meaning of a confidence interval: it is an interval whose extremes are functions of

the empirical data and that contains with probability (1 − α) the true value. By varying p(t),
different confidence intervals are obtained. Hence it is reasonable to define the optimal strat-

egy p∗(t) as the strategy such that the confidence interval C(t, p∗(t)) is preferred over all the

intervals C(t, p(t)) obtained for p(t) 6= p∗(t). For example, an interval [a + ∆a, b + ∆b]
should be preferred over [a, b] whenever ∆a,∆b > 0 because the maximum expected gain of

the corresponding strategy is likely to be larger. It is thus necessary to show how these inter-

vals can be constructed in practice and to define a preference relation over confidence intervals.

Concerning the first issue, here an heuristic approach is adopted. It is known that, as

na(t) → ∞, the empirical means µ̂a(t) =
∑t

τ=1 1(a(τ) = a)ra(τ)/na(t) tend to be dis-

tributed as a N (µa, σ2
a/na(t)) random variable, that is a gaussian whose mean and variance

are respectively the true mean µa and the true variance σ2
a divided by the number of sam-

ples. The true variance can also be replaced by the unbiased empirical variance σ̂2
a(t) =

∑t

τ=1 1(a(τ) = a)(ra(τ) − µ̂a(t))2/(na(t) − 1). Even though these are asymptotic re-

sults, pretend that they represent acceptable approximations also for a finite number of samples

na(t). Hence, V ∗(t, p(t)) in (2) is approximately distributed as N (µ̂(t), σ̂2(t)) with

µ̂(t) =
∑

a

µ̂a(t)pa(t) + (T − t)µ̂∗(t) σ̂2(t) =
∑

a

σ̂2
a(t)

na(t)
pa(t)2 + (T − t)

σ̂2
∗
(t)

n∗(t)
(4)

and where µ̂∗(t) is the largest empirical mean, and σ̂2
∗
(t) and n∗(t) are the empirical variance

and number of samples of the corresponding action. For a numerical example see Figure 2.

The extremes of a 100(1 − α)% confidence interval are thus

V ∗

lo(t, p(t)) = µ̂(t) − fσ̂(t) V ∗

up(t, p(t)) = µ̂(t) + fσ̂(t) (5)
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FIG. 2 – In the plot, the crosses indicate the couples (µ̂(t)), σ̂(t)) obtained by varying

each action selection probability pa(t) in the range [0, 1] in steps of 0.1 under the con-

straint
∑

a pa(t) = 1 and by using the following data: K = 3, [µ̂a(t)] = [0.5, 0.4, 0.3],

[σ̂a(t)/
√

na(t)] = [0.2, 0.15, 0.1] and (T − t) = 100. The circles represent the values ob-

tained when pa(t) = 1 for some a ∈ {1, 2, 3}.

where σ̂(t) =
√

σ̂2(t) and f is the 100(1 − α)% quantile of a standard gaussian.

Next, a preference relation is needed that is able to represent the decision maker’s attitude

towards the uncertainty represented by the fact that, for a given strategy, the corresponding gain

can not be evaluated exactly. A preference relation is a binary relation that will be denoted by

�, so that if interval D is preferred over interval C, one writes D � C. The classical result is

that, under appropriate assumptions, there exists a quantitative representation of a preference

relation in terms of a real utility function u defined on the set of intervals, say I, such that

D � C ⇐⇒ u(D) > u(C) (6)

Besides the technical assumptions which are necessary to account for the fact that I is un-

countable (see for example Fishburn (1999) for details), it can be proved that the above rep-

resentation holds if and only if the relation � on I is a weak order. This means that � is

transitive (E � D and D � C ⇒ E � C), irreflexive (C � C never holds) and that the

relation ∼ (defined by C ∼ D if neither C � D nor D � C) is also transitive.

In the so called normative approach to preference modelling (Tsoukiàs, 2008), that will be

followed here, the existence of a preference relation with the above properties is postulated (a

decision maker adhering to such a relation is termed rational). This amounts, in practice, to set

the utility function to an appropriate form, depending on the application at hand, by choosing

perhaps in a set of many possible good choices. In other words, the existence of an optimal

utility function is not stated here: different forms might be reasonable and behave equally well

in practice. In this paper, the following very simple utility function is proposed and tested by

numerical simulation:

u(t, p(t)) = exp

(

µ̂(t) − σ̂(t)

T − t + 1

)

(7)
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a α β µa σa

1 0.333 0.222 0.600 0.393

2 1.200 0.800 0.600 0.283

3 17.000 12.000 0.586 0.090

4 0.222 0.333 0.400 0.393

5 2.000 18.000 0.100 0.066

TAB. 1 – The parameters of the beta distributions that have been used to model the rewards

outcomes in the numerical simulations, along with the corresponding expectations and stan-

dard deviations

Note that it is a parametric function of the confidence intervals for V ∗(t, p(t)) through µ̂(t)
and σ̂(t) which are the quantities used to define the interval itself.

The rationale behind this choice is the following. The tangent at a point on a level curve of u is

equal to 1 everywhere in the plane (µ̂, σ̂). Hence, the decision maker is indifferent between a

confidence interval specified by the couple (µ̂, σ̂) and another specified by (µ̂+∆µ̂, σ̂ +∆σ̂),
where ∆µ̂ and ∆σ̂ are two increments related by ∆σ̂ = ∆µ̂. Since the lower bounds of the

corresponding confidence intervals are equal, µ̂− σ̂ = (µ̂ + ∆µ̂)− (σ̂ + ∆σ̂), this means that

the decision maker accepts to trade one strategy with another (in other words, they have the

same utility) only if the confidence intervals share the same lower bound. Higher lower bounds

are preferred while upper bounds are ignored, thus indicating aversion to risky strategies.

In conclusion, the proposed strategy, that will be called LCB1 (for “Lower Confidence

Bound”), is the following:

1. for 1 ≤ t ≤ 2K sample twice each action, so that the unbiased empirical variances can

be set to their initial value;

2. for each time t > 2K choose the action a with probability p∗a(t), where p∗(t) =
arg maxp u(t, p), and u(t, p) is the utility function in (7).

4 Some numerical simulations

In this section the results of two numerical simulations are provided for. Five rewards

distributions are considered, that belong to the family of beta distributions Be(α, β). The

parameters and plots of the corresponding probability densities are shown in Table 1 and Figure

3 respectively. The time horizon is T = 200 in both tests and f = 1.96 (which gives a 95%
confidence interval for a standard gaussian random variable).

In the first test K = 3, corresponding to the rewards distributions 1 to 3. Figure 4 show plots

of the probability distribution FG(t)(g) = P[G(t) ≤ g] of the gain obtained after t = 50, 100,

150 and 200 steps by the algorithms UCB1 (blue line), UCB-V (black line) and the proposed

algorithm LCB1 (red line). These distributions have been obtained by running these algorithms

over 1000 different realizations of the rewards sequences. There are no remarkable differences

between the three algorithms. In fact reward means are comparable and the risk reduction that

could be obtained by sampling action 3 more often is counterbalanced by a reduction of the
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FIG. 3 – Plots of the rewards probability densities, on the left for a = 1, 2, 3 (blue, green and

red lines respectively) and on the right for a = 4, 5 (cyan and magenta lines respectively).

expected gain.

In the second test K = 5 and actions 4 and 5 have been added to actions 1, 2 and 3 of the first

test. The test has been conducted in the same way as described above. Plots of the probability

distribution of the gain are shown in Figure 5. Contrary to the case considered in the first test,

here the performance of LCB1 is superior. In fact, as it can be checked in Figure 6, LCB1 gets

rid of the inferior actions 4 and 5 faster than the other two algorithms.

5 Discussion

An approach for the solution of the multiarmed bandit problem in the IID framework has

been proposed. Contrary to well known existing methods, the approach is somewhat heuristic

in that it is not based on rigorous convergence proofs. However, the numerical simulations

show a very good performance on the short term, at least in the cases considered, thus motivat-

ing further analyses. In practical applications, the short term behavior is particular important

because the assumption of identical distribution in time might be violated in the long term.

Two margins of improvements is worth indicating. On one hand, the way confidence intervals

are computed: better established finite sample statistical techniques such as the bootstrap, for

example, might provide for more correct and even asymmetric intervals. On the other, utility

functions might exist that would represent different balances between risk avoiding and risk

seeking behaviors, that is different ways of managing the exploration-exploitation dilemma.

The main contribution of this paper, however, is the link established with the theory of

preferences which has been and currently is a large research subfield in economics. In fact, the

approach presented here shares many similarities with very basic portfolio selection methods

(Markowitz, 1952) and the possibility of introducing more advanced techniques (the so called

risk-sensitive or risk-averse) in the context of bandit problems should be considered for future

investigations.

It is also worth mentioning the possibility of extending the IID framework to allow discounted

rewards, that is to solve an exploration-exploitation dilemma where, at each time t, a time de-
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FIG. 4 – The results of the first test (K = 3, rewards distributions 1 to 3): distribution of the

gain obtained by the algorithm UCB1 (blue line), UCB-V (black line) and LCB1 (red line),

after 50, 100, 150 and 200 time steps.

pendent objective function of the form G(t) = E[
∑T (t)

s=t w(t, s) ·ra(s)(s)] has to be maximized,

where T (t) ≥ t and the real numbers w(t, s) are given weights (only the case T (t) ≡ T and

w(t, s) ≡ 1 has been discussed in this paper). In fact, decisions involve very often tradeoffs

among uncertain costs and benefits occurring at different points in time under the constraint of

different time horizons. In such cases, it is known (Frederick et al., 2002) that the choice of a

weighting sequence is related to the decision maker’s time preferences: different preferences

demand different forms of weighting. It should be clear that, whenever these preferences are

known (along with the utility function over confidence intervals), the presented approach can

be applied quite straightforwardly.
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FIG. 6 – Typical behaviours of algorithms UCB1, UCB-V and LCB1 (from top to bottom)

obtained in the second test (K = 5, rewards distributions 1 to 5). A “+” symbol indicates that

the corresponding action has been selected at time t.

Résumé

Une approche est présentée pour la prise en considération du risque dans le problème du

“bandit manchot”. Plus précisément, le dilemme dit d’exploration-exploitation est reformulée

comme un problème de maximisation d’une fonction d’utilité qui mesure l’attitude du décideur

envers le risque et l’incertitude. Un lien avec la théorie de la préférence est donc établi. La

méthode proposée est testée et comparée par simulation numérique avec d’autres bien connues

dans la littérature, avec un intérêt particulier pour le comportement à court terme (petit nombre

d’échantillons).




