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Abstract. One of the main elements of an Aspect-Oriented Programming (AOP)
language or framework is its pointcut language. A pointcut is a predicate which
selects program execution points and determines at which points the execution
should be affected by an aspect. Experimenting with AspectJ shows that two
basic primitive pointcuts, call and execution, dealing with method invoca-
tion from the caller and callee standpoints, respectively, lead to confusion. This
is due to a subtle interplay between the use of static and dynamic types to se-
lect execution points, dynamic lookup, and the expectation to easily select the
caller and callee execution points related to the same invocation. As a result,
alternative semantics have been proposed but have remained paper design.

In this article, we reconsider these various semantics in a practical way by im-
plementing them using CALI, our Common Aspect Language Interpreter. This
framework reuses both Java as a base language and AspectJ as a way to select
the program execution points of interest. An additional interpretation layer can
then be used to prototype interesting AOP variants in a full-blown environment.
The paper illustrates the benefits of applying such a setting to the case of the
call and execution pointcuts. We show that alternative semantics can be im-
plemented very easily and exercised in the context of AspectJ without resorting
to complex compiler technology.

1 Introduction
AspectJ is the most popular AOP language (Kiczales et al., 2001; Filman et al., 2005). It

extends Java with a new type of code structuring entity, called aspect, which contains the defi-
nition of pointcuts and advices in addition to standard Java members like fields and methods. A
pointcut selects execution points of the so-called base program where extra code (the advice)
has to be executed. These points are called join points. At the user level, the properties of the
pointcut language like expressiveness, obliviousness, clarity of semantics, comprehensibility,
flexibility, extensibility, etc. are important issues in the design of AOP languages. At the im-
plementation level, a weaver is responsible for weaving the selection of the join points into
the base program. As soon as static information is available, for instance types, and join-point
selection relies on this information, part of the selection process can be dealt with statically (at
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public class Super {
public void f(){

}
}
public class Middle extends Super {
}
public class Sub extends Middle {

public void g(){
}

} !
Listing 1 – Example.

compile- or load-time). This is the case with AspectJ, see (Hilsdale and Hugunin, 2004). The
static part of the selection is based on static information obtained from the program point cor-
responding to the join point, the join point shadow. The dynamic part of the selection, based
on runtime values, is implemented by a residue injected into the base-program bytecode by the
weaver. The residue is executed at runtime to decide whether a statically-selected aspect does
apply.

AspectJ offers two ways to intercept method invocation: one for intercepting the invocation
at the caller side with call(T P.m(A)), and another for intercepting the execution of the
method body, at the callee side, with execution(T P.m(A)), where T is the return type of
the method of interest, P its declaring type, and A the types of its arguments.

A first issue is to understand what is exactly meant by declaring type. A first clue is given
by considering Listing 1 together with:

• the calls new Sub().f() and new Sub().g();

• the pointcuts call(void Middle.f()) and call(void Middle.g()).

With the current version of AspectJ (1.6), the only selected join point is the call a3.f().
The only difference between the calls is that the method g is initially defined in a subclass of
Middle. We cannot just expect call(void Middle.g()) to selects calls to g with receivers
of type Middle (which is actually impossible) or Sub, a subtype of Middle, the method has
also to exist in the declaring type Middle. Another clue that there is no straightforward choice
of semantics is that in earlier versions of AspectJ, the call to f was not selected either: the
method had to be defined in the declaring type given in the pointcut.

A second issue is to understand against which qualifying type, on the join point side, the
declaring type is matched. It is simple in the previous example because the static and dynamic
types of the receivers are the same, but it is not always the case. We shall also see that the story
is different on the caller side and on the callee side with the counter-intuitive result that, in the
presence of the pointcuts call(void Middle.f()) and execution(void Middle.f()),
a call to Middle.f() will be captured by the pointcut call but the execution of the method
f will not be captured by the pointcut execution. Of course, with respect to a given call,
a call join point and an execution join point are different join points: with respect to a given
call, the call join point occurs within the context of the caller object, whereas the execution
join point occurs within the context of the receiver. Still, the intuition is that two pointcuts
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class Service implements Runnable {
public void run() { ... }
public static void main(String[] args) {

((Runnable) new Service()).run();
}

} !
Listing 2 – Example.

call and execution using the same declaring type should select both (Barzilay et al., 2004;
Avgustinov et al., 2007).

In this paper, we revisit the semantics of the pointcuts call and execution in the current
version of AspectJ (1.6) as well as their possible alternative semantics, based on the earlier
work of (Barzilay et al., 2004). We disconnect from compiler-based implementation and we
describe the use of join point selectors to implement pointcuts as part of our interpreter-based
framework to prototype AOPL (CALI) (Assaf, 2008). This framework is based on the seman-
tics of AspectJ as described by the CASB (Djoko Djoko et al., 2006). We show that, in our
interpreter-based framework, the implementation of the pointcuts call and execution as
join point selectors is able to directly reflect the various semantics. Moreover, moving from
one semantics to the other is extremely simple.

The implementation of pointcuts using an interpreted approach facilitates the understand-
ing of the semantics and provides an executable environment to test them and potentially im-
prove the comprehensibility, the evolvability, and the modularity of pointcuts. More generally,
such an interpreted approach is an interesting lightweight alternative, at least in an exploratory
phase, to compiler-based approaches to implementing AspectJ extensions (Avgustinov et al.,
2005).

The paper is structured as follows: Section 2 discusses the semantics of the pointcuts call
and execution. Section 3 describes our interpreter. Section 4 displays the interpreter-based
implementation of the current and the alternative semantics of the pointcuts. Section 5 con-
cludes the paper.

2 AspectJ Semantics
The pointcuts call and execution are signature-matching pointcuts. All these pointcuts

specify a declaring type. Understanding the meaning of this declaring type in relation with the
join point signatures is key to understanding the semantics of the signature-matching point-
cuts. This section clarifies this issue with respect to the pointcuts call and execution. We
first expose the semantics of these pointcuts in the current version of AspectJ (1.6) and then
consider the reasons for this semantics as well as alternatives.

2.1 Call Semantics
According to the AspectJ Programming Guide (Appendix B, Semantics) (The AspectJ

Team, 2003), when matching method-call join points, the declaring type is the static type used
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to access the method.
This leads to the common pitfall, signalled in the AspectJ Programming Guide, that the

pointcut call(void Service.run()) does not capture the call to the method run of List-
ing 2. As explained in the AspectJ Programming Guide on this very example, this is because
the declaring type Service given in the pointcut is a subtype of the qualifying type Runnable
of the join-point signature. In case of call join point, this qualifying type is the static type used
to access the method.

But what is exactly the static type used to access the method? Let us consider the call
((Middle)new Sub()).f() in the context of Listing 1. Is the qualifying type of the join
point Middle, the static type of the receiver expression, or Super, the type where the method
f of the class Middle is defined? Experimenting with AspectJ shows that the qualifying type
of the join point is actually the static type of the receiver expression.

Let us go back to Listing 2. Of course, the pointcut call(void Runnable.run())
would capture the call to run because the declaring type of the pointcut and the qualifying
type of the join point are then the same. But this is hardly enough to understand the semantics
of the pointcut call. Some more analysis is necessary.

It is also interesting to consider what happens if there is no cast. In that case, the call join
point for new Service().run() is captured by both pointcuts. If we consider the pointcut
call(void Runnable.run()), we can see that the join-point qualifying type Service is
a subtype of the pointcut declaring type Runnable. Getting a different result may come as a
surprise as this variant base program is not semantically different.

A second experiment consists of replacing the method run by a method myrun in both the
class Service and the pointcuts. In that case, the call join point new Service().myrun()
is captured by the pointcut call(void Service.myrun()) but not by the pointcut call(
void Runnable.myrun()), even though the join-point qualifying type (Service) is a sub-
type of the pointcut declaring type (Runnable). At first sight, it may look like it is because,
unlike in the initial case, the method myrun is not defined in Runnable. Further experi-
ments would show that the problem is more precisely that the method myrun does not exist in
Runnable, i.e., it is neither defined in Runnable nor in any of its supertypes.

To summarize, there are two conditions for a pointcut call(P.m()) to capture a call
join point e.m(), where J is the qualifying type of the join point (the static type of e):

• J <: P (J is a subtype of P );

• m exists in P .

2.2 Execution Semantics
According again to the AspectJ Programming Guide, when matching method-execution

join points, if the execution pointcut method signature specifies a declaring type, the pointcut
will only match methods declared in that type, or methods that override methods declared in
or inherited by that type. This is illustrated, in the AspectJ Programming Guide, by the appli-
cation of the pointcut execution(public void Middle.*()) to the example of Listing 3,
a variant of Listing 1, which is said to capture any method-execution join point for Sub.m().
Indeed, the method m in Sub overrides the definition of m inherited by the pointcut declaring
type Middle.
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class Super {
protected void m() { ... }

}
class Middle extends Super {
}
class Sub extends Middle {

public void m() { ... }
} !

Listing 3 – Example.

It is actually interesting to be systematic on this example and check what happens when
running new Sub().m(), new Middle().m(), and new Super().m(). As we have just
said, the pointcut execution(public void Middle.*()) captures a join point in the first
case. It does not in the second case because, although the method m is inherited by Middle,
it is not overridden in Middle. It does not in the third case either because the method m of
Super cannot be inherited from Middle. The second case may look surprising if we consider
that there is a (virtual) copy of the method m in Middle. It is less surprising if we look at
the execution in terms of dynamic lookup. There is indeed no definition of the method m in
Middle and it is the definition of the method m in the superclass that is executed.

To summarize, there are three conditions for a pointcut execution(P.m()) to capture
a method-execution join point m(){}, where this is of dynamic type D:

• D <: P ;

• m exists in P ;

• m is (re)defined in J such that D <: J <: P and not redefined between D and J .

Here, the qualifying type of the join point J is the declaring type of the method m. As
D <: J these conditions can then be reformulated as follows:

• J <: P , where J is the join-point qualifying type;

• m exists in P .

We then get the same conditions as with the pointcut call but with a specific definition of
the join-point qualifying type.

2.3 Discussion
Relating the semantics of the pointcuts call and execution With a proper definition of
the qualifying type of the method signatures of the join points, we get syntactically homoge-
neous definitions of the pointcuts call and execution. Still, the definition of the qualifying
type of an execution join point, though in line with dynamic lookup, is tricky and leads to the
source of surprise mentioned in the introduction, originally discussed by (Barzilay et al., 2004),
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in the context of an earlier semantics, and rediscovered by (Avgustinov et al., 2007) while pre-
cisely defining the semantics of static pointcuts in AspectJ as datalog queries. Basically, two
pointcuts call and execution using the same declaring type do not always capture both the
call join point and its related execution join point.

Indeed, if we consider, in the context of Listing 3, the pointcut call(public void
Middle.*()), a join point is captured for both new Sub().m() and new Middle().m().
As a result, in the presence of an aspect comprising both the pointcuts call and execution,
a call join point followed by an execution join point is captured in the first case whereas, in the
second case, only a call join point is captured.

Such a discrepancy does not occur in the alternative semantics proposed in (Barzilay et al.,
2004). These semantics were proposed as a reaction to the earlier semantics of AspectJ 1.1.1.
The difference with the current semantics (AspectJ 1.6) was that the method of interest had
to be (re)defined in the declaring type of both the pointcuts call and execution, and the
qualifying type of an execution join point was simply the dynamic type of the current object
(the receiver of the call).

Basically, the proposal of (Barzilay et al., 2004) consists of:

• always considering that the method of interest exists in the pointcut declaring type and

• defining the qualifying type of the call join points as either the static type of the re-
ceiver or its dynamic type, the qualifying type of the execution join points remaining the
dynamic type of the receiver.

The first point fixes the surprise that the pointcut call(void Middle.f()) did not cap-
ture the call new Sub().f() in Listing 1. The second point defines two semantics, a static
semantics or a dynamic semantics depending on the definition of the qualifying type of the call
join points.

The static semantics corresponds to the current semantics of AspectJ with respect to
method calls, but method executions are still handled differently.

Semantics of the pointcut call An argument against using the dynamic semantics, which
has the advantage of being simpler to explain and reason about as only dynamic types have
to be considered in the join points, is that it is less efficient and that using another primitive
pointcut, target, makes it possible to get this semantics anyway. The efficiency issue comes
from the fact that in the case of the static semantics, the matching condition J <: P ∧ m
exists in P can be fully evaluated statically as J is a static type. There is no need for a
residue. As for using the pointcut target, the idea is that this pointcut makes it possible to
select call join points based on the dynamic type of the callee. For instance, in our previous
example (Listing 2), it is still possible to capture the call to the method run using call(void
Runnable.run())&& target(Service).

(Barzilay et al., 2004) note that the static semantics of call(P .m())&& target(P) is
slightly different from the dynamic semantics of call(P .m()). Indeed, if D is the dynamic
type of the join point and S its static type, we have, in the first case, the condition S <:
P ∧D <: P , where the first conjunct comes from the pointcut call and the second from the
pointcut target. As by definition D <: S, this amounts to S <: P . This has to be compared
with the condition required by the dynamic semantics: D <: P . Conversely, if the dynamic
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semantics were chosen, it could make sense to change the semantics of the pointcut target
so that it deals with static types.

Semantics of the pointcut execution We have seen that a pointcut execution(P.m())
does not capture a method-execution join point m(){}, where the receiver is of dynamic type
J , if m is not (re)defined in the hierarchy between P and J . This may look surprising but
actually corresponds to the lookup semantics. In practice, if m is only defined in a superclass
of P , there is no bytecode that can be instrumented in order to implement the pointcut and
transfer control to the advice if necessary apart from the bytecode in the superclass. But this
would then slow down the execution of the method with some additional tests on the type of
this to distinguish the cases when the pointcut should apply and when it should not. An
alternative would be to add bytecode for the missing methods at weave time. For instance,
let us consider the example in Listing 3. If we redefine m in Middle: protected void
m(){super.m()}, then execution(public void Middle.*()) captures a join point

when executing new Middle().m(). Such a redefinition could be done at weave time at the
bytecode level. One would then get the semantics of (Barzilay et al., 2004).

Existence of the method in the declaring type At first sight, the necessity of the condition
m exists in P is also arguable. As we have previously seen in Section 1 when considering
Listing 1, without this condition, the pointcut call(void Middle.g()) would then select
a call new Sub().g(). This has the drawback that the semantics of the pointcut call is
not purely static any longer (which is of course not an issue in the context of the dynamic
semantics of (Barzilay et al., 2004)). But the main point is that this semantics can anyway be
already obtained by using, instead of a type P , the subtype pattern P+, which stands for P or
any of its subtype.

Summary The semantics of the pointcuts call and execution is not easy to grasp. Match-
ing uses the static type of the caller in the pointcuts call and the dynamic type of the callee
in the pointcuts execution. Understanding the semantics of the pointcuts execution re-
quires to reason about the behavior of dynamic lookup and is counter-intuitive when a pointcut
execution(P.m()) does not capture an execution join point whereas the corresponding
call join point is captured by the pointcut call(P.m()).

Alternative semantics that seem easier to grasp have been proposed. In particular, the
dynamic semantics of (Barzilay et al., 2004) looks attractive. Matching is always based on
dynamic types and the simple condition that the method of interest should exist in the type of
interest is used for both the pointcuts call and execution.

Switching to such a semantics may however require a lot of work in the current compiler-
based implementations of AspectJ and result in some performance overhead, whereas the exact
benefits have not yet been fully assessed. It looks interesting but does it really help in practice?
Therefore, it may be worth experimenting with this approach in a more agile environment. In
the following sections, we show how we can, by switching to an interpreter-based approach,
easily implement the current semantics of the pointcuts call and execution, and then switch
to the static and dynamic semantics of (Barzilay et al., 2004) with minimal changes.
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abstract class JoinPointSelector {
abstract boolean staticTest(JoinPoint jp);
abstract boolean dynamicTest(JoinPoint jp);

} !
Listing 4 – The class JoinPointSelector.

3 The AspectJ Interpreter
Our interpreter represents a good example of mixing together compilation and interpre-

tation. The base program runs as a normal Java program on a standard JVM while aspects
are partially interpreted. AspectJ aspects are translated, using a parser, to a specific structure
(in Java) defined by the interpreter, and are represented at runtime by Java objects conform-
ing to this specific structure. More concretely, each aspect is represented by an instance of
a class Aspect, which encapsulates a list of selector/advice bindings, instances of a class
SelectorAdviceBinding. Each selector/advice binding contains a join-point selector, in-
stance of a class JoinPointSelector, and an advice, instance of a class Advice. A join-
point selector corresponds to a pointcut. Its role is to select join points.

According to the matching semantics described in (Djoko Djoko et al., 2006; Assaf and
Noyé, 2008), a join point selector selects a join point in two steps, a static and a dynamic step,
implemented through the methods staticTest and dynamicTest (see Listing 4). The static test is
based on static information obtained from the join point shadow. The dynamic test corresponds
to the execution of the AspectJ residue and decides whether a statically-matching aspect does
apply.

Two-step weaving (David et al., 2001) is used to weave the interpreted aspects into the
compiled Java code:

1. The first step takes place in AspectJ at compile time, through an aspect called Platform
(see Listing 5), which results in the instrumentation by AspectJ of all possible join

points in the base program by defining a pointcut call(* *.*(..))|| execution
(* *.*(..))|| set(* *)...;

2. The second step takes place at runtime, when the advice of the Platform aspect, which
behaves as an interpretation layer, evaluates the current AspectJ join point (accessed
through thisJoinPoint) by looking for matching aspects before executing them. The
“base” Java parts of the selected advices are then again executed as plain Java code.

The interpretation layer of the Platform aspect consists of four subprocesses (reify,
match, order and mix) similar to the subprocesses of weaving described in (Kojarski and
Lorenz, 2006).

In particular, in match, an aspect matches the current join point if the static test of a join
point selector of one of its selector advice bindings selects it. The process order orders the
matching aspects as a list of φ objects1. Each φ object is basically a pair dynamic test/advice,
except the last φ object, which is the join point wrapped as a φ object. The evaluation starts

1This is a reference to the notations used by (Djoko Djoko et al., 2006) to describe the semantics of AspectJ.
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public aspect Platform {
pointcut reifyBase():

(call(* *.*(..)) || execution(* *.*(..)) || set(* *) ...)
&& !within(java..*)
&& !within(org.aspectj..*)
&& !within(dynamicaspectj..*);

pointcut reifyAdvice(): ...
pointcut reify(): reifyBase() || reifyAdvice();

Object around(): reify() {
List<Phi> phis = order(thisJoinPoint, match(thisJoinPoint));
return mix(thisJoinPoint, phis);

}
public static List<Phi> match(JoinPoint jp) { ... }
public static List<Phi> order(JoinPoint jp, List<Phi> phis) {

List<Phi> orderedPhis = aspectJOrder(phis);
orderedPhis.add(new PhiJP(jp));
return orderedPhis;

}
public static Object mix(JoinPoint jp, List<Phi> phis) {

Phi phi = phis.remove(0);
...
Object o = phi.eval(jp);
...
return o;

}
} !

Listing 5 – The aspect Platform.

then with the first φ object. The dynamic test is performed. In the case of a positive result,
the corresponding advice is executed, otherwise a special aspect-level instruction, proceed,
is executed and the execution proceeds with the next φ object. More details on the aspect
Platform can be found in (Assaf and Noyé, 2008) and the source code can be downloaded
from (Assaf, 2008).

4 Implementation

4.1 Background
AspectJ provides a special reference variable, thisJoinPoint, accessible from the body

of any advice, that contains reflective information about the current join point. The advice of
the aspect Platform passes this information to all the reified aspect selectors, which can then
access this information for matching. In the following, we will use:

• String JoinPoint.getKind() returns a string representing the kind of the join
point. In particular, it returns "method−call" and "method−execution" for method-call and
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method-execution join points, respectively (there are also constructor calls and execu-
tions, which requires to distinguish, for instance, between a method call and a construc-
tor call) ;

• Signature JoinPoint.getSignature() returns the signature of the join point. For
method-call join points, it returns the signature of the method existing in the static type.
For method-execution join points, it returns the signature of the method being executed.

We will also use the reflection API of Java, in particular:

• Class Class.asSubClass(Class c) casts this to c and throws an exception if
this is not a subclass of c;

• Method Class.getMethod(String name, Class[] parameterTypes) returns
the instance of Method (inherited or defined) in this with the name and parameter
types given as parameters. An exception NoSuchMethodException is thrown if no
such method is found, an exception NullPointerException if the value of name is
null, and an exception SecurityException in case of a security exception in the
presence of a security manager.

4.2 Call
Listing 6 gives the implementation of the selector for method calls as a subclass of

JoinPointSelector. All the information necessary to the selector in order to determine
whether a join point matches or not is actually static (it can be obtained from the join point
shadow). As a result, the conditions for matching are implemented in its method staticTest
(line 19), whereas its method dynamicTest (line 38) always returns true.

The implementation makes use of two boolean variables: exists and basicMatch.
• The boolean variable exists is set to true (line 13) if the method exists in the pointcut

declaring class pointcutClass. This directly corresponds to the condition m exists
in P in the semantics. The value of exists is computed once and for all in the con-
structor. When statically matching a join point, exists is tested first (line 21). If it is
false, the selector directly returns false. Another possibility would be not to capture the
NoMethodException in the constructor but rather throw an exception at the level of
the constructor. In that case2, it would not be possible to create a call selector for which
the method would not exist in the pointcut declaring type: the boolean variable exists
is not necessary.

• The boolean variable basicMatch is set to true (line 29) if the join point is indeed a
method-call join point (line 23) for the method specified in the pointcut (lines 24 and
25). This requires to compare the name and parameter types specified in the pointcut
and the ones obtained from the join point (line 25).

If both exists and basicMatch are true, the last step consists of checking (line 28), using
the method asSubClass of the Java reflection API, that the qualifying type of the join point,

2When using the AspectJ Eclipse plugin, a warning is emitted when the method does not exist, but this is not
considered as an error.
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1 public class Call extends JoinPointSelector {
2 public Class pointcutClass;
3 public String methodName;
4 public Class[] parameterTypes;
5 public boolean exists;
6
7 public Call(Class pointcutClass, String methodName,
8 Class[] parameterTypes)
9 throws NullPointerException, SecurityException {

10
11 try {
12 pointcutClass.getMethod(methodName, parameterTypes);
13 exists = true;
14 } catch (NoSuchMethodException) {
15 exists = false;
16 }
17 }
18
19 public boolean staticTest(JoinPoint jp) {
20 boolean basicMatch;
21 if (exists) {
22 basicMatch =
23 jp.getKind().equals(" method−c a l l ")
24 && jp.getSignature().getName().equals(methodName)
25 && Arrays.equals(((MethodSignature)jp.getSignature()).

getParameterTypes(), parameterTypes);
26 if (basicMatch) {
27 try {
28 jp.getSignature().getDeclaringType().asSubclass(

pointcutClass);
29 return true;
30 } catch (Exception e) {
31 return false;
32 }
33 } else
34 return false
35 } else
36 return false;
37 }
38 public boolean dynamicTest(JoinPoint jp) {
39 return true;
40 }
41 } !

Listing 6 – The selector Call.
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public class Execution extends JoinPointSelector {
...
basicMatch = jp.getKind().equals(" method−e x e c u t i o n ");
...

} !
Listing 7 – The selector Execution.

public class Target extends JoinPointSelector {
Class pointcutClass;

public Target(Class pointcutClass) {
this.pointcutClass = pointcutClass;

}

public boolean staticTest(JoinPoint jp) {
return true;

}
public boolean dynamicTest(JoinPoint jp) {

return jp.getTarget().getClass().equals(pointcutClass);
}

} !
Listing 8 – The selector Target.

jp.getSignature().getDeclaringType()3, is a subclass of the pointcut declaring class
pointcutClass. This directly corresponds to the condition J <: P in the semantics.

4.3 Execution
The implementation of the execution selector is exactly the same as the implementation of

the call selector with the difference that we test if the join point kind is "method−execution".
This similarity directly follows from the fact that the semantics of the corresponding pointcuts
are exactly the same, modulo the definition of the join-point qualifying types, and from the
fact that we use AspectJ join points. When calling getSignature.getDeclaringType(),
we get the static type of the receiver object for method calls and the type which defines the
executed method for method executions.
4.4 Target

Listing 8 shows the implementation of the target selector. It is very simple because we
use the capabilities provided by the AspectJ join point API to access the target object and
to compare its type with the pointcut declaring class. Note that the pointcut target, with
the current semantics of AspectJ, deals only with dynamic information (target type). For this
reason, the method staticTest always returns true.

3A more consistent name would be getQualifyingName().
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public boolean staticTest(JoinPoint jp) {
boolean basicMatch;
if (exists) {

...
return basicMatch;

} else
return false;

}
public boolean dynamicTest(JoinPoint jp) {

try {
jp.getTarget().getClass().asSubclass(pointcutClass);
return true;

} catch (Exception e) {
return false;

}
} !

Listing 9 – The dynamic selector Call.

4.5 Alternative Semantics

In the following, we show the minor changes that are necessary to the previous implemen-
tation in order to get the dynamic semantics of Barzilay et al. (2004).

4.5.1 Call with Dynamic Semantics

The conditions are the same as with the static semantics except that we need to re-
place the qualifying type of the join point given by AspectJ by its dynamic type, that is jp
.getSignature().getDeclaringType() by jp.getTarget().getClass(). We use
again the facilities provided by the AspectJ join points API.

Also, as the dynamic type is, as its name indicates, dynamic, the related computations
should be moved from the method staticTest to the method dynamicTest.

Starting from Listing 6 and applying these changes, we get Listing 9. The true branch
of the conditional if(basicMatch) of the method staticTest is moved to the method
dynamicTest while now testing the dynamic type of the join point rather than its AspectJ
qualifying type. In the method staticTest, the conditional is replaced by a simple return
(basicMatch) statement.
4.5.2 Execution with Dynamic Semantics

The principles are the same as before. The differences are that, when computing
basicMatch "method−call" should be replaced by "method−execution", and that the dynamic
type of the join point is accessed through jp.getThis() instead of jp.getTarget().
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5 Conclusion
In this paper, we have proposed an interpreted approach that facilitates the implementa-

tion of various pointcut semantics. It is based on a representation of a pointcut as an instance
of the class JoinPointSelector with two methods, boolean staticTest(JoinPoint)
and boolean dynamicTest(JoinPoint), dealing with static and dynamic information, re-
spectively. It also uses a two-step weaving scheme, which makes it possible to use AspectJ to
instrument the base program and benefits from its basic facilities to access join point informa-
tion. Of course, a basic limitation of the approach is that only AspectJ join points can be taken
into account, unless the AspectJ layer is, for instance, extended with other instrumentation
means.

As a proof of the versatility of this approach, we have shown how to implement the current
semantics of the pointcuts call and execution as well as the alternative dynamic semantics
of (Barzilay et al., 2004). These implementations can be deduced very straightforwardly from
their semantics. The versatility of the approach has however a cost resulting from the intro-
duction of an interpretation layer. We think that, depending on the application, the overhead
may remain reasonable if the instrumentation performed by the aspect Platform is tailored in
order to limit the instrumentation to the shadows of interest, but this remains to be quantified.
On the same vein, one can imagine to mix the AspectJ semantics and alternative semantics,
for instance by introducing new pointcuts with alternative semantics (this could apply to other
features as well), and limit the use of interpretation to non-standard semantics. One other inter-
esting perspective allowed by the versatility of the approach is to refine the implementation in
order to execute AspectJ applications with the AspectJ semantics but check whether the result
would have been different using an alternative semantics.

We have presented the implementation of the pointcuts call and execution but this
approach can be used to define any other pointcut including new types of pointcuts, for instance
domain-specific pointcuts.

This work is actually part of a larger framework that we call CALI (Assaf, 2008; Assaf and
Noyé, 2008), for Common Aspect Language Interpreter. CALI is used to prototype aspect lan-
guages and study multi-aspect language AOP. CALI as well as examples of AOPL prototypes
can be downloaded from (Assaf, 2008).
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Résumé
Un des éléments principaux d’un langage ou d’un canevas de programmation par aspects

est son langage de coupe. Une coupe est un prédicat qui sélectionne les points d’exécution qui
doivent être affectés par un aspect. L’utilisation d’AspectJ montre que les deux coupes pri-
mitives de base, call et execution, qui traitent respectivement de l’appel et de l’exécution
d’une méthode, peuvent être source de confusion du fait de subtiles interactions entre l’utilisa-
tion de types statiques ou dynamiques pour sélectionner les points d’exécution, de la recherche
dynamique des méthodes et de l’attente d’une sélection facile des points d’exécution côté ap-
pelant et appelé d’une même invocation. Aussi, des sémantiques alternatives, plus intuitives,
ont été proposées mais en sont restées à l’état de la conception.

Dans cet article, nous reconsidérons un certain nombre de sémantiques possibles d’une
manière pratique, en les implémentant à l’aide de CALI, notre interprète général de langages
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d’aspects. Ce canevas utilise Java comme langage de base et AspectJ comme moyen d’extraire
les points d’exécution à considérer. Une couche d’interprétation additionnelle peut alors être
utilisée pour prototyper d’intéressantes variantes de programmation par aspects dans un envi-
ronnement complet. L’article utilise les coupes call et execution pour illustrer les bénéfices
d’un tel dispositif. Il montre que des alternatives peuvent être implémentées très facilement et
expérimentées dans le contexte d’AspectJ sans avoir recours à une technologie de compilation
rapidement complexe.


