Flexible Pointcut Implementation:
An Interpreted Approach

Ali Assaf*, Jacques Noyé**
Département informatique, Ecole des Mines de Nantes

*Ali.Assaf @emn.fr,
**Jacques.Noye @emn.fr

Abstract. One of the main elements of an Aspect-Oriented Programming (AOP)
language or framework is its pointcut language. A pointcut is a predicate which
selects program execution points and determines at which points the execution
should be affected by an aspect. Experimenting with Aspect] shows that two
basic primitive pointcuts, call and execution, dealing with method invoca-
tion from the caller and callee standpoints, respectively, lead to confusion. This
is due to a subtle interplay between the use of static and dynamic types to se-
lect execution points, dynamic lookup, and the expectation to easily select the
caller and callee execution points related to the same invocation. As a result,
alternative semantics have been proposed but have remained paper design.

In this article, we reconsider these various semantics in a practical way by im-
plementing them using CALI, our Common Aspect Language Interpreter. This
framework reuses both Java as a base language and Aspect] as a way to select
the program execution points of interest. An additional interpretation layer can
then be used to prototype interesting AOP variants in a full-blown environment.
The paper illustrates the benefits of applying such a setting to the case of the
call and execution pointcuts. We show that alternative semantics can be im-
plemented very easily and exercised in the context of Aspect] without resorting
to complex compiler technology.

1 Introduction

Aspect] is the most popular AOP language (Kiczales et al., 2001; Filman et al., 2005). It
extends Java with a new type of code structuring entity, called aspect, which contains the defi-
nition of pointcuts and advices in addition to standard Java members like fields and methods. A
pointcut selects execution points of the so-called base program where extra code (the advice)
has to be executed. These points are called join points. At the user level, the properties of the
pointcut language like expressiveness, obliviousness, clarity of semantics, comprehensibility,
flexibility, extensibility, etc. are important issues in the design of AOP languages. At the im-
plementation level, a weaver is responsible for weaving the selection of the join points into
the base program. As soon as static information is available, for instance types, and join-point
selection relies on this information, part of the selection process can be dealt with statically (at

