
Binary Sequences and Association Graphs for Fast Detection

of Sequential Patterns

Selim Mimaroglu∗, Dan A. Simovici∗∗

∗ Bahcesehir University,Istanbul, Turkey, selim.mimaroglu@gmail.com
∗∗University of Massachusetts Boston, Massachusetts 02125, USA, dsim@cs.umb.edu

Abstract. We develop an efficient algorithm for detecting frequent patterns that
occur in sequence databases under certain constraints. By combining the use
of bit vector representations of sequence databases with association graphs we
achieve superior time and low memory usage based on a considerable reduction
of the number of candidate patterns.

1 Introduction

Mining sequential patterns was originally proposed in Agrawal and Srikant (1995), where
three algorithms, (AprioriAll, AprioriSome, and DynamicSome) were introduced. PrefixSpan,
based on the prefix projection idea, was introduced in Pei et al. (2001). SPADE Zaki (2001)
performs space efficient joins on prefix-based equivalence classes. PRISM Gouda et al. (2007),
uses prime number encoding for support counting. A related but distinct problem (discussed
in Mannila et al. (1997)) is finding frequent episodes in very long sequences. SPAM Ayres
et al. (2002) finds sequential patterns using a bitmap representation. An extension of SPAM,
which incorporates gap and regular expression constraints was achieved in Ho et al. (2005).
The GSP algorithm Srikant and Agrawal (1996) is similar to AprioriAll; additionally it can
handle three types of constraints: minimum and maximum gap between consecutive elements
of a sequence (referred to as min_gap and max_gap), and window size between rows. When
min_gap = 0, max_gap = ∞, and window_size = 0, the sequential patterns found by GSP are
the classical sequential patterns as introduced in Agrawal and Srikant (1995). The algorithm
cSPADE Zaki (2000) introduces similar constraints, and it is implemented on top of SPADE.
SPIRIT Garofalakis et al. (1999) is more general than both GSP and cSPADE as it deals with
regular expression constraints.

In this note we describe SPAG, an algorithm that combines the dual use of bit vector rep-
resentations of sequence databases with association graphs to achieve superior performance in
identifying patterns in sequences.

2 Apriori Frameworks on Sequence Sets

We refer the reader to Simovici and Djeraba (2008) for mathematical concepts and nota-
tions. Let I be a set of items, and let Seq(I) be the set of sequences of items of I . We consider
a a graded poset (P,≤, h), where P ⊆ Seq(I), and h : P −→ N, referred to as the set of pat-

terns, and a data set D defined as a sequence of sequences, D = {s1, . . . , sn} ⊆ Seq(Seq(I)).
A sequence Apriori framework is a triple ((P,≤, h), D, σ), where σ is a relation between pat-
terns and data, such that t ≤ t′ and (t′, s) ∈ σ implies (t, s) ∈ σ.

Fast Detection of Sequential Patterns

If x is a subsequence of y, we denote this by x v y. For y ∈ D, and t ∈ P we define several
partial functions form φ : (Seq(I))2 −→ R such that Dom(φ) = {(t, y) ∈ (Seq(I))2 | t v
y}: α(t, y) = `(y) − `y(t), β(t, y) = `y(t) − `(t), and ω(t, y) as the number of occurrences of
t in y, for t, y ∈ Seq(I).

The function α(t, y) measures the outer gap of t in y, while β(t, y) measures the inner

gap of t in y. For a fixed y, if t is scattered in y then α(t, y) is relatively small, and β(t, y)
is relatively large. On another hand, if t is condensed in y then α(t, y) is relatively large,
and β(t, y) is relatively small. For example, if t = a1a2, and y = a1a3a4a5a2, we have
α(t, y) = 0, and β(t, y) = 3. If y′ = a3a4a1a2a5, then α(t, y′) = 3 and β(t, y′) = 0. The
values of both functions α, and β are changed as expected, because t is condensed in y′.

Let y be a database sequence, u, v be two sequences such that u is an infix of v and suppose
that v v y. If φ is any of the partial functions α or ω then φ(u, y) ≥ φ(v, y). We also have
β(v, y) ≥ β(u, y).

Let σmin,k be the relation that consists of those pairs (v, y) for which there exists an oc-
currence of v in y such that the least gap between two consecutive symbols of v is at least k.
Similarly, if σmax,k consists of pairs (v, y) for which there is an occurrence of v in y such
that the largest gap between two consecutive symbols of v is at most k. These relations were
introduced in Srikant and Agrawal (1996).

The relations σα,k and σβ,k are given by σα,k = {(v, y) ∈ (Seq(I))2 | v v y and α(v, y) ≥
k} and by σβ,k = {(v, y) ∈ (Seq(I))2 | v v y and β(v, y) ≤ k}. It is easy to see that σmin,k ,
σmax,k, σα,k , and σβ,k are Apriori relations.

If σ is an Apriori relation and u is an infix of v, then supp
D,σ(v) ≤ supp

D,σ(u). This
allows a straightforward extension of the well-known Apriori algorithm to an algorithm defined
on sequences.

3 Association Graphs and Bit Vectors

Storing bit vectors is very space-efficient and bitwise operations are very fast, which allows
storing large databases into memory.

Each distinct item i in the database is represented by a bit vector, denoted by ibvi (item bit
vector), which contains as many bits as the number of rows in the database. If i is present in
the jth row, the jth entry of ibvi is 1, and is 0 otherwise.

Each row of a table that contains m distinct items is represented by a collection of m row
bit vectors rbv1, . . . , rbvm whose length l equals the length of the row. If rbvj = (bj1, . . . , bjl)
then

bjh =

{

1 if item ij occurs at position h,

0 otherwise,

for 1 ≤ h ≤ l.
The dual use of item and row bit vectors speeds up the mining process considerably by

providing fast support count. A similar bit vector representation is used in PRISM Gouda
et al. (2007), where prime number encoding, and integer operations are used instead of binary
operations.

Next we define the association graph of a sequence database.

Definition 3.1 Let D = (s1, . . . , sN) be a sequence database on the set of items I , min_sup

be the minimum support count, and σ be an Apriori relation. The association graph of D,

S. Mimaroglu and D. A. Simovici

AG = (V, E) is a labeled directed graph defined as follows. The set of vertices V consists of
those items i such that |{j|(i, sj) ∈ σ and i v sj , sj ∈ D, for 1 ≤ j ≤ N}| ≥ min_sup.

The set of edges E consists of those pairs (i, i′) ∈ V × V such that |{j|(ii′, sj) ∈
σ and ii′ v sj , sj ∈ D, for 1 ≤ j ≤ N}| ≥ min_sup. An edge (i, i′) is labeled by a se-
quence L(i, i′) = (τ1, . . . , τN), where τp = 1 if (ii′, sp) ∈ σ, and ii′ v sp, and τp = 0,
otherwise, for 1 ≤ p ≤ N .

Input: Database: D in ibv and rbv format, minimum support count: min_sup, Apriori
relation: σ

Output: The Association graph, AG = (V, E)
// Create the vertices

foreach item i do1

// On each row such that ibvi is 1, check constraint

if suppcount
D,σ(i) ≥ min_sup then2

V = V ∪ {i} ;3

// Create the edges with labels

foreach i ∈ V do4

foreach i′ ∈ V do5

ibvT = ibvi ∩ ibvi′ ;6

if ibvT .count() ≥ min_sup then7

// On each row such that ibvT is 1, use the row bit

vectors of i and i′ to compute

if suppcount
D,σ(ii′) ≥ min_sup then8

E = E ∪ {(i, i′)} ;9

label (i, i′) by ibvii′ ;10

// On each row such that ibvT is 1, use the row bit

vectors of i and i′ to compute

if suppcount
D,σ(i′i) ≥ min_sup then11

E = E ∪ {(i′, i)} ;12

label (i′, i) by ibvi′i ;13

output AG;14

FIG. 1: Association Graph Construction Algorithm

In the C++ implementation of SPAG, KFrequentC class represents the frequent sequences
and stores the members of the sequence, a bit vector which is set to 1 at the row indexes
containing this sequence, and for each row containing this sequence (there may be more than
one occurrence), the end position(s) and the length(s).

To extend a sequence p ∈ Fi there must be an edge from the last member of p to a frequent
item in the association graph. Since p ∈ Fi, the length of p is i. If there exists an edge
from pi, the last component of p, to some other frequent item z, then (pi, z) ∈ E in the
association graph AG. Initially, ibvpz is obtained as ibvpz = ibvp ∩ ibvpiz . We must have
count(ibvpz) ≥ min_sup.

Fast Detection of Sequential Patterns

Input: Database: D, minimum support count min_sup, Apriori relation: σ

Output: Frequent Sequences
Read the database D, convert the items in ibv format, and convert the rows in rbv format1

;
Create the association graph AG = (V, E) by using the Association Graph Construction2

Algorithm ;
F1 = V ;3

F2 = {ii′|(i, i′) ∈ E} ;4

i = 2 ;5

while Fi 6= ∅ do6

Ci+1 = {pz|p ∈ Fi, (pi, z) ∈ E, |ibvpz = ibvp ∩ ibvpiz | ≥ min_sup, pruneσ(pz)} ;7

// Use row bit vectors of z, and information at

KFrequentC of p to compute following

Compute Fi+1 from Ci+1 ;8

i + + ;9

FIG. 2: Sequential Pattern Mining with Association Graph (SPAG) Algorithm

Since σ is an Apriori relation, all sequences q such that q is an infix of pz must be frequent.
If any q violates this condition, it means that pz can not be frequent either, so pruneσ(pz)
returns false. In Figure 2 these steps are represented in line 7. Following this, actual frequent
sequences are computed from the candidate set as shown in line 8 of Figure 2. Row bit vectors
of z and the end positions of p are used to make sure that z follows p. Rows violating this
order or the constraint σ are set to 0 in ibvpz . Checking the order and the constraint σ has to be
done on every row of the database where ibvpz is initially set to 1. At the end of this procedure,
if the count(ibvpz) ≥ min_sup, then pz is placed into Fi+1.

Both Ayres et al. (2002) and Ho et al. (2005) use bit vectors and operations on bit vectors.
SPAG combines the use of bit vectors with association graphs and allows the use of vital
global information. Finding all occurrences of the items in a data set is immediate by using
item bit vectors. In addition, association graphs handle what can follow an item in a data
set; this improves the candidate pattern generation process considerably. Neither Ayres et al.
(2002) nor Ho et al. (2005) have the global information provided by our dual use of item
bit vectors and association graphs; therefore, they must keep track of each row. Moreover,
the tremendous amount of bit vector transformations make both Ayres et al. (2002) and Ho
et al. (2005) memory-inefficient. SPAG avoids these difficulties by working on the original bit
vectors without modifying them.

4 Experimental Results

Extensive experiments were conducted on synthetically generated sequential data sets us-
ing a Pentium 3.0GHz computer having 4GB of main memory running on Linux. The results of
SPAG are compared with SPADE Zaki (2001), the implementation of Ho et al. (2005) (which
we refer to as cSPAM), and with cSPADE Zaki (2000).

It is shown in Zaki (2001) that SPADE outperforms GSP by using space efficient joins.
Although cSPAM is not very space efficient, it is fast because it uses bit vectors. cSPAM

S. Mimaroglu and D. A. Simovici

can also handle constraints. cSPADE is implemented on top of SPADE; it can handle some
constraints.

Experimental results show that SPAG outperforms SPADE, cSPADE and cSPAM in almost
every support level for every data set. In Figures 3(a),3(b) and 3(c) we show execution times

(a) On a small database (b) On a medium database

(c) On a large database (d) On a very large database

(e) Minimum Gap (f) Maximum Gap

FIG. 3: Time comparison of cSPAM, SPADE, and SPAG

for cSPAM, SPADE and SPAG are shown for synthetic databases that range from 1, 000 to
100, 000 rows, having 7 items per row on average, and a total of 30 distinct items. SPAG has
superior performance on this data set for every support level. On all these data sets SPAG out-
performs SPADE. For only one support level cSPAM outperforms SPAG. cSPAM and SPAG
are comparable in two cases, and for the remaining 13 cases SPAG performs much better than

Fast Detection of Sequential Patterns

cSPAM. Experiments are expanded to include a larger data set of 100,000 rows having 1,000
unique items and 50 items per row on average. Test results for this data set are shown in
Fig 3(d). In most cases SPAG outperforms SPADE by a factor of 10. Fig. 3(e) shows that
SPAG and cSPADE perform similarly for the minimum gap constraint. SPAG is 4 times faster
than cSPAM in most cases. SPAG clearly outperforms both cSPAM, and cSPADE considerably
for the maximum gap constraint, as illustrated in Figure 3(f).

5 Conclusions and Future Work

We present SPAG, an efficient algorithm for detecting frequent patterns which combines
the dual use of bit vector representations of sequence databases with association graphs. Ex-
perimental results show that SPAG is faster than the other state-of-the-art algorithms (cSPAM,
SPADE, and cSPADE) both with constraints and without constraints. We believe that the SPAG
has a broader applicability and its use for determining variability patterns or to frequency pat-
terns shall be investigated.

References

Agrawal, R. and R. Srikant (1995). Mining sequential patterns. Proceedings of the Eleventh
International Conference on Data Engineering, 3–14.

Ayres, J., J. Flannick, J. Gehrke, and T. Yiu (2002). Sequential pattern mining using a bitmap
representation. In KDD, pp. 429–435.

Garofalakis, M. N., R. Rastogi, and K. Shim (1999). Spirit: Sequential pattern mining with
regular expression constraints. In VLDB, pp. 223–234.

Gouda, K., M. Hassaan, and M. J. Zaki (2007). Prism: A prime-encoding approach for frequent
sequence mining. IEEE Int. Conference on Data Mining.

Ho, J., L. Lukov, and S. Chawla (2005). Sequential pattern mining with constraints on large
protein databases. In Proceedings of the 12th International Conference on Management of
Data (COMAD 2005b), pp. 89–100. Computer Society of India.

Mannila, H., H. Toivonen, and A. Inkeri Verkamo (1997). Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery 1(3), 259–289.

Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu (2001). PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern. IEEE Int. Conference on
Data Engineering.

Simovici, D. A. and C. Djeraba (2008). Mathematical Tools for Data Mining – Set Theory,
Partially Ordered Sets, Combinatorics. London: Springer-Verlag.

Srikant, R. and R. Agrawal (1996). Mining sequential patterns: Generalizations and perfor-
mance improvements. In EDBT, pp. 3–17.

Zaki, M. J. (2000). Sequence mining in categorical domains: Incorporating constraints. In
CIKM, pp. 422–429.

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1/2), 31–60.

Résumé

Nous développons un algorithme efficace pour détecter des motifs fréquents qui se pro-
duisent dans des bases de données séquentielles sous certaines contraintes. En combinant
l’utilisation des représentations des bases de données séquentielles par séquences binaires avec
des graphes d’association, nous obtenons un meilleur temps et une utilisation moins grande de
la mémoire basée sur une réduction considérable du nombre des motifs candidates.

