Probabilistic Multi-classifier by SVMs from voting rule to voting features

Anh Phuc TRINH, David BUFFONI, Patrick GALLINARI*
*Laboratoire d'Informatique de Paris 6
104, avenue du Président Kennedy, 75016 Paris.
\{anh-phuc.trinh,david.buffoni,patrick.gallinari\} @lip6.fr,

1 Probabilistic multi-classifier by SVMs

Definition of the posterior probabilities for multiclass problem

Let $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ be a set of m training examples. We assume that each example \mathbf{x}_{i} is drawn from a domain $X \in \mathbb{R}^{n}$ and each class y_{i} is an integer from the set $Y=\{1, \ldots, k\}$ with $k>2$. The posterior probabilities of multiclass problem is a conditional probability of each class $y \in Y$ given an instance \boldsymbol{x}

$$
\begin{equation*}
P(y=i \mid \mathbf{x})=p_{i} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i}=1 p_{i}>0 \forall i \tag{2}
\end{equation*}
$$

There are two approaches, either one-vs-one or one-vs-rest, in solving the multi-class problem by SVMs. Following the setting of the one-vs-one approach, we have the voting method proposed by (Tax, 2002) using decision values $f_{i j}(\mathbf{x})$ of SVMs to estimate the posterior probabilities. Another method of (Wu T-F, 2004) obtains p_{i} from the pairwise probability of (Platt, 2000).

2 From voting rule to voting features

Definition of the voting features

Suppose that $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ is the set of m training examples drawn from an independent and identical distribution. A voting feature representation Θ : $C\left(f_{i j}(\mathbf{x})\right) \times Y \rightarrow \mathbb{B}^{d}$ is a function Θ that maps a configuration of decision values $c\left(f_{i j}(\mathbf{x})\right) \subset$ $C\left(f_{i j}(\mathbf{x})\right)$ and a class $y_{i} \in Y$ to a d-dimensional feature vector, thus the set of voting features is denoted by $\mathbb{V F}$.

The posterior probabilities definied on the set of voting features $\mathbb{V F} p_{i}=P(y=i \mid \mathbf{x}, \lambda)=$ $\frac{\exp \left(\sum_{l=1}^{d} \lambda_{l} \times \Theta_{l}(\mathbf{x}, y=i)\right)}{\sum_{y=1}^{k} \exp \left(\sum_{l=1}^{d} \lambda_{l} \times \Theta_{l}(\mathbf{x}, y)\right)}$ is estimated in maximizing the logarithm of the conditional likelihood (Nigam et McCallum, 1999) and is solved by unconstrained optimization problem.

