Graph grammar-based transformation for context-aware
architectures supporting group communication

Ismael Bouassida Rodriguez*, Christophe Chassot*, Mohamed Jmaiéf*

*CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse)ydera
**Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-310ulouse, France
bouassida@laas.fr,chassot@laas.fr
“**Uiversity of Sfax, ReDCAD Research Unit, B.P. 1173, 303&STainisia
mohamed.jmaiel@rnu.enis.tn

Abstract. Handling context-aware dynamically adaptable architestucon-
tributes to the design of self-configuring software systehss kind of problem
for communicating systems is even more challenging sine@tation should
address simultaneously the different levels. This is remgsfor handling both
changes in the low level constraints and evolutions in thgg hével require-
ments. In this paper, we address this problem by providingodekbased,
rule-oriented approach that supports the adaptation psde@sed on a run-time
transformation of the system architecture. Such architeaihay represent the
different possible service compositions and the assataiehitectural configu-
rations. We consider the multi-level models of the commaitiig system archi-
tecture and the intra-level architecture transformat@sshe elementary adap-
tation actions. We handle consistently the related ireeelladaptation actions
by considering additional architectural relationshipsaing the lower level ar-
chitecture as a refinement of the upper level.We provide kherithms char-
acterizing the multi-level architecture-based adaptapoocess. We then de-
velop a rule-oriented implementation using graph grammdrreandling archi-
tectural transformations as graph transformation rules cénsider Emergency
Response and Crisis Management Systems (ERCMS) as a cdgdrsim the
more general group communication systems to which ourteapply.

1 Introduction

Designing and implementing self-adaptive communicatipgteans is a complex task,
which may be addressed via model-based design approacoesaaed with automated man-
agement techniques for dynamic architectural adaptabilih self-adaptable applications,
components are created and connected, or removed and mEsted during the execution.
The architectural changes respond to constraints of thenuotitation and resources exe-
cution capacities variations. Providing solutions fortidlisited software systems supporting
group communication requires managing dynamically emgigroup membership and dy-
namically connecting deployment nodes.



Graph grammar-based transformation for context-awat@taatures

For a number of group communication-based applicatior@daey such a reconfiguration
for one or more levels of interaction and distribution widknd on the situation of a run-time
changing context.

Providing generic solutions for automated self-reconfigion in group communication
support systems can be guided by rule-based reconfigugatianies. This is the approach we
adopt in this paper. In order to guarantee the architeceoenfiguration correctness we use
formal techniques.

In particular, graphs represent an appropriate mean tafgpespectively static and dy-
namic architectures aspects. The solution we presentsiptper, is based on graph grammar
theories. It handles architectural refinement as graphsemretices are assimilated to soft-
ware services and components. It provides the graph tramafmn rules allowing to handle
the deployment architecture changes at run-time.

To illustrate the proposed models and their transformatiore consider a case study of
Emergency Response and Crisis Management Systems (ER@MB)ing several cooperat-
ing participants having different roles and functions. Adaebbased approach for adaptability
management presented in section 3. The ERCMS case studgsienped in section 4. The
Graph-Grammar based rule-oriented implementation isigealin section 5. Section 6 gives
The graph grammar for architecture reconfiguration. Casictuis provided in the last section.

2 Related work

Adaptation objectives, actions and properties are amoagrtain facets of adaptability.
They are studied and classified in this section.

Two different adaptability views may be distinguished: tldesign time adapt-
ability Fahmy and Holt (2000; Ermeletal. (200) and the run-time adaptability
Chang and Karamche{R000Q. For the first view, we can find design support that han-
dles the application development cycle and optimizes theuree value by insuring that the
infrastructure answering clearly and in a measurable wagctivity requirements. For the
run-time adaptabilityrriday et al.(2000 presents several adaptation techniques among which
use proxy services, change model of interaction and reagapplication structure.

Adaptation approaches are also targeting different achital levels including Service,
Middleware and Network levels. At the first level, the Seevioriented Architecture (SOA)
paradigm is based on dynamic services publishing and disitay. This kind of architectures
provides the possibilities to dynamically compose sewsiwe adapting applications to con-
text. Service descriptions are published, via the regibirgervice providers and dynamically
discovered by service requesters.

Other frameworks are proposed to provide adaptability Far Middleware level. In
Nasser and Hassane{@004), an adaptive framework supporting multiple classes oftimul
media services with different QoS requirements in wirelesular networks is proposed.
Sun et al.(2003 proposes CME, a Middleware architecture for service aatagt based on
network awareness. CME is structured as a software platbatimto provide network aware-
ness to applications and to manage network resources in aptia fashion. Friday et al.
(2000 applies reflection to design of Middleware adaptive platfe\Wu et al. (2001 ad-
dresses the need for adaptation in video streaming apphsadistributed over the Best-Effort
Internet. Several techniques have been proposed basedooméshanisms: an applicative



I. Bouassida Rodriguez et al.

congestion control, which can be implemented in severalswagte control, rate-adaptive
video encoding, rate shaping; and error control integgationcepts such as delay-constrained
retransmissions and forward error correction.

At the Network level Exposito et al(2003 provides frameworks for designing Transport
protocols whose internal structure can be modified accgrairthe application requirements
and network constraints. Adaptation actions correspotitetoeplacement of a micro-protocol
by another following a plug and play approach.

The adaptation solutions suggested in the literaturendjsish behavioural and architec-
tural aspects. The adaptation is behavioural (or algoihwhen the behaviour of the adaptive
service can be modified, without modifying its structurearttard protocols such as TCP and
specific protocols such a&/u et al.(2001) provide behaviour-based adaptation mechanisms.
Behavioural adaptation is easy to implement but limits tthepaability properties.

The adaptation is architectural when the service composittan be modified
Garlan and Perry1999; Ellis et al. (1996 dynamically. In self-adaptive applications com-
ponents are created and connected, or removed and distedmkring the execution. The
architectural changes respond to constraints relatedet@xlecution context involving, for
example, variations of communication networks and prangsgsources. They may also re-
spond to requirement evolution in the supported activitigslving, for example, mobility of
users and cooperation structure modification.

Designing and implementing self-adaptive communicatiysjesns is a complex task. To
handle this complexity, several studi&anek and Corb{2003 showed the need to lay on
model-based design approaches associated with automatexhement techniques.

Static architectures are described by instances of conmp@m@@d interconnection links.
The dynamic character of architectures requires additiai@scription rules. Several
works have addressed the dynamic architecture descrjptismg different approaches
Allen and Garlan(1997. In order to guarantee the architecture evolving, coness formal
techniques are used. In particular, graphs represent arfubwgpressive mean to specify re-
spectively static and dynamic architectures aspestdetayer(1998; Hirsch et al(1999. For
such approaches, graph vertices represent the softwaneoo@mts, and the edges represent
the links between these components. Dynamic architectusedescribed as graph grammars
and architecture transformation is specified and ruledgugmaph rewriting models. This is
also our approch here.

3 Model-based Approach for Adaptability Management

Managing self-adaptability in group communication a¢itéd requires considering several
kinds of evolving requirements and changing constraimtd,l@ad to architectural adaptations
at different levels of the communication stack. This raiseordination problem which, if
not properly addressed, may conduct to inefficient or eveorisistent solutions.

Managing architectural adaptations require defining andetting abstraction levels ded-
icated to specific parts of the whole adaptation. Distinguig these different abstraction
levels allows designers and developers to respectivelyant®e specification and the imple-
mentation of adaptation rules. For a given deployment cardigpn A,, ;* at leveln, a set

LIn the notationA,, 1, n denote the level that the configuratienbelongs and the index of this configuration.



Graph grammar-based transformation for context-awat@taatures

TAB. 1 — Abstract Adaptability Algorithm
1 Select the initial configuration of levet A,, o
2 CallG_Refine() to compute the correspondent configurations at levell
3 Get context values (e.g the available power, the availaigleory)
4 Call Weight_based_selection() to select the suitable configuration at lewel- 1
5 loop
6 {
7 Wait for a reconfiguration event:
8 CallG_Reconfigure() to generates a new deployment configuration (Ieyel
9 CallG_Refine() to compute the correspondent configurations at levell
10 Get context values (e.g the available power, the availadg@imory)
11 Call Distance_based_selection() to select the suitable configuration at lewel- 1
12}

of deployment configurations,, 1 ;= (A,_1.1,..., An_1,) May be implemented at level
n — 1. Adapting the architecture to constraint changes at level 1 by switching among
these multiple deployment configurations allows maintagninchanged the n-level deploy-
ment configuration.

Moreover, when adaptation requires changes at leyvtiis may need no changes at level
n — 1 if initial and new deployment configurations of leve(e.g. changes from,, ; to A4,, 2)
share common implementations (ed),—1 ;) at leveln — 1.

3.1 Generic Graph Adaptability Algorithm

We present an algorithm (tablg and four procedures (tabl@s 3, 4 and5) that handle
the refinement and the reconfiguration process. We use grapimgar-based implementation
of the reconfiguration and the refinement procedures. Geveigrammars are described in
general as a classical grammar system where there is an axieet of non-terminal nodes,
a set of terminal nodes, and a set of transformation rifleslso called grammar productions.
An instance belonging to the graph grammar is a graph cantaonly terminal nodes and is
obtained starting from the axiom by applying a sequenceadywtions frompP.

We define also functions that allow selecting the suitabpgajenent configurations at each
step of the reconfiguration process.

3.2 Algorithm Execution

The adaptation algorithm begins by selecting and refiniegrtfial deployment configu-
ration (tablel line 1 and 2). The procedureé_Refine() (table2) handles these two actions.
After the refinement of the initial deployment configuratitine adaptability algorithm se-
lects the optimal deployment configuration at the level 1 (tablel line 4) that implements

2In the notationA,, 1 ;, n — 1 denote the level and the index of then-level configuration implemented by
Ap_1,.



I. Bouassida Rodriguez et al.

TAB. 2 — The Graph Refinement Procedure

1 G_Refine()
2{
3 LetA,, A,,_; be the set of deployment configurations at leveind leveln — 1.
4 LetA,; € A,,i < N, be a given deployment configuration
5 Computed,,_;; = {A,_1,; € A,,_; such that:
I1...pp € P Apy 2 A,y 4,7 €N}

6}

TAB. 3 — The Weight Based Selection Algorithm
1 Weight_based_Selection()
2{
3 Let C denote the context attributes (e.g the available powervh#able memory)
4 LetA, , € A,,p € N, be a given deployment configuration
5 Selectd,, , € A,,peN
6 SelectS; = {A,,_11 € Aj,_1, k € N such that:
Weight(An—1%) < Weight(X),VX € A1}

7 if card(Sy) > 1
8 SelectS; = {A,,_1 1 € S1,k € Nsuch that:

Contextaware_Cost(An—1x,C) < Contextaware_Cost(X,C), VX € S1}
9  ifcard(Sy) > 1
10 Select any deployment configuration from
11}

the initial deployment configuration at the level The refinement procedut@ Re fine() (ta-
ble 2) corresponds to the application of a set of grammar produsti; . . . p, that implement
the refinement of a deployment configuration from the levi leveln — 1.

The procedurdVeight_based_Selection() (table3) formalizes the selection suitable ar-
chitectures. The selection is based on minimizingifhieight() defined as a generic function
independent of the context (tab®line 6). This function corresponds to the cost or to the
efficiency/performance of an architecture. For exampleait be defined as the number of
software components by deployment node or the scope of aitexture.

TheContextaware_Cost() (table3line 8) is a generic function that is aware of dependent
of the context (table8 line 3). This function can be related to the communicatiod tre
resources constraints of the architecture. For exampbmniegpress the availability level of a
given resource (Bandwidth, Memory). After selecting théahconfiguration, the adaptability
algorithm waits for a reconfiguration evenftablel line 8).

When a reconfiguration event occurs, this triggers the regorgtion procedure
G_Reconfigure() (tabled). This procedure reconfigures generates a new deployment co
figuration at level. In this function we use an application that associates to each couple
of a deployment configuratiod,, , and a reconfiguration eveata new deployment config-
uration 4,, , (table4 line 5 and 6). When a reconfiguration evenbccurs, this triggers a



Graph grammar-based transformation for context-awat@taatures

reconfiguration procedur@_Recon figure() (table4). This procedure reconfigures the cur-
rent deployment configuration and generates a new depldyeoefiguration at levek by the
application of a sequence of grammar productipns . p,. In this function we use an appli-
cationm that associates to each reconfiguration eveatsequence of grammar productions
P ... pi- The sequence of grammar productigns. . p;, reconfigures the current deployment
configurationA,, ; and generates a new deployment configuratqry.

TAB. 4 — The Graph Reconfiguration Algorithm
1 G_Reconfigure()
2{
3 Let £ denote the set of the reconfiguration events
4 LetA, ,; € A,,i € Nbe agiven deployment configuration
5 Letm:E — P
€—Pr...Dk
Jasequence; . ..p; = m(e)
Apply m(e) on A, ;
Let A, ; the result of the application of.(e)

~~ 00 ~NO®

After the reconfiguration of the initial deployment configtion, the adaptability algorithm
selects the optimal deployment configuration at level 1 (tablel line 11) that implements
the deployment configuration at levelobtained througld:_Re fine().

The procedureDistance_based_Selection() (table5) minimizes the distance between
two deployment configurations at level- 1 both implementing the correspondent deployment
configurations at the level (table5 line 6) and theContextaware_Cost() (table5 line 8)
according to the context values and characteristics (&lte 3).

The adaptability algorithm loops (takldine 5) and waits for another reconfiguration event
that will trigger a new reconfiguration at level

4 Case Study

In this section we detail the abstraction levels for adaptabmanagement. To expose
the targeted problems and concepts and to show the usefuhtee graph-based models, we
consider the example of ERCMS. We introduce this examplegarmtwo different execution
steps and develop the related scenarios.

4.1 Considered Abstraction Levels

For adaptability management, we consider two main abgiractevels allowing
component-to-component and service-to-service ardhit@qroperties to be described. From
a communication point of view they represent respectivbly,Middleware layer and the up-
per service layers. In the following, we will refer to thesmtlevels as: the Middleware-level
(M-level) and the Service-level (S-level).



I. Bouassida Rodriguez et al.

TAB. 5 — The Distance-Based Selection Algorithm
1 Distance_based_Selection()
2
3 LetC denote the context attributes (e.g the available poweayh#able memory)
4 Let A, 4 the result of the reffinement of,, ,,
5LetA,_; , the current mapping at level— 1 of 4,, ,
6 SelectS; = {A,,_1 1 € A,,_1 4,k € Nsuch that:
Relative_Cost(Ap_1,p, An—1.1) < Relative_Cost(An—1,,X),¥X € A1 4}
7if card(Sy) > 1
8 SelectSy = {A4,,_1, € S1,k € N such that:
Contextaware_Cost(A,—1,C) < Contextaware_Cost(X,C),VX € S1}
9 ifeard(S:) >1
10 Select any deployment configuration from
11}

The S-level constitutes the highest communication levelescribes the services and their
associated requirements and constraints provided by cangating software entities exchang-
ing high level information. Such constraints may represie@tincapacity of a given device to
host containers or components. A requirement may represeammunication priority be-
tween or from a given group of users. Requirements and @ntimay change dynamically
depending on the supported cooperative activity and ittuéeo. S-level entities can be in-
stantiated in different ways. For instance, they can repriethe different roles the human
participants may have within the considered activity. Famugp communication activities, de-
pending on its role in the activity, each participant has eofgrm a set of given functions.
These functions are dynamically assigned to the partitgparcording to the evolution of the
activity, considering their skills.

The M-level is viewed as a component-to-component comnatioic level aiming at sup-
porting a given S-level architecture, considering reseustated constraints. Three roles are
distinguished: "event producers" (EP), "event consum@&®) and "channel managers" (CM).
Multiple producers and consumers are associated togegttbetsame channel manager.

4.2 ERCMS Example

ERCMS-like activities involve structured groups of paigants communicating to achieve
a common mission (e.g. save human lives, fight against a huege)fi

The scenario involves different categories of mobile actbat carry different types of
communication devices. We distinguish human actors thatlmegprofessional actors with a
professional and specific communication device or occasgxtors that carry a mobile device
(e.g PDAs, Phones). We distinguish also, robot actors llkegs, helicopters and ground
robots. For all the actors the communication system mudtwiiga unexpected or expected
evolution of user needs or the changes due to device/netwen$traints.



Graph grammar-based transformation for context-awat@taatures

Supervisor

3 Walker
% Coordinator
Plane
Conratr_——— T~ g
B,
Fireme

Group 4

Group 2

Fic. 1 — ERCMS actors

We define three different participant roles : The supena$tine mission, the coordinators,
and the field investigators. Each group of investigatorsipesvised by a coordinator (Figure
1).

Each participant is associated with an identifier, a rolethrdievices he/she/it uses. Each
participant performs different functions.

The supervisor’s functions include monitoring and authing/managing actions to be
achieved by coordinators and investigators. The supariggbe entity which supervises the
whole mission. The supervisor waits for data from coordireatvho analyse the current situ-
ation of the mission. The supervisor has permanent exetrgspurces and high communica-
tion and storage capabilities.

Coordinators that are attached to the supervisor, have twmgeaan evolving group of
investigators during the mission and to assign tasks to eAthem. The coordinator has
also to collect, interpret, summarize and diffuse inforiorafrom and towards investigators.
The coordinator has high software and hardware capabilitreFigurel, we can distinguish
the robot coordinator, the plane coordinator, the firemendioator that manage professional
actors and The walkers coordinator (located in a watch tpthat manage occasional actors.

The investigator’s functions include exploring the opienaal field, observing, analyzing,
and reporting about the situation. Investigators also@adiélping, rescuing and repairing.

We can distinguish different steps during the mission We ¢fie two most representative
execution steps: “Exploration step” (for the localizatiand the identification of the crisis
situation) and “Action step” (after the identification evernitially, all investigator groups are
in the “Exploration step”. Investigators provide contimgdfeedbacks D to the coordinator;
they also provide periodical feedbacks P .The coordinaonds continuous feedbacks P to the
controller.

When an investigator discovers a critical situation, itsugrbas to be reconfigured to face
this new situation. It moves to another execution step dalte“Action step”. The investigator
that discovers the critical situation keeps sending bosenltations D and analysis P to the
coordinator. The investigator also provides analysis fhéodther investigators of its group.



I. Bouassida Rodriguez et al.

Other investigators report analysis P to coordinator orbtss of observations D transmitted
by the critical investigator. The coordinator continuediag analysis P to the investigator.

When the critical situation is resolved, the investigatisaup comes back to the explo-
ration step.

5 The Graph Grammar-Based Rule-Oriented Implementa-
tion

To illustrate our approach, we use here the ERCMS case stdydefine three graph
grammars to implement architecture reconfiguration at émeice level ) and architecture
refinement for mapping S-level onto M-level.

In both cases, the proposed grammars generalize the cayebsteonsidering a variable
number of investigators. The refinement graph gramroa¥s . s exp andGGSHMyacﬁ, for
a given configuratio,, ; € A,,,7 € N at the service level, produce the set of configurations
A, _1; that can implemen#,, ; at the middleware level(— 1). These graph grammars are
an implementation of the refinement algorithm (taBje We present also a graph grammar
Pe.yp—ace that allows transforming the architecture to handle evigwof communication re-
quirements from the exploration step to the action steps ghaph grammar implements the
reconfiguration algorithm (tabl). For the ERCMS case study, we define the conféxta-
ble 3) as the percentage of the available energy on each nogeahd the percentage of the
available memory on each nodk,). To illustrate our proposal, we also define the functions
Weight(), Contextaware_Cost() and Relative_Cost() used in table3 and tableb.

The functionWeight() is defined as the number of transformations that refine a given
deployment architecture from levelto leveln — 1.

For the functionContextaware_Cost(), we proceed in two steps. First, for each deploy-
ment nodeN ode;, for a given deployment configuratiof,_; ,,, we calculate an evaluation

aLg + BLy

‘//’::
a+f

where the values and 3 are weights that give the importance degree to be assoaciatied
each factor L.,L /). For instance, if we know that for a specific node the mematyration
level is the most important factor, we sgeto a value higher than. Second, we calculate

1
Contextaware_Cost(An—1,,C) =: — Z Vi

where the valueV is the number of nodes in the deployment configuration ; .

For two given deployment configurations A,,_1 4 and  A,_1,
Relative_Cost(A,_1,4, An—1,) corresponds to the minimum redeployment actions for
switching fromA,,_; 4 t0 A, _1 .

The algorithm of tables implements our abstract algorithm taldle In the first step we
capture the context: the percentage of the available er(drgy and the percentage of the

3M stand for middleware, exp stand for Exploration step andstartd for Action step



Graph grammar-based transformation for context-awat@taatures

TAB. 6 — The Adaptability Algorithm Implemented by Graph-Grammars

Select4,, ( the initial deployment configuration
For all hosting nodes A, o capture the percentages of

available energy and of available memory.x) and L5;)
Apply GG's— p.exp tO TEfiNRA,, o INtO A, 1 o
Apply Weight_Selection() to select the optimal deployment configuratidn_; o
OnEvent investigator N discovers a critical situation

(change from the exploration step to the action step)
APPIY Pegp—act t0 reconfigured,, current INO Ay, e
Apply GGS—>M,act to reﬁneAn,new into An—l,new
For all hosting nodes inl,, ..., capture {z) and Cas)
Apply Distance_based_Selection() to select the optimal configuratioft, 1 ,ew

available memory 1 ,,) of each node in the initial deployment configuratidp . After the
refinement and the application of the weight-based seleetigorithm, we obtain the optimal
deployment configurationt,,_; ; that implements4,, , at the middleware level. After a re-
configuration, we obtain the deployment configuratidp;. In the last step, we refine and
apply the distance-based selection procedure. We obtivptimal deployment configuration
Ay, 1,1 thatimplementst,, ; at the middleware level and that represents an efficienttatiap
for the event that triggers the reconfiguration.

5.1 The Graph Grammar for Architecture Reconfiguration

Following the commonly used conventions, we consider tleatices represent commu-
nicating entities (e.g. services, components) and edgesspmnd to their inter-dependencies
(e.g. communication links, composition dependencies) okostudy, we consider an architec-
ture instance that includes a coordinator (Coord) managinginvestigators (Inv). The graph
edges are labelled by the exchanged data typgs?). Each participant has three attributes:
the identifier, the used data type and the deployment node.

In the following, we provide an example of graph grammar for case study to imple-
ment an architecture reconfiguration. The presented legritile allows transforming the
architecture to handle evolving of communication requiatrirom the exploration step to the
action step. The graph grammar is reduced to a single priotdugtammar?.,_..: which
is parametrized by the investigator identifier (here, ndt@dhat has discovered the critical
situation. The architecture is transformed by splitting tommunication channels between
the coordinator and the other investigators into a comnatigic channel of typd” between
these investigators and the controller and another contation channel of typ® between
them and Node N.

Figure2 gives an example of the application of this rule to move tlobigecture from the

exploration step to the action step (frafy, o to A, 1). Investigator i2 plays the role of the
critical investigator NP, ,,_...: allows the correct generation of the communication channel



I. Bouassida Rodriguez et al.

FIG. 2 — Reconfiguration from the Exploration Step to the Action Step

5.2 The Graph Grammars for Architecture Refinement

In this section, we give the graph grammar addressing theeregnt of a given architec-
ture of the S-level in all possible architectures of the Meleduring the exploration step and
the action step. Since this graph grammar refines a giveneb-dechitecture into M-level
architectures, its non-terminal nodes are S-level entitikile terminals nodes are M-level en-
tities. GG s_. a1,e2p allows implementing this refinement in the exploration steigure3 gives

EP(ep1,D,m2)

EP(ep1,D,m3)
Pull
PloP20oP20oP2

CM(cm1,D,m3)
EC(ec2,P,m1)

Pull

EP(epl1,D,m4)

CM(cm2,P,m4)

Pull

EP(ep2,P,m4)

FIG. 3 — Using GG s— ar,exp t0 achieve the refinement from S-level to M-level duringexpl
ration step

the refinement generated YG s— as eop Of A, 0. The application of the sequencgl; p2;
p2; p2" generates a configuration containing only terminal nodes (odes belonging to the



Graph grammar-based transformation for context-awat@taatures

M-level). Productiorp1 allows the refinement of the pattern consisting of the cowtdir, and
the two investigators whose matching host the channel neasé@g\/ 1 andC' M 2. Production
p2 allows refining the pattern for the other investigators. fdslt configuration is considered
as a refinement of the initial architecture exploration step

We also give the graph grammar addressing the refinemeny afrahitecture of the S-level
in all possible architectures of the M-level, during thei@tistep. Since this graph grammar
transforms S-level architecture into M-level architeesyrits non-terminal nodes are S-level
entities while terminals nodes are M-level entities.

For the coordinator, we generate an event producer and eharamagers to communicate
with the investigatorspl deploys channel managers on the coordinator node. Fiygiees
the refinement generated BYG s_. ys o+ Of A, 1 Dy the application op4. We can generate an
alternative refinement by the application of the sequerce5. This sequence of applications
generates configurations containing only terminal nodesifiodes belonging to the M-level).
This configuration is considered as a refinement of the Iratighitecture in the action step.

<A
D> EP(ep0,P,m1)

<P>
Pull
CM(cm3,P,m3)

P4

EC(ec4,D,m3)
Push
Pull

EC(ec1,P,m1) EP(epl,P,m2)

EC(ec2,D,m1) EP(ep2,D,m2) CM(cm4,D,m4) EP(eps.p.md)
Pull Bull
Pull

Pull

Pull

| CM(cm2,0,m1) | EP(ep3,D,m2) EC(ec5,D,m4)

FIG. 4 — Using GG g_.ar,qct t0 achieve the refinement from S-level to M-level duringe@xpl
ration step

6 Conclusion

In this paper, we have presented a multi-level architett@@onfiguration approach for
implementing context-aware adaptation procedures. We bhwwn how describing deploy-
ment architectures as graphs and how using graph gramnhass @ rule-based management
model to be elaborated. The rules handle both transformigigem architecture within the
same level and architectural mappings between differeetde Using such a rule-based ap-
proach allows correct architectural reconfigurations tohweracterized and used either offline
to help implementing the decision process, or on-line todiethe architectural adaptation.
Our approach has been successfully illustrated for cotith@ group communication and
applied for Emergency Response and Crisis Managementr8ysten base of a graph trans-



I. Bouassida Rodriguez et al.

formation engine, we have simulated and validated our nulds successful scalability tests.
Current work addresses real experiments on top of ubigsitetworks started within the con-
text of the European project UseNet. Future research actimiude defining the complete
adaptation process and refining the elaborated selectimtiduns.

References

Allen, R. and D. Garlan (1997). A formal basis for architeatwonnectionACM Transactions
on Software Engineering and Methodolog3% 213—249.

Chang, F. and V. Karamcheti (2000). Automatic configurato run-time adaptation of
distributed applications. IRIPDC, pp. 11-20.

Ellis, W., R. Hilliard, P. Poon, D. Rayford, T. Saunders, BieBund, and R. Wade (1996).
Toward a recommended practice for architectural desoriptiin 2*¢ |IEEE International
Conference on Engineering of Complex Computer Systelmstreal, Canada, pp. 21-25.

Ermel, C., R. Bardhol, and J. Padberg (2001). Visual desfgsotiware architecture and
evolution based on graph transformation.Uniform Approches to graphical process spec-
ification TechniqugsGenove, Italy.

Exposito, E., P. Senac, and M. Diaz (2003). FPTP: the XQoSreawsad fully pro-
grammable transport protocol. FProc. The 11th IEEE International Conference on Net-
works (ICON’2003) Sydney, Australia.

Fahmy, H. and R. Holt (2000). Using graph rewriting to spgsifftware architectural trans-
formations. In15** IEEE international Conference on Automated Software Eegjiimg,
ISBN 0-7695-07105/Grenable, France, pp. 187-196.

Friday, A., N. Davies, G. Blair, and K. Cheverst (2000). Deping adaptive applications:
The most experiencéntegrated Computer-Aided Engineerin(2$, 143— 157.

Ganek, A. and T. Corbi (2003). The dawning of the autonomioating era.|IBM Systems
Journal 441), 5-18.

Garlan, D. and D. Perry (1995). Introduction to the specalé on software architecture.
IEEE Transactions On Software Engineering2)1 269-274.

Hirsch, D., P. Inverardi, and U. Montanari (1999). Modelgaftware architectures and styles
with graph grammars and constraint solving.1fh Working IFIP Conference on Software
Architecture San Antonio, TX, USA, pp. 127-142. ISBN 0-7923-8453-9, Wéu.

LeMetayer, D. (1998). Describing software architectuggest using graph grammarsEEE
Transactions On Software Engineering(2}} 521-533.

Nasser, N. and H. Hassanein (2004). Adaptive bandwidth dveork for provisioning
connection-level gos for next-generation wireless catluletworks. Canadian Journal of
Electrical and Computer Engineering €9, 101-108.

Sun, J. Z., J. Tenhunen, and J. Sauvola (2003). Cme: a middeavchitecture for network-
aware adaptive applications. Rroc. 14th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communicatignglume 3, Beijing, China, pp. 839-843.

Wu, D., Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha (2001)e&ning video over the
internet: approaches and directioHSEE Trans. Circuits Syst. Video Techn (3} 282—-300.



	Introduction
	Related work
	Model-based Approach for Adaptability Management
	Generic Graph Adaptability Algorithm
	Algorithm Execution

	Case Study
	Considered Abstraction Levels
	ERCMS Example

	The Graph Grammar-Based Rule-Oriented Implementation
	The Graph Grammar for Architecture Reconfiguration
	The Graph Grammars for Architecture Refinement

	Conclusion

