
Assembly of components based on interface automata and UML
component model

Samir Chouali ∗, Sebti Mouelhi ∗, Hassan Mountassir ∗

∗Laboratoire d’Informatique de l’université de Franche-Comté, LIFC
{schouali, smouelhi, hmountassir }@lifc.univ-fcomte.fr

Abstract. We propose an approach which combines component UML model and interface
automata in order to assemble components and to verify their interoperability. We spe-
cify component based system architecture with component UML model, and component
interfaces with interface automata. Interface automata is a common Input Output (I/O)
automata-based formalism intended to specify the signature and the protocol level of com-
ponent interfaces. We improve interface automata approach by component UML model,
in order to consider system architecture, in component composition and interoperability
verification methods. Therefore, we handle in interface automata, the connection between
components, and the hierarchical connections between composite components and their
subcomponents.

1 Introduction
Component based systems are made up of collection of interacting entities, called components. The

idea in component based software engineering (CBSE) is to develop software applications not from
scratch but by assembling various library components, Szyperski (1999); Heineman et Councill (2001).
This development approach allows, to extend component based systems via plug and play components,
and to reuse components. Therefore one saves on development costs and time.

A component is a unit of composition with contractually specified interfaces and explicit dependen-
cies, Szyperski (1999). An interface describes the services offered and required by a component without
disclosing the component implementation. It is the only access to the information of a component. In-
terfaces may describe component infomation at signature (method names and their types), behaviour or
protocol (scheduling of method calls), semantic (method semantics), and quality of services levels. The
success of applying the component based approach depends on the interoperability (we say also com-
ponent compatibility) of the connected components. The interoperability can be defined as the ability of
two or more entities to communicate and cooperate despite differences in their implementation language,
the execution environment, or the model abstraction, Konstantas (1995); Wegner (1996). The interopera-
bility holds between components when their interfaces are compatible.

In this paper, we focus on assembling components described by interface automata. The interface
automata based approach was proposed by L.Alfaro and T.Henzinger, Alfaro et Henzinger (2001, 2005);
Alfaro et al. (2002). They have proposed to specify component interfaces with automata, which are la-
belled by input, output, and internal actions. These automata allow to describe component information at
signature and protocol levels. An interesting verification approach was also proposed to detect incompa-
tibilities at signature and protocol levels between two component interfaces. The verification is based on
the composition of interfaces, which is achieved by synchronizing component actions.

The essential drawback of the interface automata approach is that, it is unable to accept as an input a
set of interface automata, more than two, associated to all components composing a component based sys-

Assembly of components based on interface automata and UML component model

tem, and also consider system architecture. In fact, interface automata are proposed to specify component
behaviour only and therefore are unable to describe, the connection between primitives components and
composites (composed of others components), and the hierarchical connections between composites and
their subcomponents, which also influences component behaviors. Therefore, we propose to enrich this
approach by exploiting the component UML model which specifies the component based system architec-
ture. The point we want to address in our paper is to show how to combine UML and interface automata
to verify interoperability in component based systems.

The paper is organized as follows : In section 2, we describe the approach based on interface automata
to verify component iteroperability. In section 3, we describe our approach which combines UML com-
ponent model an interface automata in order to assemble components and to verify their interoperability,
according to system architecture. The approach was illustrated on the vehicle CyCab use case. Related
works are presented in section 4. We conclude our work and present perspectives in section 5.

2 Interface Automata
Interface automata (IAs) have been defined in Alfaro et Henzinger (2001), to model the temporal

behavior of software and hardware component interfaces. These models are non-input-enabled1 like I/O
automata in Lynch et Tuttle (1987) . Every component interface is described by one interface automaton
where input actions (assigned by ?) are used to model methods that can be called, and the end of recei-
ving messages from communication channels, as well as the return values from such calls. Output actions
(assigned by !) are used to model method calls, message transmissions via communication channels, and
exceptions that occur during the method execution. Hidden actions (assigned by ;) describe the local ope-
rations of the component.

Definition 1 (Interface Automata). An interface automaton A = 〈 SA, IA, ΣI
A, ΣO

A , ΣH
A , δA 〉 consists of

– a finite set SA of states ;
– a subset of initial states IA ⊆ SA. Its cardinality card(IA) ≥ 1 and if IA = ∅ then A is called

empty ;
– three disjoint sets ΣI

A,Σ
O
A and ΣH

A of inputs, output, and hidden actions ;
– a set δA ⊆ SA × ΣA × SA of transitions between states.

The composition operation may take effect only if their actions are disjoint, except shared input and out-
put actions between them. When we compose them, shared actions are synchronized and all the others
are interleaved asynchronously.

Definition 2 (Composition Condition). Two interface automata A1 and A2 are composable if

ΣI
A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣH

A2
∩ ΣA1 = ∅

Shared(A1,A2) = (ΣI
A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared actions between A1 and A2. We can

now define the product automaton A1 ⊗A2 properly.

Definition 3 (Synchronized product). Let A1 and A2 be two composable interface automata. The pro-
duct A1 ⊗A2 is defined by

– SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;
– ΣI

A1⊗A2
= (ΣI

A1
∪ ΣI

A2
) \ Shared(A1, A2);

– ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

– ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

1input actions are not enabled at every state of one automaton

S. Chouali, S.Mouelhi, et H.Mountassir.

– ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

– a 6∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2
– a 6∈ Shared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1
– a ∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ (s2, a, s′2) ∈ δA2 .

The incompatibility between two composable interface automata is due to the existence of some states
(s1,s2) in the product where one of the automata outputs a shared action sa from the state s1 which is not
accepted as input from the state s2 or vice versa. These states are called illegal states.

Definition 4 (Illegal States). Given two composable interface automata A1 and A2, the set of ille-
gal states Illegal(A1, A2) ⊆ SA1 × SA2 of A1 ⊗ A2 is defined by {(s1, s2) ∈ SA1 × SA2 |∃a ∈
Shared(A1, A2). (a ∈ ΣO

A1
(s1) ∧ a 6∈ ΣI

A2
(s2)) ∨ (a ∈ ΣO

A2
(s2) ∧ a 6∈ ΣI

A1
(s1))}.

The reachability of states in Illegal(A1, A2) do not implies that A1 and A2 are not compatible. The exis-
tence of an environment E that produces appropriate inputs for the product A1 ⊗ A2 ensures that illegal
states will not be entered and then A1 and A2 can be used together. The compatible states, denoted by
Comp(A1,A2), are states from which the environment can prevent entering illegal states. The compatibi-
lity can be defined differently, A1 and A2 are compatible if and only if their initial state is compatible.

Definition 5 (Composition). Given two compatible interface automata A1 and A2. The compostion
A1 ‖ A2 is an interface automaton defined by : (i) SA1‖A2 = Comp(A1,A2), (ii) the initial state is
IA1‖A2 = IA1⊗A2 ∩ Comp(A1,A2), (iii) ΣA1‖A2 = ΣA1⊗A2 , and (iv) the set of transitions is δA1‖A2 =
δA1⊗A2 ∩ (Comp(A1,A2) × ΣA1‖A2 × Comp(A1,A2)).

In this approach, the verification of the compatibility between a component C1 and a component C2

is obtained by verifying the compatibility between their interface automata A1 and A2. The verification
steps of the compatibility between A1 and A2 are listed below.

– Algorithm
– Input : interface automata A1, A2.
– Output : A1 ‖ A2.
– Algorithm steps :

1. verify that A1 and A2 are composable,

2. calculate the product A1 ×A2,

3. calculate the set of illegal in A1 ×A2,

4. calculate the bad states in A1 × A2 : the states from which the illegal state are reachable by
enabling only the internal action or the output actions (one suppose the existence of a helpful
environment),

5. CalculateA1 ‖ A2 by eliminating from the automatonA1×A2, the illegal state, the bad state,
and the unreachable states from the initial states,

6. after performing the above step, if the automaton A1 ‖ A2 is empty then the interface auto-
mata A1, A2 are not compatible, therefore C1 and C2 can not be assembled correctly in any
environment. Otherwise A1 and A2 are compatible.

The complexity of this approach is in time linear on |A1| and |A2| Alfaro et Henzinger (2001).

Assembly of components based on interface automata and UML component model

3 Assembling components according to their IAs specification and
an UML-based architecture

UML 2.0 offers concepts to well-design CBS architectures and interactions between their components.
These concepts are based on required and provided interfaces to model interactions between components
without giving any information about the protocol specification of components. UML 2.0 specifies a
component as reusable modular unit, which interacts with its environment. Interfaces describe component
operations annotated by their pre and post-conditions and they may also describe component data models.

In this paper, we specify component interfaces by interface automata in order to strengthen UML
component models by checking formally the component compatibility at the protocol level. We propose
a fully algorithmic approach that exploits a component UML model to improve interface automata ap-
proach, in order to verify component composition.

3.1 Improvement of interface automata approach based on component UML mo-
del

We specify the UML architecture as a graph where nodes are the components of the system and edges
represent both the hierarchical relations between composite components and their subcomponents and
the connections between subcomponents within a composite component in the model. The nodes of the
graph can be seen as tree if we consider only hierarchical relations. For an UML architecture M, we
denote by AM all the interface automata specifications of all the primitive components constructing the
UML architecture M and by CM all the (composite and primitive) components constructing M. AC is the
interface automaton of a component C.

Definition 6 (Graph Representation of an UML Architecture). A Graph Representation GM = 〈 NGM
,

CpGM
, CnGM

〉 of an UML architecture M, consists of
– a finite set NGM

of nodes representing CM ;
– a finite set CpGM

of edges representing the relations between the nodes representing composite
components and their subcomponents ;

– a finite set CnGM
of edges representing the connections between the nodes representing subcom-

ponents within a same component.
By traversing this graph, we propose an algorithm that can at the same time, (i) check the compatibility
between connected components at the level of a subcomponent and (ii) construct progressively the IAs
specification of the final system. In the case where incompatibilities is detected at most between two in-
terfaces, it returns an empty interface automata. In order to specify this algorithm, We propose to improve
interface automata of a each component C, with the set of components connect to C(neighbors of C).
This set is deducted from the graph defining component UML model.

The following definitions show the adaptation to introduce in interface automata approach in order to
handle the component UML model.
Definition 7 (Improved interface automata). An interface automaton A, which describes a component
CA, is defined by a tuple, 〈 SA, IA, ΣI

A, ΣO
A , ΣH

A , δA, UA 〉, such that :
– a finite set SA of states ;
– a subset of initial states IA ⊆ SA. Its cardinality card(IA)≥ 1 and if IA = ∅ then A is called empty ;
– three disjoint sets ΣI

A,Σ
O
A and ΣH

A of inputs, output, and hidden actions ;
– a set δA ⊆ SA × ΣA × SA of transitions between states.
– UA is the set of the components connected to the component CA, according to the UML model of

the component based system architecture
We adapt also the synchronized product of two interface automata.

S. Chouali, S.Mouelhi, et H.Mountassir.

Definition 8 (Improved sychronized product). Let A1 and A2 be two composable interface automata
corresponding respectively to the componentsCA1 andCA2 . The productA1⊗A2 is defined by 〈 SA1⊗A2 ,
IA1⊗A2 , ΣI

A1⊗A2
, ΣO

A1⊗A2
, ΣH

A1⊗A2
, δA1⊗A2 , UA1⊗A2 〉, such that :

– SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;
– ΣI

A1⊗A2
= (ΣI

A1
∪ ΣI

A2
) \ Shared(A1, A2);

– ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

– ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

– ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

– a 6∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2
– a 6∈ Shared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1
– a ∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ (s2, a, s′2) ∈ δA2 .

– UA1⊗A2= {UA1 ∪ UA2} \ {CA1 , CA2}.
When we compose two components C1, and C2, by their respective interface automata A1 and A2,

the set UA1‖A2 corresponding the the interface automata, A1‖2, which describes the composite C1 ‖ C2,
is defined by : UA1⊗A2 . And, for each set UAi , belonging to an interface automaton Ai, we replace each
occurrence of C1 or C2 by C1 ‖ C2.

Remark : The other steps to verify the compatibility between two components, with the interface
automata approach, are not affected by the adaptation. They are the same as those explained in the section
3 : after calculating the synchronized product, we calculate the composition by eliminating the illegal
states.

3.2 CyCab use case :

FIG. 1 – The UML 2.0 architecture of a basic CyCab CBS.

Assembly of components based on interface automata and UML component model

As an example, we consider a CyCab car component-based system (in Baille Gérard et Pissard-
Gibollet (1999)). The CyCab car is a new electrical means of transportation conceived essentially for
free-standing transport services allowing users to displace through pre-installed set of stations.

In Figure 1, we describe the CyCab architecture with UML component model. The CyCab system
is composed of two main composites : Station and Vehicle. The Vehicle sends signals spos ! to inform
the upcoming station about its positions and it receives as consequence signals (far ! or halt !) to know
if it steels far from the station or not. The two automata Sensor (Ss) and ComputingUnit (Cu) are the
subcomponents of the station. The sensor detects a position signal sent from the vehicle and converts
it to geographic coordinates (pos !) which will be used by the ComputingUnit to compute the distance
between the vehicle and the station and decide if they steel far from each other or not. The vehicle is
composed from three primitive components : the VehicleCore (Vc), the Starter (Sr), and the embedded
EmergencyHalt (Eh) device.

We depict so the CyCab UML architecture as shown in Figure 2. The continuous edges represent
the hierarchical relations between composite components and their subcomponents. The dashed edges
represent the connections between components at the level of composite components. Two components
are connected if and only if there is at least one interaction between their interfaces.

FIG. 2 – The graph representation of the CyCab car system.

3.3 The algorithm :

We present the algorithm allowing the component composition and the verification of component
interoperability, based on improved interface automata approach and component UML Model.

This algorithm is based on traversing the graph which specifies system architecture, in order to check
the compatibility between connected components at the level of a subcomponent, and to construct pro-
gressively the IAs specification of the final system. In the case where incompatibility is detected at most
between two interfaces, it returns an empty interface automata.

S. Chouali, S.Mouelhi, et H.Mountassir.

The algorithm, is based on DFS (depth first search) algorithm, and we explain this algorithm by three
steps.

We consider a graph GM which specifies an UML component model M .

3.3.1 First Step

This step consists in traversing the graph in order to :
– find the sets UAi (neighbors of each components in a system architecture) of each interface au-

tomata Ai corresponding to a primitives components in a system. These sets will be used in the
second step.

– find the sets of child nodes for each node associated to composite components. These sets will be
used in the third step.

3.3.2 Second Step (see algorithm 1)

In this step, we define a function Compos(C1,...,Cn) which accepts as input a set of components and
as output, the interface automata of the resulting composite or the empty set (empty interface automaton)
if there is incompatibility between two components. The function is described by Algorithm 1.

Algorithm 1: Compos

Input: A set of components C ⊆ CM for a given UML architecture M.

Output: The IA of the composition of all c ∈ C.

begin
c1← Π(C) ; /*c1 is selected form C*/
repeat

c2← Π(Uc1) ; /*c2 is selected form the set of neighbors of c1, Uc1 */
Verify the compatibility between, Ac1 and Ac2 , with the interface automata approach (see section 2 and 3.1)
if Ac1 and Ac2 are compatible then

C← {C\{c1, c2}} ∪ {c1 ‖ c2} ;
Ac1 ← Ac1 ‖ Ac2 ;

else
return emptyIA ;

until card(C)=1 ;
return Ac1 ;

end

3.3.3 Third Step (see algorithm2)

In this step, we define the main function, MainCompos(root), which traverses the graph recursively
and calculates the composition of interface automata by calling the function defined in algorithm 1. This
function, accepts as input, a node of the graph GM corresponding to a composite. At the initial state,
this function accepts the node corresponding to the whole system (the root of the graph). It returns as
output the interface automata of the whole system or the empty set if there is incompatibility between
components.

We note by SetChild the set of child nodes corresponding to subcomponents in a composite Ci. We
note by SettoCompose, the set of components to compose by the function Compos(). At the initial
state, we associate to each leaf node in GM , corresponding to a primitive components C, an interface
AC . However, nodes corresponding to composites are not associated to interface automata. The function
is described by Algorithm 2.

Assembly of components based on interface automata and UML component model

Algorithm 2: MainCompos

Input: the node root corresponding to the whole system in the graph GM .

Output: The interface automaton of the whole system.

begin
SetChild={the set of child nodes of the node root} /* this set is calculated in the first step */ while (SetChild is

not empty) do
Let N a node in SetChild, and corresponding to the component C ;

if (the interface automaton associated to N exists, because N is a leaf node or it is a node corresponding to
composite which is associated to an interface automaton by this function) then

SettoCompose = SettoCompose ∪ {C} ;
SetChild = SetChild \ {N}

else
IAC = MainCompos(N) /* calculate the interface automaton IAC corresponding to N*/

IAC = Compos(C1, ..Cn), where SettoCompose = {C1, ..., Cn} ; /* call to the function Compos in algorithm
1 in order to compose the components in the set SettoCompose*/
return IAc ;

end

Remark : Since the proposed algorithms are based on traversing graph GM , corresponding to system
architecture M , with the complexity in time linear on the set of components composing the system, then
our method does not augment the complexity of the interface automata approach, which is time linear of
the the size of the composed interface automata.

3.3.4 Illustration on the CyCab

Lets take our previous example, the interface automata of the primitive components of the CyCab car
system are presented in Figure 3 and Figure 4. The algorithm starts first by constructing the Station and
the Vehicle composite components. from their subcomponents.

The algorithm starts first by constructing the Station and the Vehicle composite components from
their subcomponents. The reader can easily verify that the two interface automata Station and Vehicle are
not empty. Then, We construct the whole composite system representing the communication between the
Vehicle and the Station. Figure 5 represents the IAs specification of the composite component Vehicle.

4 Related works

As some related works, we can mention the model in Allen et Garlan (1997) where the protocols are
associated to the component connectors. In Brim et al. (2006) the authors proposed a new approach to
component interaction specification and verification process which combines the advantages of architec-
ture description languages and formal verification oriented model. So, they proposed component interac-
tion automata to specify component interfaces and verify their compatibility. In Poizat et Royer (2006) the
authors proposed an ADL based the Korrigan language which enables to describe the component based
systems architectures formally. This ADL supports : integration of fully formal behaviors and data types,
expressive component composition mechanisms through the use of modal logic, specification readability
through graphical notations, and dedicated architectural analysis techniques.

Others works as the ones in Steffen et al. (2004), the authors proposed a comparison between models
at three grades of interoperability using the operation signatures, the interfaces protocols and the quality
of service. The protocols in Magee et al. (1999) based on transitions systems and concurrency including

S. Chouali, S.Mouelhi, et H.Mountassir.

FIG. 3 – The interface automata of the Vehicule subcomponent

FIG. 4 – The interface automata of the Station subcomponent

Assembly of components based on interface automata and UML component model

FIG. 5 – The interface automaton of the Vehicule composite

the reachability analysis. The composition operation is essential to define assembly and check the su-
rety and vivacity properties. The approach in Moisan et al. (2003) aims to endow the UML components
to specify interaction protocols between components. The behavioral description language is based on
hierarchical automata inspired from StateCharts. It supports composition and refinement mechanisms of
system behaviors. The system properties are specified in temporal logic. In Chouali et al. (2006), the
authors proposed to specify component interface and to verify their compatibility with B method. Howe-
ver component protocols are not considered in the interfaces. In André et al. (2005), the authors define
a component-based model Kmelia with abstract services, which does not take into account the data du-
ring the interaction. The behavior described by automata associated to services. This environment uses
the tool MEC model-checker to verify the compatibility of components. Other works consider real-time
constraints Etienne et Bouzefrane (2006). The idea is to determine the component characteristics and
define certain criteria to verify the compatibility of their specifications using the tool Kronos.

The contribution of our approach, compared the related works, is the specification of component
interfaces with interface automata (which is an interesting approach to express component behaviors) and
the expression of a component based system architecture in the interface automata method, thanks to the
UML component model which specifies the architecture. So, we exploit UML component model and the
interface automata method to verify the component composition.

5 Conclusion
In this paper, we present a new formal approach to assemble components and to verify their interope-

rability, according to a system architecture, specified by component UML model. This approach is based
on interface automata method to specify component interfaces and to verify interface compatibility. We
have improved this approach by exploiting component UML model, in order to specify , connection bet-
ween components and composites, and hierarchical connection in composites. Component UML model

S. Chouali, S.Mouelhi, et H.Mountassir.

corresponding to system architecture is specified formally by a graph, where nodes correspond to com-
ponents and edges specify connections between components. From this graph, we deduce information to
improve interface automata approach in order to verify interface compatibility. So, we have proposed an
algorithm to assembles components and composites, based on a both, system architecture and component
interface automata.

Actually, we develop a tool in order to implement the proposed approach. This tool will allow to
specify component based system architecture with component UML model, and component interfaces
with enhanced interface automata. As future work, we plan to specify component interfaces, only with
UML models, because UML is more expressive for most of people, and then propose an approach to
translate this models automatically to interfaces automata in order to verify component interoperability.

References
Alfaro, L. et T. A. Henzinger (2001). Interface automata. In 9 th Annual Aymposium on Foundations of

Software Engineering, FSE, pp. 109–120. ACM Press.
Alfaro, L. et T. A. Henzinger (2005). Interface-based design. In Engineering Theories of Software-

intensive Systems, Volume 195 of NATO Science Series: Mathematics, Physics, and Chemistry, pp.
83–104. Springer: M. Broy, J. Gruenbauer, D. Harel, and C.A.R. Hoare.

Alfaro, L., T. A. Henzinger, et M. Stoelinga (2002). Timed interfaces. In EMSOFT ’02: Proceedings
of the Second International Conference on Embedded Software, London, UK, pp. 108–122. Springer-
Verlag.

Allen, R. et D. Garlan (1997). A formal basis for architectural connection. ACM Transactions on Software
Engineering and Methodology 6(3), 213–249.

André, P., G. Ardourel, et C. Attiogbé (2005). Behavioural Verification of Service Composition. In
ICSOC Workshop on Engineering Service Compositions, WESC’05, Amsterdam, The Netherlands, pp.
77–84. IBM Research Report RC23821.

Baille Gérard, Garnier Philippe, M. H. et Pissard-Gibollet (1999). The INRIA Rhône-Alpes CyCab.
Technical report, INRIA. Describes the package natbib.

Brim, L., I. Černá, P. Vařeková, et B. Zimmerova (2006). Component-interaction automata as a
verification-oriented component-based system specification. SIGSOFT Softw. Eng. Notes 31(2), 4.

Chouali, S., M. Heisel, et J. Souquières (2006). Proving component interoperability with b refinement.
Electr. Notes Theor. Comput. Sci. 160, 157–172.

Etienne, J.-P. et S. Bouzefrane (2006). Vers une approche par composants pour la modélisation
d’applications temps réel. In (MOSIM’06) 6ème Conférence Francophone de Modélisation et Sim-
ulation, Rabat, pp. 1–10. Lavoisier.

Heineman, G. et W. Councill (2001). Component Based Software Engineering. Addison Wesley.
Konstantas, D. (1995). Interoperation of object oriented application. In O. Nierstrasz et D. Tsichritzis

(Eds.), Object-Oriented Software Composition, pp. 69–95. Prentice Hall.
Lynch, N. et M. Tuttle (1987). Hierarchical correctness proofs for distributed algorithms. In 6th ACM

Symp. on Principles of Distributed Computing, pp. 137–151. ACM Press.
Magee, J., J. Kramer, et D. Giannakopoulou (1999). Behaviour analysis of software architectures. In

WICSA1: Proceedings of the TC2 First Working IFIP Conference on Software Architecture (WICSA1),
Deventer, The Netherlands, The Netherlands, pp. 35–50. Kluwer, B.V.

Moisan, S., A. Ressouche, et J. Rigault (2003). Behavioral substitutability in component frameworks: A
formal approach.

Assembly of components based on interface automata and UML component model

Poizat, P. et J.-C. Royer (2006). A formal architectural description language based on symbolic transition
systems and temporal logic. J. UCS 12(12), 1741–1782.

Steffen, B., O. Sven, et R. Ralf (2004). Classifying software component interoperability errors to support
component adaption. In C. Ivica, S. Judith, S. Heinz, et W. Kurt (Eds.), Component Based Software En-
gineering, 7th International Symposium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings,
pp. 68–83. Springer.

Szyperski, C. (1999). Component Software. ACM Press, Addison-Wesley.
Wegner, P. (1996). Interoperability. ACM Computing Survey 28(1), 285–287.

Résumé
Donner la traduction anglaise du résumé dans le préambule avec la commande \summary{Your

abstract ...}

