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In recent years, a wide number of applicative fields is generating continuous, potentially
unbounded data streams. The analysis of such kind of data is constrained by the impossibility
to store the whole dataset and by the need to provide the results as soon as possible in order to
support the decisions.

When we are dealing with highly evolving data, an important challenge is to discover
summaries able to highlight the main concepts which characterize the analyzed phenomenon.

In this context, we introduce an efficient strategy which provides, as output, a set of his-
tograms to summarize the main concepts emerging in an evolving data stream.

A datastream Y = {(y1, t1), (y2, t2), . . . , (y∞, t∞)} is a set of real valued ordered obser-
vations on a discrete time grid T = {t1, ..., t2, ...t∞} ∈ <. From Y , it is possible to get a data
batch Qi = {(yl, tl), . . . , (yj , tj), . . . , (yn, tn)} with i ∈ =, where = is the unbounded set of
all the ordered subsets of Y such that Qi

⋂
Qi+1 = ∅. The size of Qi is N = n− l.

We can synthesize the data by a histogram as follows. Let S = [y; y] be the support of a
data batch Qi. The observations in Qi are partitioned into a set of contiguous intervals (bins)
{I1i, . . . , Iki, . . . , IKi} where Iki = [y

ki
; yki) and

⋃K
k=1 Ik = [y; y]. To each interval Iki

we associate the relative frequency fki, which is the number of elements of Qi in [y
ki

; yki)
normalized to N .

Histogram construction requires the definition of the size and number of intervals. In this
paper we make reference to equi-depth histograms where the range of observed values is di-
vided into K intervals such that each interval include the same numbers elements.

The aim of this paper is to detect a set of summaries G = {g1, . . . , gz, . . . , gZ} which
represents the histograms Hi associated to the batches of data Qi. The strategy we introduce
to reach this aim, is made by an on-line step and on an off-line step. The former, allows to get
a set of synopsis of the stream, the latter, starts from the results of the on-line step to produce
the final set of summaries G.

It is a variation of the CluStream algorithm in (Aggarwal et al., 2003). In particular, the
on-line step looks for synthesis of non overlapping batches of data by means of a set of size
C >> Z of specific structures named micro-clusters. A micro-cluster stores a prototype gc,
the number of allocated histograms nc.

Every time a new batch of data Q′i is available and the associated histogram H ′i is con-
structed, the distance between H ′i and the prototype gc,∀c = 1, . . . , C of each micro-cluster
is computed. If the distance to the nearest prototype is lower than a fixed threshold value, th,
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H ′i is allocated to it and the statistics of the micro-cluster are updated. If no prototype is at a
distance lower than th, a new micro-cluster is generated having H ′i as prototype and nc = 1.

In order to compare the histograms and to compute the prototype of each micro-cluster, we
need to introduce a suitable distance function.

We propose to use the Wasserstein distance as shown in Verde and Irpino (2007).
Let F and G be two distributions and F−1 and G−1 their the quantile functions. It is

possible to define the Mallow’s (Mallow (1972)) distance in L2 derived from the Wasserstein
metric as follows:

dM (F,G) :=

√√√√√ 1∫
0

(F−1(t)−G−1(t))2 dt (1)

According to Verde and Irpino (2007), since each interval of the histogram may be ex-
pressed as a function of the centers and of the radii c + r(2t− 1) for 0 ≤ t ≤ 1, the (1) can be
calculated much easier.

Furthermore, the use of Wasserstein metric allows to find the prototype of each micro-
cluster as a histogram that is barycentric with respect to the elements of the cluster. This is
obtained as the average of the centers and of the radii of each interval of the histograms in the
cluster.

Finally, from the on-line updated micro-clusters, it is possible to discover the final set of
summaries G through a clustering procedure on the micro-clusters that is a variation of the
k-means algorithm. The output will be the final set of summaries G = {g1, . . . , gz, . . . , gZ}.

References
Aggarwal, C. C., J. Han, J. Wang, and P. S. Yu (2003). A framework for clustering evolving

data streams. In VLDB ’2003: Proceedings of the 29th international conference on Very
large data bases, pp. 81–92. VLDB Endowment.

Verde, R. and A. Irpino (2007). Dynamic clustering of histogram data: using the right metric.
In in: Selected Contributions in Data Analysis and Classification, pp. 123–134. Springer.

Résumé
In recent years a wide range of applications generates potentially unbounded data streams.

When we are dealing with highly evolving data, summaries able to highlight the main concepts
in the monitored phenomenon are needed. In this paper we introduce a new strategy able to
summarize the data flow through a set of histograms. It is a clustering procedure where the
prototypes of the clusters are properly detected histograms.


