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Abstract. The output of an association rule miner is often huge in practice.
This is why several concise lossless representations have been proposed, such
as the “essential” or “representative” rules. We revisit the algorithm given by
Kryszkiewicz (Int. Symp. Intelligent Data Analysis 2001, Springer-Verlag LNCS
2189, 350-359) for mining representative rules. We show that its output is some-
times incomplete, due to an oversight in its mathematical validation, and we
propose an alternative complete generator that works within only slightly larger
running times.

1 Introduction

Association rule mining is among the most popular conceptual tools in the field of Data
Mining. We are interested in the process of discovering and representing regularities between
sets of items in large scale transactional data. Syntactically, the association rule representation
has the form of an implication, X — Y'; however, whereas in Logic such an expression is
true if and only if Y holds whenever X does, an association rule is a partial implication, in the
sense that it is enough if Y holds most of the times X does.

To endow association rules with a definite semantics, we need to make precise how this
intuition of “most of the times” is formalized. There are many proposals for this formaliza-
tion. One of the frequently used measures of intensity of this kind of partial implication is its
confidence: the ratio between the number of transactions in which X and Y are seen together
and the number of transactions that contain X. In most application cases, the search space is
additionally restricted to association rules that meet a minimal support criterion, thus avoid-
ing the generation of rules from items that appear very seldom together in the dataset (formal
definitions of support and confidence are given in Section 2.1).

Many association rule miners exists, Apriori (see Agrawal et al. (1996)) being one of the
most widely discussed and used. The major problem shared by all mining algorithms is that,
in practice, even for reasonable support and confidence thresholds, the output is often huge.
Therefore, several concise lossless representations of the whole set of association rules have
been proposed. These representations are based on different notions of “redundancy”. In one
of these, a rule is redundant if it is possible to compute exactly its confidence and support
from other information such as the confidences and supports of other informative rules (see
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Luxenburger (1991); Kryszkiewicz (2002); Hamrouni et al. (2008)); this is a quite demanding
property. We settle for a weaker version proposed in several works; informally, in that version,
arule is redundant with respect to another one if its confidence and support are always greater,
in any dataset. To avoid this redundancy, exactly one notion has been identified in several
sources, namely the representative rules (precise definitions and references are given below).

We focus in this paper on the main results of Kryszkiewicz (2001), where a purportedly
faster algorithm to construct representative rules is given, and show by an example that that
algorithm is not guaranteed to always output all representative rules, because it is based on a
property that does not hold in general; namely, the characterization of the frequent closed sets
that admit a decomposition into representative rules misses some such sets. We propose an
alternative, complete characterization, leading us to the proposal of a first alternative algorithm
that is guaranteed to output all the representative rules: we pre-compute, for each closed set,
some parameters that depend on the confidence and support thresholds, and then use the above
mentioned new characterization to generate all representative rules.

Compared to the previous, potentially incomplete algorithm in Kryszkiewicz (2001), this
algorithm, guaranteed to be complete, has a main drawback: in Kryszkiewicz (2001), the
internal local parameters only depend on the support threshold, but in our algorithm these
parameters depend also on confidence. Therefore, each time a new confidence threshold is
introduced by the user, the algorithm has to redo all computations. Thus, we provide a second
algorithm, composed of two parts: the first one is a pre-processing phase, dependent only on
support, in which a subdivision of the interval (0, 1] is associated to each closed itemset, and
the second part uses this partition to determine, for a given value of the confidence threshold,
which are those sets that can generate representative rules.

There are a couple of subtle differences between one of the usual definitions of association
rule (the one we employ) and the one in Kryszkiewicz (2001). First, we do allow having
rules with empty antecedent (clearly, all of them have confidence equal to the normalized
support of the consequent). Moreover, we do not require the inequalities to be strict when
imposing a given support and confidence threshold. This is just a small detail that comes
handy when the user is interested in obtaining the set of all representative rules of confidence
1. However, we have carefully tuned all our argumentations in such a way that these differences
are not relevant; for instance, we have chosen a counterexample that invalidates Property 9 of
Kryszkiewicz (2001) independently of which of the two definitions is used.

The article is structured as follows. In Section 2 we introduce the basic notions and nota-
tions that will be used throughout the paper and part of the contents of Kryszkiewicz (2001);
and we show that the algorithm provided there is not guaranteed to always provide the whole
set of representative rules. In Section 3 we define new parameters and discuss their usefulness
in generating the set of all representative rules, providing also efficient algorithms for this task.
Section 4 contains a comparison of our approach with the one in Kryszkiewicz (2001) on some
datasets. Concluding remarks and further research topics are presented in Section 5.

2 Preliminaries

A given set of available items I/ is assumed; subsets of it are called itemsets. We will
denote itemsets by capital letters from the end of the alphabet, and use juxtaposition to denote
union, as in XY. The inclusion sign as in X C Y denotes proper subset, whereas improper
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inclusion is denoted X C Y. For a given dataset D, consisting of n transactions, each of which
is an itemset labeled with a unique transaction identifier, we define the support sup(X) of an
itemset X as the ratio between the cardinality of the set of transactions that contain X and the
total number of transactions n. An itemset X is called frequent if its support is greater than or
equal to some user-defined threshold 7 € (0, 1].

Givenaset X C U, the closure X of X is the maximal set (with respect to the set inclusion)
Y C U such that X C Y and sup(X) = sup(Y). It is easy to see that X is uniquely defined.
We say that a set X C U is closed if X = X.

Closure operators are characterized by the three properties of monotonicity X C X, idem-
potency X = X, and extensivity, X C Y if X C Y. Intersections of closed sets are closed.

A minimal generator is a set X for which all proper subsets have closures different from
the closure of X (that is, X is a minimal generator if and only if sup(Y") > sup(X) for all
Y C X). We denote by F; = {X CU | sup(X) > 7} the set of all frequent itemsets.

Also, FC, = {X € F. | X=X } represents the set of all frequent closed sets, and
FG.={X € F. |VY C X, sup(Y) > sup(X)} is the set of all frequent minimal generators.
Note that F'C', constitutes a concise lossless representation of frequent itemsets, since knowing
the support of all sets in F'C'; is enough to retrieve the support of all sets in F.

Example 1 Let D be the dataset represented in Table 1 where the universe U/ of attributes
is {a,b,c,d,e, f}, and consider 7 = 0.15. Clearly, all subsets of U are frequent, F'C, =
{0,a,b,c,ab, ac,ad, be, abede, abedef} and FG. = {0, a,b,c,d, e, f,ab,ac,bc,bd, cd, abc}
(we abuse the notation and denote sets by the juxtaposition of their constituent elements).

TAB. 1 — Dataset D

a b ¢ d e f
I 1 1 1 1 1
I 1 1 1 1 0
1 1.0 0 0 O
1 01 0 0 O
01 1 0 0 O
1 0 01 0 O

2.1 Association Rules and Representative Rules

Given X in F, two definitions, with longer names, are introduced in Kryszkiewicz (2001):
mas.(X) = max({sup(Z) | Z € FC,,Z > X} U{0}),
mns(X) =min({sup(Y) |Y € FG,,Y C X} U {cc}).

That is, mzs, (X)) represents the maximum support of all proper frequent closed supersets
of X, and mns,(X) is the minimum support of minimal generators that are proper subsets
of X. The extra 0 and oo are added in order to make sure that mzs,(X) and mns,(X) are
defined even for the cases in which X has no proper supersets that are frequent and closed,
or when it does not have proper subsets that are minimal generators. It is easy to check that
mas,(X) < sup(X) < mns,(X). Moreover, it can be shown that:



Closed-set-based Discovery of Representative Association Rules Revisited

Proposition 1 (Kryszkiewicz (2001)) Let X € F.. Then X € FC' iff sup(X) > mazs,(X),
and X € FG; iff sup(X) < mns,(X).

The types of association rules considered in this work are implications of the form X — Y,
where X, Y CU,Y # @ and X NY = (). In Kryszkiewicz (2001), rules with X = (} are dis-
allowed, but we do permit them as in practice such rules often play a useful role related to cov-
erings, described below. The confidence of X — Y is conf(X — Y) = sup(XY)/sup(X),
and its support is sup(X — Y) = sup(XY'). The problem of mining association rules con-
sists in generating all rules that meet the minimum support and confidence threshold criteria.
Let AR, ={X =Y | sup(X = Y) > 7, conf(X - Y) >~}

Since the whole set of association rules is quite big in real-world applications, a number
of formalizations of the notion of redundancy among association rules have been introduced
(see Aggarwal and Yu (2001); Balcdzar (2010); Cristofor and Simovici (2002); Kryszkiewicz
(1998b); Luxenburger (1991); Pasquier et al. (2005); Phan-Luong (2001); Zaki (2004), the
survey Kryszkiewicz (2002), and section 6 of Ceglar and Roddick (2006)). In one common
approach, the cover set C(X — Y) of arule X — Y is defined by C(X — Y) = {X' —
Y’ ’ X C X’and XY D X'Y'}. Such rules X’ — Y are redundant with respect to X — Y
in the following sense:

Proposition 2 (Kryszkiewicz (1998b),Aggarwal and Yu (2001)) Letr : X — Y and r' :
X" — Y’ be association rules. Then r € C(r') implies sup(r) > sup(r’') and conf(r) >

conf (r').

In fact, this implication is a full characterization, that is, if X’ — Y’ has always at least
the same confidence and at least the same support as X — Y then it must belong to the cover
set (see Balcdzar (2010)). Avoiding such redundancies leads to the set RR,  of representative
association rules. A rule r in AR, ., is said to be representative, or sometimes essential, if it
is not contained in the cover set of any other rule in AR .

RR;,={r€ AR, |Vr' € AR, ,(r € C(r') =r=1")}.

Under different names, this notion has been proposed and studied in several sources,
e.g. Aggarwal and Yu (2001); Kryszkiewicz (1998b); Phan-Luong (2001).

Proposition 3 (Kryszkiewicz (1998a,b)) The following properties hold:

¢ RR., = {X =Y € AR, | -3X’ =Y’ € AR,., (X = X/, XY C X'Y') or
(X DX, XY = X'Y')}

o if X - Z\XwithX C Zisin RR, then Z € FC, and X € FG-.

Therefore, any algorithm that aims at the discovery of all representative rules should con-
sider only rules of the form X — Z\X with X C Z, Z € FC, and X € FG,. Clearly, not
all sets in F'C'; can be decomposed in such a way, and one should look only into those that do.

Example 2 Consider the dataset in Example 1. The set ad is both frequent and closed, but
none of the rules a — d, d — a or ) — ad are representative given the thresholds 7 = 0.15
and v = 0.33: @ — d is in the cover set of a — bd, d — a is in the cover set of d — ab and
() — ad is in the cover set of ) — abd. Also, it is easy to check that, at v = 0.4, one can obtain
representative rules exactly out of the following closed sets: ab, ac, ad, bc, abede, and abede f.
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So, if we denote by RI. , the set of all frequent closed itemsets from which at least one
representative rule can be generated, one possible approach to representative rule mining is
to synthesize first the set BRI, -, and then, for each element Z in RI. ., to find a non-empty
subset X such that X — Z\ X is representative. This is precisely the idea behind Algorithm
GenRR in Kryszkiewicz (2001). The problem there is that the characterization of the set R, ,
given by Proposition 9 of the same paper (on page 355) is incorrect, possibly leaving out some
of the sets that can lead to representative rules. Namely, it is stated that RI, , = {X € FC, |
sup(X) > v * mns.(X) > mas,(X)}; right-to-left inclusion indeed holds, but equality does
not hold in general, as one can see from the following counterexample.

Example 3 Consider the itemset X = abcde in Example 1, and assume 7 = 0.15 and v = 0.4.
Let us verify that abede € RI; \{X € FC, | sup(X) > v mns-(X) > mas-(X)}.
Clearly, the rule b — acde is in AR, , having support 2/6 and confidence 0.5. Moreover,
by extending the right-hand side or moving the item b to the right-hand side we get only the
rules b — acdef, ) — abede and ) — abcdef of confidence 1/4, 2/6 and 1/6, respectively.
Hence, we can conclude that b — acde € RR ~. On the other hand, mzs.(X) = 1/6 and
mns.(X) = 2/6, so v * mns,(X) = 0.8/6 is strictly smaller than mzs.(X). In this case,
Algorithm GenRR does not work correctly since it does not list the rule b — acde as being
representative.

An alternative counterexample is given in the proof of Lemma 1 below.

3 Bounds that Help Characterize Representative Rules

The goal of pruning off sets that do not give representative rules, by keeping only R .,
cannot be reached using the bounds given, as we have seen that this set comprises all X in F'C';
with sup(X) > v * mns.(X) > mzs,(X) but may also include other frequent closed sets X
that do not satisfy the condition v * mns, (X) > mzs.(X). We consider two alternatives.

3.1 Closed Sets Instead of Minimal Generators

For closed X, mns,(X) is almost the same thing as the minimal support among all proper
subsets of X, or again among all proper closed subsets of X; all these notions coincide when
X is its own minimal generator, otherwise they only differ due to the minimal generators of X .
Therefore it makes sense to try and exclude the minimal generators of X from consideration.
This way, we get another parameter,

bmns,(X) = min({sup(Y) | Y € FC.,Y C X} U {oo}).

The value of bmns. is never smaller than mns, as we shall shortly see. Thus, there will

be more sets that meet the condition vy * bmns, (X) > mzs, (X).

Proposition 4 The following properties hold.
e bmns,(X) =min({sup(Y) | Y € FG,,Y C X} U{oo}),
e mns.(X) < bmns, (X),
o if X € FC, N FG; then mns,(X) = bmns,(X),
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Proof. We omit the proof of the first two claims because they are straightforward. So, let
X be a frequent closed set that is also a minimal generator. If X = (), then mns,(X) =
bmns,(X) = co. Otherwise, let Y € FG, be such that Y C X and mns,(X) = sup(Y).
Clearly, Y € FC, andY C X = X. Since X € FG, and Y C X, sup(Y) > sup(X)
and hence sup(Y) > sup(X), and therefore Y C X. We get sup(Y) > bmns,(X) and
mns.(X) > bmns,(X). Combining it with the fact that mns,(X) < bmns.(X) always
holds, we conclude that mns,(X) = bmns,(X). =
Unfortunately, the new parameter can still leave out some sets in BRI .

Lemmal RI,, Z {X € FC. | sup(X) > v bmns,(X) > mas,(X)}.

Proof. LetU = {a,b,c} and D be the dataset containing the following 13 transactions: t; =
<o =1tg = abe,tg = ab,t19 = t11 = t12 = a,t13 = b; assume 7 = 0.07 and v = 0.7. One
can check that, although ab € RI, , (since a« — b € RR, ), both bmns,(ab) = 10/13 and
mns,(ab) = 10/13; but v x mns, (ab) = v * bmns,(ab) = 7/13 < 8/13 = mzs,(ab). m

The next construction shows that by using bmns, instead of mns, we can even leave out
some sets in 121, , that would not have been left out otherwise.

Lemma2 RI,,N{X € FC. | sup(X) > v+ mns (X) > mas.(X)}  {X € FC, |
sup(X) > v bmns.(X) > mzs,(X)}.

Proof. LetU = {a,b,c,d,e} and D be a dataset containing 35 transactions: t; = to =
abcde,tg =ty = t5 = abcd, t6 e = tgg = a and top = -+ 't35 = b. Pick 7 = 0.05 and
~ = 0.75. Note that ab — cd € RR ,, and therefore abcd € RI, . Now, mns,(abed) =
5/35, bmns,(abed) = 20/35, sup(abed) = 5/35 and mas, (abed) = 2/35. Although v *
mns,(abed) = 3.5/35 = 0.1 belongs to the interval [2/35,5/35), v * bmns, (abed) = 15/35
doesnot. m

3.2 Minimal Generators of Bounded Support

In order to give a complete characterization for the set R, -, let us first introduce the
following notation: for a set X in F'C, let mags, . (X) be the maximal support of those
minimal generators that are included in X and are not more frequent than sup(X)/~:

mzgs.. . (X) = max({sup(Y’) |Y € FG.,Y C X,y xsup(Y) < sup(X)} U{0}).

Note that mzgs, ., (X) is either 0, or it is greater than or equal to sup(X). We prove two
propositions that explain how we can use this value in order to compute the set R/, ,, and how
to find, given X € RI. ., asubset X, C X such that Xo — X\ X, € RR, .

Proposition 5 RI,, = {X € FC, | y* mags, (X) > mas,(X)}.

Proof. Let X be an arbitrary setin RI; - and take X in F'G; such that Xo — X\ X, € RR,
and Xy C X. We have, on one hand, conf(Xo — X\Xy) > ~, and on the other hand,
conf(Xo — Z\Xo) < yforall Z € FC, with Z D X. That is, sup(X) > = * sup(Xo) >
sup(Z) for all Z € FC, with Z D X. From the first inequality, we deduce that X, meets
all the conditions in order to be considered for the computation of mzgs. .,(X), and therefore,
mzgs, ., (X) > sup(Xo). From the second, we get v * sup(Xo) > mzs,(X). We conclude
that v x mags, . (X) > mas, (X).
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Algorithm 1 RR Generator

1: Input: support threshold 7, confidence threshold ~y
Fr={X CU|sup(X)=>r}
FC,={X€eF. | X=X}
FG, ={X € F. | VY C X, sup(Y) > sup(X)}
for all X € FG, do

mns,(X) =min({sup(Y) | Y € FG,,Y C X} U{oc})

end for
RI, =1
: forall X € FC.\{0} do

R A AN A

100 mas, (X) = max({sup(Z) | Z € FC.,Z > X} U{0})

1: - mags, ,(X) =max({sup(Y) | Y € FG.,Y C X,y = sup(Y) < sup(X)} U{0})
122 ifyx mags, . (X) > mas, (X) then

13: add X to RI,

14:  end if

15: end for

—_
[=))

:forall X € RI, , do

17: ¢ = mas.(X)/y

18 co = sup(X)/v

19: Ant={Xo € FG; | Xo C X,c1 < sup(Xo) < co < mns-(Xo)}
20.  for all X, € Antdo

21: output Xo — X\Xo

22:  end for

23: end for

Conversely, let X € FC; be such that v+ mzgs.. . (X) > mzs.(X). Clearly, mzgs.. . (X)
cannot be 0 (since mas,(X) > 0), so {Y € FG. | Y C X,y sup(Y) < sup(X)}
is not empty. Take Xy € FG, to be a set of maximal support that satisfies Xo C X and
7y * sup(Xo) < sup(X). Therefore, mags, . (X) = sup(Xo). Since sup(Xo — X\Xo) =
sup(X) > 7and conf (Xo — X\Xg) = 2250 >  we deduce that Xg — X\ Xy € AR, ..

sup(Xo)
Note that for any Z > X, conf(Xo — Z\Xo) = il < Ford) = Jmoe=lis < 4.

Moreover, for any X, C Xy, sup(X() > sup(Xo) (since Xy € FG,) and 7 * sup(X}) >
sup(X) (due to the choice we have made for Xy). This is why conf (X — X\X{) =

Sk < 4. We conclude that Xo — X\Xo € RR, and X € RI,,. m

Proposition 6 Let X € RI, ., ¢ci = mas-(X)/v, co = sup(X)/y and Xog C X. Then
Xo — X\Xo € RR, 5 ifand only if ¢c; < sup(Xo) < ca < mns,(Xo).

Proof. Consider X € RI,, and Xy C X. Clearly, Xo — X\X, € RR, if and only if
the rule Xo — X\ Xy is in AR, - and does not belong to the cover set of any other rule in

AR, .. That is equivalent to: sup(X) > T, SS:;]((XXO)) >, j;‘,f(@) < v forall X C X and
0
sup(Z)

sup(xg) <Y forall Z D X that satisfy sup(Z) > .

Now, it is easy to see that:



Closed-set-based Discovery of Representative Association Rules Revisited

e sup(X) > T always holds because X € FC,

sup(X
su;f((Xo)) > 04 Sup(XO) < cg,
o VX[ C Xy 3555((;?) <v&e #(&)0) <y & ey < mns-(Xo),

e VZoX:(ZeF = 280 <) e ) < e o < sup(Xo),

which concludes the proof. m

Example 4 Considering again Example 1, simple arithmetic suffices to check that Proposi-
tion 5 identifies exactly the closed sets from which representative rules follow as per Example 2;
likewise, Proposition 6 can be illustrated with the representative rule b — acde of Example 3,
which is obtained from abcde (for which indeed 0.4 x 5/6 > 1/6 as per Proposition 5) using
c1=25/6andco =5/6,asc; <4/6 < co < 6/6.

The correctness of Algorithm 1 trivially follows from Proposition 5 and Proposition 6.

3.3 An Algorithm for Different Confidence Thresholds

The disadvantage of Algorithm 1, compared to the one in Kryszkiewicz (2001), is that,
for a given X in F'C, mzgs, . (X) depends on the confidence threshold, and hence it cannot
be reused once +y has changed, whereas both mas,(X) and mns.(X) can be computed only
once for a given value of 7 and then used for different confidence values. On the other hand,
this one is guaranteed not to lose representative rules, whereas the one in Kryszkiewicz (2001)
risks giving incomplete output, as in our counterexample above.

Algorithm 2 RR Generator - preprocessing phase

1: Input: support threshold 7

2 Fr={X CU|sup(X)>r7}

3 FC,={XeF | X=X}

4 FG,={X e F; | VY C X, sup(Y) > sup(X)}

5: forall X € FG, do

6:  mns.(X)=min({sup(Y) | Y € FG.,Y C X} U {oo})
7: end for

8: forall X € FC.\{0} do

9 mas.(X)=max({sup(Z) | Z € FC,,Z D> X} U{0})
1. n[X]=[{Y € FG, | Y C X}|

1: - let{Y7,..., Y, x} bethe set {Y € FG ‘ Y C X} in descending order of support
12 forallic {1,...,n[X]}do

13: yi[X] = sup(Y;)

14: pilX] = sup(X)/y:[X]
15:  end for

16:  po[X]=0

17: end for
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Instead of computing mzgs, ., (X) for each and every ~, one can find the individual points of
the interval (0, 1] where mxgs, . (X) changes its value. Indeed, given X € FC.\{0}, let
{V1,...,Y,x)} bethe set {Y € FG, | Y C X} in descending order of support. It is easy to
see that

; (X)
sup(Y7), ify < :ﬁ(Yl)
. sup (X sup (X .
mags, ,(X) =4 sup(Yiy1), ifye€ (sui((n))’ﬁﬁ%}’z e{l,...,n[X] -1}
. sup(X)
0, ify > sup(Yn(x)

Now, each time a new value of the confidence threshold + is given, one can decide whether
a frequent closed set X is in R, by simply retrieving the interval (p;[X], p;+1[X]] with
i € {0,...,n[X] — 1} to which ~ belongs (recall that in this case mzgs, . (X) = yi+1[X])
and then checking whether the inequality 7 * ;1 [X] > mazs,(X) holds. Note that if no such
i exists (that is, whenever +y has a value strictly greater than p,,x][X]), mzgs, ., (X) takes the
value 0, which makes 7 * mzgs.. . (X) smaller than or equal to mzs,(X).

These ideas are implemented in Algorithms 2 and 3.

Algorithm 3 RR Generator - second phase
1: Input: support threshold 7, confidence threshold ~y

2: RITW =0

3: forall X € FC\{0} do

4 if 3 € {0,...,n[X] — 1} such that v € (p;[X], p;+1[X]] then
5: if v % y;11[X] > mas,(X) then

6: add X to RI,,

7: end if

8:  endif

9: end for

10: forall X € BRI, do

1: ¢ = mas(X)/y

12 co = sup(X)/y

133 Ant={Xo € FG; | Xo C X,c1 < sup(Xo) < co < mns-(Xo)}
14:  for all Xy € Ant do

15: output Xo — X\Xo

16:  end for

17: end for

4 Empirical Comparison

We have seen that one can find toy examples of datasets in which the output of the algorithm
in Kryszkiewicz (2001) is incomplete. We have tested the algorithm on two real-world datasets:
a typical market basket dataset, taken from the data mining workbench Clementine (2005), and
the training set part of the UCI Adult US census dataset; see Asuncion and Newman (2007).

We have implemented three different algorithms: one for the incomplete heuristic given
in Kryszkiewicz (2001), one for the first heuristic proposed by us in which mns, is replaced
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by bmns. (also incomplete), and one that generates the complete set of representative rules
as described by Algorithm 1. In order to get comparable results, all of them allow rules with
empty antecedent and use the same definition of frequent sets and association rules as given in
our Preliminaries.

The first dataset under study consists of 1000 transactions over 15 attributes, 11 of them
reflecting the type of product that a customer could have purchased (fruitveg, freshmeat, dairy,
cannedveg, cannedmeat, frozenmeal, beer, wine, softdrink, fish, confectionery) and 4 others
given by the gender and the home ownership status of the client (male, female, homeowner,
donotownhome).

Table 2 shows the number of representative rules obtained for different support and confi-
dence thresholds (the third column), as well as the cardinality of the output set when bmns. or
mns, is used (the fourth and fifth column, respectively). We can see that although for higher
support thresholds the output of the algorithms is, most of the times, identical (recall that the
output of the algorithm in Kryszkiewicz (2001) is always a subset of the whole set of represen-
tative rules), lowering both thresholds shows bigger differences. For comparison, the rightmost
column provides the number of rules in the standard sense of Agrawal et al. (1996).

TAB. 2 — Market Basket Dataset (number of rules)

T v | RR | RR with bmns, | RR with mns, | Standard
0.7 | 41 33 33 67
005 |08 | 17 16 16 36
09| 15 15 15 15
0.7 | 12 10 10 21
0.10 | 08 | 5 5 5 12
09| 4 4 4 4
071 6 6 6 16
0.15108 | 2 2 2 2
09| 0 0 0 0

As an example, in the case the thresholds for support and confidence are 0.10 and 0.70,

respectively, there are a total of 12 representative rules, among which two are lost when using
mns or bmns (listed in bold):

[c:0.70,s:0.14] male frozenmeal = beer, [c:0.72,5:0.15] male frozenmeal = cannedveg,
[c:0.86,5:0.12] confectionery wine = female, [c:0.70,s:0.14] male cannedveg = beer frozenmeal,
[c:0.82,5:0.14] beer frozenmeal = male cannedveg, [c:0.84,s:0.14] beer cannedveg = male frozenmeal,
[c:0.71,s:0.14] male beer = cannedveg frozenmeal, [c:0.81,s:0.14] cannedveg frozenmeal = male beer,
[c:0.73,5:0.10] male fish = donotownhome, [c:0.89,s:0.12] fish fruitveg = donotownhome,
[c:0.70,s:0.10] donotownhome beer = male, [c:0.70,s:0.11] donotownhome frozenmeal =- male

Dataset ADULT is a transactional version of the training set part of the UCI census dataset
Adult US, see Asuncion and Newman (2007); it consists of 32561 transactions over 269 items.
Note that in this case there are significant differences between the output of the algorithm in
Kryszkiewicz (2001) and the set of all representative rules (Table 3). For example, for support
and confidence thresholds of 0.05 and 0.8, respectively, more than half of the rules are lost.

We have run the experiments on an Intel Core 2CPU 6300 @ 1.86GHz machine with 2 GB
of RAM running under Microsoft Windows XP Professional. The running time of all three
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TAB. 3 — Adult US census dataset (number of rules)

T v | RR | RR with bmns, | RR with mns, | Standard
0.6 | 872 383 383 3443
0.05 | 0.7 | 781 425 425 2926
0.8 | 851 640 640 2426
0.6 | 326 124 124 1284
0.10 | 0.7 | 274 162 162 1083
0.8 | 345 270 270 923

algorithms were between 15 and 47 milliseconds in the case of the market basked dataset and
between 62 and 1203 milliseconds for the Adult dataset. The algorithm that correctly outputs
all representative rules is slightly slower than the other two but, in our tests, the difference was
rather irrelevant since the time needed to print the results on screen (a device slower than the
CPU) still dominates the process.

It must be noted that the quantity of representative rules may decrease at lower confidence
or support thresholds. This phenomenon has been observed and explained before, see Balcazar
(2010), and is caused by powerful rules of a given confidence, say 0.8, that are filtered out at
higher thresholds, leaving therefore many other rules as representative, but that force all of
these out of the representative rules as they become redundant when the confidence threshold
gets below 0.8 and lets the powerful rule in.

5 Perspectives

As future research topics, we wish to extend the characterization given in Proposition 5 of
all closed itemsets that can be decomposed into representative rules to the stronger notion of
redundancy introduced in Balcazar (2010), namely the closure-based redundancy. Addition-
ally, a puzzling fact that we plan to study further is that, in many of the real-world datasets we
have run our algorithms on, our first alternative from Subsection 3.1, also incomplete, gives the
same quantity of representative rules as the original incomplete algorithm; this may indicate
that further understanding of the sets of rules obtained by these incomplete algorithms might
be useful.
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Résumé

La sortie d’un mineur de régles d’association est souvent énorme dans la pratique. C’est
pourquoi plusieurs représentations concises sans perte ont été proposées, telles que les regles
“essentielles” ou “représentatives”. Nous reviendrons sur 1’algorithme donné par Kryszkie-
wicz (Int. Symp. Intelligent Data Analysis 2001, Springer-Verlag LNCS 2189, 350-359) pour
I’extraction des regles représentatives. Nous montrons que sa production est parfois incom-
plete, a cause d’une manque a la preuve mathématique de validité de cet algorithme, et nous
proposons un générateur de remplacement complet avec presque les mémes temps d’éxécution.



