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Abstract. Many research papers in classification or association rules in-
crease the interest of Concept lattices structures for data mining (DM) and
machine learning (ML). To increase the efficiency of concept lattice-based
algorithms in ML, it is necessary to make use of an efficient algorithm to
build concept lattices. In fact, more than ten algorithms for generating
concept lattices were published. As real data sets for data mining are very
large, concept lattice structure suffers from its complexity issues on such
data. The efficiency and performance of concept lattices algorithms are
very different from one to another. So we need to compare the existing
lattice algorithms with large data. We implemented the four first algo-
rithms in Java environment and compared these algorithms on about 30
datasets of the UCI repository that are well established to be used to
compare ML algorithms. Preliminary results give preference to Ganter’s
algorithm, and then to Bordat’s algorithm, which do not fit well with the
recommendations of Kuznetsov and Obiedkov. Furthermore, we analyzed
the duality of the lattice-based algorithms.

1 Introduction

Concept is an important and basic means of knowledge representation, since it
represents abstraction and generalization of objects. A concept defines a subset of ob-
jects which shares some common attributes or properties. Concept lattice structure
[Ganter and Wille, 1999] has shown to be an effective tool for data analysis, knowledge
discovery, and information retrieval, etc [Mephu Nguifo et al., 2002]. It shows how ob-
jects can be hierarchically grouped together according to their common attributes.
Researchers of different domains study it in theory and application of data analysis
and formal knowledge representation etc.

Several algorithms are proposed to build concepts or concept lattices of a context :
Bordat [Bordat, 1986], Ganter (NextClosure) [Ganter, 1984], Chein [Chein, 1969], Nor-
ris [Norris, 1978], Godin [Godin et al., 1995], Nourine [Nourine and Raynaud, 1999],
Carpineto [Carpineto and Romano, 1996], and Valtchev[Valtchev and Missaoui, 2001],
etc. Some algorithms can generate also diagram graphs of concept lattices. The per-
formance of the lattice algorithm is very important for its application to data mining
(DM). In fact real data sets for DM are very large, e.g. the customer data of a com-
pany. In the worst case, the generation of lattice nodes increases exponentially. The
efficiency of concept lattice algorithms are different from one to another. So we need
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to compare the existing lattice algorithms with large data and make use of an effi-
cient algorithm to satisfy the mining and learning task and to increase the efficiency
of concept lattice-based algorithms in real applications.

Different works on comparison of lattice algorithms have been done. Guénoche
[Guénoche, 1990] reviewed four algorithms : Chein, Norris, Ganter and Bordat. This is
the first review of lattice algorithms, he pointed out theoretical complexity, but there is
no experimental test for these algorithms. Godin et al. [Godin and Chau, 1998] presen-
ted incremental algorithms for updating the concept lattice and corresponding graph.
Results of empirical tests were given in order to compare the performance of the in-
cremental algorithms to three other batch algorithms : Bordat, Ganter, Chein. The test
data is small and randomly generated. Kuznetsov et al. [Kuznetsov and Obiedkov, 2002]
compared, both theoretically and experimentally, performance of ten well-known al-
gorithms for constructing concept lattices. The authors considered that Godin was
suitable for small and sparse context, Bordat should be used for contexts of average
density, and Norris, CBO and Ganter should be used for dense contexts. The algorithms
were compared on different randomly generated contexts using the density/sparness,
and on one real dataset (SPECT heart database) of the UCI repository. The test data
is small and randomly generated, only one real dataset is used.

If the experimental datasets are too small or random, it’s not easy to appraise
the performance of these algorithms for DM. So in order to analyze and compare
concept lattices algorithms, we use a publicly available database [Blake et al., 1998]
which are often used in order to compare machine learning (ML) algorithms. Even
if it is not demonstrated that this database which contains more than forty datasets
is representative of practical applications, it is well established that these testbeds
should be used to measure efficiency issues of a new ML algorithm. So it’s necessary to
show how concept lattice algorithms fits in such data. Conclusions could help to build
efficient ML algorithm based on concept lattice.

When generating concepts, lattice algorithm focusses on objects or attributes. So if
the number of objects is greater than the number of attributes, it might be interesting to
build the concept node based on the minimum number between objects and attributes.
We propose a new definition : dual algorithm, which consists of applying an algorithm
to the same context by inverting rows and columns. The duality of lattice algorithm is
considered in our comparison of lattice algorithms. The difference between algorithm
and its dual algorithm is described.

Our goal is to describe preliminary results of our implementation (using JAVA on
a pentiumIIl 450 computer with 128MB RAM) of the four first published algorithms
(Chein, Norris, Ganter and Bordat) and their dual algorithms for generating concept
lattices on about 30 datasets of the UCI repository. We test also these algorithms in
the worst case. Preliminary results give preference to Ganter’s algorithm, and then
to Bordat’s algorithm, which do not fit well with recommendations of Kuznetsov and
Obiedkov’s.

This work is also motivated by the fact that there are no free available platforms
with different concept lattice algorithms for researchers. This justifies our choice of
JAVA for implementation.

The rest of this paper is organized as follows : we introduce the notion of concept
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lattice in section 2; In section 3 we present the four lattice algorithms used for our
experiment ; In section 4 experimental comparisons are discussed.

2 Concept lattice

The theoretical foundation of concept lattice relies on the mathematical lattice
theory [Birkhoff, 1967]. Concept lattice is used to represent the order relation of concepts.

Definition 2.1 A context is defined by a triple (G; M; R), where G and M are two
sets, and R is a relation between G and M. The elements of G are called objects, while
the elements of M are called attributes.

For example, Figure 1 represents a context. G(1,2,3,4,5,6,7,8) is the object set,
and M (ay,as, a3, aq,as,ag, ar,ag) is the attribute set. The crosses in the table describe
the relation R between G and M, which means that an object verifies an attribute.

[T oo [ [ T s oo [ [

1 || x| x X
2 || x| x X | X
3 || x| x| x X | x
4 || x X X | X
5 || x| x X X

6 || x| x| x| x X

7 || x X | x| x

8 || x X | X X

F1G. 1 — An example of context (G, M, R).

Definition 2.2 Given a subset A C G of objects from a context (G; M; R), we define
an operator that produces the set A’ of their common attributes for every set A C G of
objects to know which attributes from M are common to all these objects :

A" :={m e M | gRm for all g € A}.

Dually, we define B' for subset of attributes B C M, B’ denotes the set consisting
of those objects in G that have all the attributes from B :

B':={g € G| gRm for all m € B}.

These two operators are called the Galois connection of (G; M; R). These opera-
tors are used to determine a formal concept.

So if B is an attribute subset, then B' is an object subset, and then (B')' is an
attribute subset. We have : B C M = B" C M. Correspondingly, for object subset A,
we have : AC G = A" CG.

Definition 2.3 A formal concept of the context (G,M,R) is a pair (A, B) with
ACG, BCM,A=DB" and B=A'. A is called extent, B is called intent.
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Definition 2.4 If (4, By) and (As, Bs) are concepts, Ay C Ay (or B2 C By), then
we say that there is a hierarchical order between (A;, B1) and (As, Bs).

All concepts with the hierarchical order of concepts form a complete lattice called
concept lattice.

3 Concept lattice algorithms

Concept lattice algorithm plays an essential role for the application of concept lat-
tice. More than ten algorithms for generating concept lattices were published. We select
the four first published algorithms (Chein, Norris, Ganter and Bordat) to compare and
analyze them on different aspects. The other algorithms are very often improvements
of one of these four algorithms.

3.1 Algorithm type

Generally, concept lattice algorithms are divided into two types : batch algorithms
and incremental algorithms. Batch algorithms construct completely the lattice from
scratch when adding a new object or attribute, while incremental ones update lattice
structure when adding a new object.

For example, algorithms of Bordat, Ganter, Chein, Lindig and Nourine are batch
algorithms. There are three ways to generate concepts with batch algorithms :

— Descending : such as Bordat’s algorithm, from the top concept, we build the
maximal rectangles. The algorithm repeats the same process to generate the other
subnodes.

— Ascending : We can generate concepts below, and then spread super-node, such
as Chein algorithm.

— Enumeration : algorithm enumerates all the nodes of the lattice according to
a certain order. For example, Ganter’s algorithm uses lexicographical order to
enumerate the nodes.

There are some incremental algorithms such as the algorithms of Norris, Godin,

Capineto, Dowling and Valtchev. The idea of these algorithms is that the new object
makes intersection with all the concepts in the lattice to update lattice structure.

3.2 The principle of the algorithms
3.2.1 Chein’s algorithm

Chein’s algorithm [Chein, 1969] builds concepts in a bottom-up manner. It repeats
the following iterative method at every stage k.

For each object g¢;, (gi,(g})) is considered as first layer L;. Lj is the set of the
rectangles of layer k. An arbitrary element of Ly is (G;,G}). From Ly, we build the
layer Ly1. For every two elements of Ly, : (G;, G}) and (G, G%), if G; NG’ ¢ Ly,
then (G; UGy, G; N GY) is an element of Liy1. Otherwise, merge all pairs that have
the same G} N G as an element of Ly 1.

At the end we delete Li’s element whose attribute set is the same as L1 ’s element,.
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3.2.2 Norris’ algorithm

Norris® algorithm [Norris, 1978] is an incremental algorithm. For the context (G,
M, R), when we add each objects gi, the concepts set of this level Lx is generated
from L _; in the same way. For the first object, L; contains only (g1, g1).

Adding one object gp41 to Lx, we can build Lyy. Y(Gi, Gj) € Li. If G} C g; 4,
then (Gl U (ng),G;) € Ly

Otherwise, (Gi,G}) € Lgy1, and furthermore we add (G; U (gk+1), G} N (g,.4,)) to
Li11 if (G, (9341) N GY) is maximum.

After examination of all the rectangles, if g | ; is maximum, we add the (gx+1, 93 41)
in Lk+1.

3.2.3 Ganter’s algorithm (NextClosure algorithm)

The principle of NextClosure algorithm [Ganter, 1984] uses the characteristic vector
which represents arbitrary subsets A of M, to enumerate all concepts of (G;M; R).
Given A C M, M = {ay,as,...,ai,...,am—_1,am}, A — A" is the closure operator.
The lectically smallest attribute subset is )"". The NextClosure algorithm proved that
if we know an arbitrary attribute subset A, the next concept (the smallest one of all
concepts that is larger than A) with respect to the lexicographical order is A & a; ,
where & is defined by

ADa; = (A N (0,1, as, ..., ai_l) U {ai})"

A C M and a; € M, a; being the largest element of M with A < A & a; by
lexicographical order.

In other words, for a; € M\ A, from the largest element to smaller one of M\A ,
we calculate A @ a;, until we find the first time A < A & a;, then A & a; is the next
concept.

3.2.4 Bordat’s algorithm

The Bordat’s algorithm [Bordat, 1986] searches all concepts hierarchically and builds
the concept lattices (Hasse diagram). It uses a top-down strategy, and is a level-wise
algorithm. Its principle is first to find all the maximal object subsets of G, then to
build the corresponding concepts, and finally to find the maximal object subsets of the
object subsets found above. So there are clear hierarchical relations within all concepts
of a context, so that we can generate concept lattices.

Bordat’s algorithm doesn’t only generate all concepts but also it builds links bet-
ween these nodes. This procedure increases the time cost. So it needs large memory.

3.3 Dual algorithm

Analyzing the four algorithms, we find that one algorithm can focuss on objects or
attributes. The performances of an algorithm can be different according to the number
of objects and attributes. So every lattice algorithm can be described or implemented
by focussing on objects or attributes. We propose a new definition : dual algorithm.
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Definition 3.1 A dual algorithm of concept lattice is an algorithm which can be
applied to the same context by focussing either on objects or on attributes.

In other words : we can use the same algorithm from two directions (objects (set)
or attributes(set)) to generate the concept lattice. Two dual algorithms are usually
considered to be the same, and we can get the same concept lattice with two dual
algorithms. In fact, the idea of the algorithms is the same, but the time cost of algorithm
isn’t frequently identical.

Proposition 3.1 The time cost of a dual algorithm for a context is equivalent to the
time cost of original algorithm for dual context.

A dual context of a context is obtained by inverting rows and columns.

4 Experimental comparison

The four algorithms and their corresponding dual ones are implemented in Java en-
vironment and are available through request. These algorithms are tested on a Pentium
I1T 450, 128 MB RAM. In our experiment, we compared these algorithms on about 30
datasets of the UCI repository and on the worst cases.

4.1 Test on ML benchmarks
4.1.1 Benchmark databases

Real data for our experiment come from ML benchmarks : UCI repository. We have
got about 30 databases to build binary contexts (see table 1). The biggest context has
67557 objects and 126 attributes. This is not as huge as on real databases. However
it’s larger than datasets used by Kuznetsov et al. [Kuznetsov and Obiedkov, 2002] and
Godin et al. [Godin and Chau, 1998] in their experiments.

These datasets are ordered by the number of concepts. For two datasets (kr-vs-kp
and connect-4), we didn’t get the number of concepts with these algorithms in our
computer, as they fail due to the lack of memory.

4.1.2 Running time of the 4 first algorithms

We tested every context with the four first algorithms. Figure 2 shows the running
time results. Analyzing the experimental results, Ganter and Bordat algorithms are
faster than others. Bordat’s algorithm not only generates the nodes of the lattice but
also it builds links between these nodes. So if we want really to compare the three
others to Bordat’s algorithm, it would be necessary to build their links between nodes.

4.1.3 Running time of the 4 dual algorithms

We consider that the performance is different between one algorithm and its dual
algorithm. So we implement each algorithm and its dual algorithm to focus respec-
tively on objects or attributes. The experimental results (see table 2) show that the
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DataSet ID Objects Attributes Concepts
shuttle-landing-control do3 15 24 52
adult-stretch do1 20 10 89
lenses do2 24 12 128
ZOOo do7 101 28 377
hayes-roth do6 132 18 380
servo do9 167 19 432
SPECT _train do4 80 23 909
post-operative do5s 90 25 1521
balance-scale di18 625 23 2104
flarel d17 323 32 2608
flare2 d21 1066 32 2987
soybean-small d1o 47 79 3253
monks-3 d14 432 19 3959
monks-1 d16 432 19 4463
monks-2 d15s 432 19 5427
car d22 1728 21 7999
breast-cancer-wisconsin d25 699 110 9860
house-votes-84 d13 435 18 10642
SPECT _test di1 187 23 14532
SPECT _two d30 267 23 21548
audiology.standardized do8 26 110 30401
tic-tac-toe d20 958 29 59503
nursery d27 12960 31 147577
lung-cancer d12 32 228 186092
agaricus-lepiota d28 8124 124 227594
promoters d19 106 228 304385
soybean-large d23 307 133 806030
dermatogogy d24 366 130 1484088
kr-vs-kp d26 3196 75 /
connect-4 d29 67557 126 /

TaB. 1 — The datasets of UCI repository ordered by the number of concepts. / means
that the programs fail to generate all concepts.

performance of two dual algorithms are very different. For example, we have tested
Ganter’s algorithm and its dual algorithm for the dataset Flare2, and time cost can
be 100 times different. So the difference between algorithm and its dual algorithm is
marked, to show that we must consider duality when comparing lattice algorithms.

Figure 3 shows performance of the four algorithms and their dual algorithms. We
can see that Ganter’s algorithm runs faster than others. Figure 4 shows an important
conclusion : Ganter’s algorithm has the best performance when it focusses on the smal-
lest number of objects or attributes. For example, for dataset d08, it has 26 objects
and 110 attributes, the number of objects is smaller than attributes, so dual algorithm
that focusses on objects is faster than that focussing on attributes. With the real data-
base, the number of attributes is often smaller than that of objects. Ganter’s algorithm
works faster than others in this case. Ganter algorithm should search all closures using
the smallest number between attributes or objects. This is the consequence of Ganter’s
algorithm since it explores almost all the subsets of the set of attributes or objects.

This is not the case with the three other algorithms. Norris’ algorithm and its dual
algorithm have the most difference. But Bordat’s algorithm have little difference with
its dual algorithm. It is not possible to infer from the analysis of the code of the 3 other
algorithms that they should be used by focussing on the smallest number of attributes
or objects. And the experiment seems to confirm that.
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LN(Time)

B Ganter
¢ Bordat
¥ Chein
A Norris

1 dl d2 d2 dl d1 d3 dO d2 d2 dl d2 dl d2 d2
5

d
6 25310807 2 89 3 4

Dataset

F1G. 2 — Performance (in ms) of the 4 first lattice algorithms on UCI datasets.

4.2 Test in the worst case

Definition 4.1 A context in the worst case is the case where the sizes of G and
M are equal to n, and each attribute is verified by n — 1 different objects, each object
possesses n — 1 different attributes.

We have tested four algorithms in the worst case. This particular case generates with
context of size n (number of lines and number of columns) : 2" nodes for concept
lattice. The results (see figure 5) show that Ganter’s algorithm is the best in worst
case. It succeeds in computing some large data that were impossible to be computed
with other algorithms. For example : the worst case with 20 attributes (22° concepts)
is very hard to compute with other algorithms, but Ganter’s algorithm can build the
concept lattice for this context. However each algorithm fails in building lattice nodes
for context with more than 22 attributes.

5 Conclusion

The concept lattice algorithm to generate concepts or diagram graph is considered
important in theory and for its application. We need algorithms of high level perfor-
mance to satisfy the mining and learning task. Four algorithms are analyzed and are
compared in this paper, of course, this work will be extended to other lattice algo-
rithms. We use real dataset and worst cases datasets to test four algorithms in Java
environment, the analysis shows that algorithms of Ganter and then Bordat are faster
than others. Ganter’s algorithm is the best for large and dense data. Bordat’s algorithm
can be used to generate the line diagram if the computer has enough memory.
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ID Ganter G-dual Bordat B-dual Chein C-dual Norris N-dual
do3 29 37 116 167 99 194 83 119

do1l 24 43 118 224 167 183 101 123

do2 28 83 128 204 198 232 122 140

do7 140 589 376 754 17607 14652 1255 1787
d0o6 69 707 359 660 3724 1462 1070 543

do9 133 1120 633 968 1681 1061 1713 478

do4 108 507 378 646 54283 80217 3467 3297
do5s 132 1084 957 1554 243564 146154 13457 6620
d18 845 54825 18986 37388 211849 63231 168423 9986
d17 916 26149 17798 31592 6146858 3562383 214944 46890
d21 4000 395911 154984 778299 26633173 12807020 1002709 147099
d10 1819 1924 4027 7143 19392256 12515300 271203 58280
d14 737 41453 34005 18126 4457627 1272022 721953 34865
d16 734 45055 38153 20997 6583877 1376935 853978 48280
d15s 975 50789 44152 24404 10623849 1904268 1190532 66662
d22 4516 1229305 623112 483612 16677919 2555755 8566689 145633
d25 44748 560389 177929 713596 55932215 34140525 2485251 703593
d13 2450 131862 121844 69740 375882938 | 154525507 | 3461533 463109
dll 3382 28432 28459 19540 / / 1982204 1059784
d30 24144 102877 132799 41304 / / 21695260

do8 15922 5288 59384 161548 10672 / 59192 10914983
d20 45681 1767983 2211559 472985 / / 294433666 | 8667683
d27 4627030 / / / / / /

d12 196487 75805 / 496263 / / / /

d28 77183183 / / / /

d19 663052 552271 1774334 1469483 / / / /

d23 2676454 14959171 / / / / / /

d24 6367387 / / / / / / /

d26 | / / / / / / / /

d29 [ / / / / / / / /

TaB. 2 — The results of running time (in milliseconds) of lattice algorithms for real
data. / means that the programs fails to generate all concepts.

In this paper we discuss for the first time dual algorithm for concept lattices. The
difference between algorithm and its dual algorithm is presented. We should consider
duality when comparing lattice algorithms.

Comparing our results with the platform of Kuznetsov and Obiedkov may be in-
teresting and help researchers in Formal Concept Analysis in their implementations of
lattice structure.

Even if this work shows performance of concept lattices algorithm in ML bench-
marks, it is based on the generation of the whole concepts and not on the way ML
algorithms are designed. In fact, not all the concepts are relevant for learning task.
Thus the way to reach quickly to the relevant concepts should be take into account
for the learning algorithm to be more efficient, and the choice of an efficient concept
lattice algorithm should not omit that. We believe that it is not enough if we apply
simply these four algorithms to deal with enormous data. We consider that we need
to develop faster algorithm, or to improve existing algorithms, to raise the efficiency of
the application of concept lattice [Fu and Mephu Nguifo, 2003, Valtchev et al., 2002].
For example, we can use parallel method to improve the performance of the application
of concept lattice. We can also apply fuzzy logic to build flexible lattice.
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¥ Bordat
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Dataset
FiG. 3 — Performance of lattice algorithms and their dual algorithms.
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Résumé

Plusieurs travaux en classification et en recherche de regles d’association montrent
Iintérét des treillis de concepts pour la fouille de données et ’apprentissage automa-
tique. Pour accroitre 'efficacité des algorithmes d’apprentissage qui sont basés sur cette
structure, il est nécessaire d’utiliser des algorithmes rapides de génération de concepts.
Plus d’une dizaine d’algorithmes ont été publiés sur le treillis de concepts. Ces algo-
rithmes présentent une complexité exponentielle, et sont donc difficilement utilisables
sur des données volumineuses. En outre les temps de calcul sont tres variables d’un
algorithme a l'autre, en fonction aussi de la nature du contexte. Nous avons examiné
lefficacité des 4 premiers algorithmes de génération de concepts, sur les données de la
base UCI couramment utilisée pour tester les algorithmes d’apprentissage. Les résultats
préliminaires montrent que l’algorithme de Ganter est meilleur que celui de Bordat, lui
méme meilleur que les 2 autres. Ce constat differe des conclusions des comparaisons
effectuées par Kuznetsov et Obiedkov sur des données aléatoires de petite taille. Nous
avons aussi examiné leffet de la dualité du contexte (transposé) avec ces algorithmes.
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