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Abstract. The most common fitness evaluation for Bayesian networks in the

presence of data is the Cooper-Herskovitz criterion. This technique involves

massive amounts of data and, therefore, expansive computations. We propose a

cheaper alternative evaluation method using simplified assumptions which pro-

duces evaluations that are strongly correlated with the Cooper-Herskovitz crite-

rion.

1 Introduction

We investigate the problem of constructing a Bayesian network for a composite phe-

nomenon U = {u1, u2, . . . , un} where ui for 1 ≤ i ≤ n are discrete random variables

representing the state assignment of the attributes of U. To accomplish this, we start from

a data multiset D = {t1, t2, . . . , tm} where an n-ary tuple ti is an instance of the event U. We

refer to this multiset as evidence data set (data set for short).

A number of assumptions are necessary for deriving a measure for evaluating the fitness

of a Bayesian network structure (BNS) for a training data set. Stronger hypotheses make the

evaluationmoremanageable. On the other hand, the model obtained under weaker assumptions

is better capable to be conforming with the underlying true distribution of the problem.

Let G = (U, E) be a directed acyclic graph having U as its set of vertices and E as its set

of edges, which captures the direct probabilistic dependencies among these variables. Let Θ be

the collection of parameters which quantifies the joint probability distribution of U as specified

by G. We denote the set of possible assignments of a random variable ui by Dom(ui) =
{u1

i , . . . , u
ri

i }. The notion of domain can be extended to sets of variables V using Cartesian

product. If the set of parent nodes of ui is ParG(ui), then Dom(ParG(ui) = {U1
i , . . . , U qi

i }.
The set of non-descendants of ui, ndG(ui) is the set of all nodes in U excluding ui and all its

descendants. When it is clear from the context we drop the subscript G. The pair B = (G, Θ)
satisfies the local Markov condition if PB(ui|nd(ui)) = PB(ui|Par(ui)) for 1 ≤ i ≤ n, where
PB is the probability distribution on U specified by B. The model B is a Bayesian network

if it satisfies the local Markov condition. By the chain rule we have: PB(u1, u2, . . . , un) =∏n
i=1 PB(ui|Par(ui)). Therefore if we let θijk = P (ui = uk

i |Par(ui) = U j
i ) and θij· =

(θij1, . . . , θijri) for 1 ≤ i ≤ n, 1 ≤ k ≤ ri and 1 ≤ j ≤ qi, then the joint probability

distribution on U is specified by Θ = {θij·|1 ≤ i ≤ n and 1 ≤ j ≤ qi}.
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2 A Posterior-based Score with A Reduced Assumptions Set

Cooper and Herskovitz introduced the probability P (G|D) as a measure of assessing the
fitness of G as a probabilistic model of D. Since P (D) is constant across different networks,
we can work with P (G,D). Let ΩG be the space of all probability distributions Θ for the
structure G. Then,

P (G,D) =

∫

ΩG(Θ)

P (D|Θ,G)f(Θ|G)P (G)dΘ. (1)

Recall that Θ is a collection of distributions θij· = (θij1, . . . , θij(ri−1), 1 − ∑ri−1
k=1 θijk) for

all i and j. The vectors θij· for any (i, j) ∈ [1..n] × [1..qi] must satisfy
∑ri−1

k=1 θijk ≤ 1
and θijk ≥ 0 for all k. Also, Θ itself, the collection of these random vector variables, can be
treated as a random variable. P (D|Θ, G) is the conditional probability function of data given
(G, Θ), f(Θ|G) is the conditional density function of Θ given structure G, and P (G) is the
prior probability function of structure G. To evaluate this integral a number of assumptions
were introduced by Cooper and Herskovits (1993). The data independence assumes tuples of
D are independent given the network structure. The local and global independence ( LGI )
assumption requires that θij· is conditionally independent of θi′j′· for all (i, j) 6= (i′, j′) given
the structure. Based on the LGI assumption, Ω(Θ), the space of possible collections Θ can be
written as

ΩG(Θ) =
{ n∏

i=1

qi∏

j=1

(θij1, . . . , θij(ri−1)) ∈ Rri−1 |
ri−1∑

k=1

θijk ≤ 1 and θij1, . . . , θij(ri−1) ≥ 0
}

and we have f(Θ|G) =
∏n

i=1

∏qi

j=1 g(θij·|G) due to the LGI assumption. Cooper and

Herskovits (1993) replace f by the above product in Equality (1). Also, they assume the
distribution g(θij·|G) for each i and j is uniform. We refer to this assumption as second order
uniform probability (SOUP ). Heckerman et al. (1995) introduce the BDe metric which is
a posterior-based measure similar to CH metric. They use the LGI assumption and three
other assumptions: the second order Dirichlet probability (SODP ) (suggested but not used
in Cooper and Herskovits (1993)), the parameter modularity and the multinomial sample (
MS ) assumption. SODP is generalization of SOUP assumption which states that P (θij·|G)
follows a Dirichlet distribution for all i and j. The multinomial sample assumption asserts
that if we define the ordered set Dl = {t1, . . . , tl−1} then,

P
(
tl[ui] = uk

i | tl[u1, . . . , ui−1] = (uv1
1 , . . . , u

vi−1

i−1 ),Dl, (G,Θ)
)
= θijk,

where t[V] denotes the restriction of V ⊆ U on tuple t ∈ D and we have the state assign-

ment ParG(ui) = U j
i consistent with tl[u1, . . . , ui−1] = (uv1

1 , . . . , u
vi−1

i−1 ) and θijk ∈ Θ.

Later, the SODP assumption was replaced with two other assumptions, likelihood equiva-

lence and structure possibility, which imply the SODP assumption. Note that every probabil-

ity function g(θij·|G) follows a Dirichlet distribution which requires ri parameters. Thus,

for each BNS G we need to specify
∑n

i=1 qiri parameters and this makes this approach

impractical. To overcome this difficulty Heckerman et al. (1995) encoded the prior knowl-

edge into a single Bayesian network referred as (a prior network) Bpr = (Gpr , Θpr). Then,
they set the Dirichlet parameter corresponding to probability distribution component θijk to

αijk = N ′ ·PBpr(ui = uk
i , ParGpr(ui) = U j

i ), whereN ′ is a user given parameter which they
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refer as equivalent sample size. The choice of a values of N ′ and the collection Θpr without

observing data is arbitrary. We use sampling which enable us to let data shape the distribution

of the posterior probability on vectors θij· .
In the evaluation of the prior P (G) Cooper and Herskovits (1993) assumed an uniform

prior distribution. This and other assumptions are based on parameters that need to be arbitarily

specified. Sampling enables us to use data as a substitute for strong assumptions or domain

knowledge in determining the parameters of the second order probability distribution and the

prior probability P (G).
Let S1 and S2 be two disjoint samples from D. We evaluate P (G|S1, S2) as a measure of

fitness of BN structure G. Since P (S1, S2) does not depend on the specific BNS we can drop
it and instead compute P (G, S1, S2). Note that by chain rule P (G, S1, S2) = P (S1|G, S2) ·
P (G|S2) · P (S2). If we sample consistently across different structures, then P (S2) is constant
and can be dropped. Therefore, we adopt P (S1|G, S2) · P (G|S2) as a relative measure of
fitness of structures for a data set D. If we repeat the process of sampling, we can extend our
measure to (

k∏

q=1

P (S2q−1|G, S2q) · P (G|S2q)

) 1
k

,

where S1, S2, . . . , S2k are samples fromD where S2q−1 ∩ S2q = ∅ for each q. We refer to this

measure as k-sample validation of structure G for data setD and denote it by SAMPk(G,D).
Let S = {t1, . . . , ta} and S′ be two disjoint samples ofD. The first term of SAMPk(G,D)

can be written as

P (S|G,S′) =

∫

ΩG(Θ)

P (S|Θ, G, S′)f(Θ|G, S′)dΘ. (2)

Let d = (u1, . . . , un) be a topological order of nodes of G which represents expert prior
knowledge of the domain. Denote by nS(t) the number of occurrences of tuple t in S and let
γijk(S) =

∣∣{t ∈ S | t[{ui}] = uk
i ∧ t[Par(ui)] = U j

i }
∣∣ and γij·(S) =

∑ri
k=1 γijk(S) . Since the

attributes ofD are discrete, we have

P (S|B) =
a∏

l=1

P (tl|Sl,Θ, G) =
a∏

l=1

n∏

i=1

P (ui = tl[ui]|Ui = tl[Ui], S
l,Θ, G) =

a∏

l=1

n∏

i=1

qi∏

j=1

ri∏

r=1

θ
λlijr

ijr ,

where the first equality is by the chain rule and Sl = (t1, . . . , tl−1), the second equality is by
assuming MS assumption and Ui = (u1, . . . , ui−1) and λlijr = 1 if tl[ui] = ur

i ∈ Dom(ui)

and tl[ParG(ui)] = U j
i ∈ Dom(ParG(ui)) and λlijr = 0 otherwise. Since

∑a
l=1 λlijr =

γijr(S) , we have

P (S|Θ,G) =
n∏

i=1

qi∏

j=1

ri∏

r=1

θ
γijr(S)

ijr . (3)

Then,

P (S|Θ,G, S′) =
P (S ∪ S′|Θ, G)

P (S′|Θ, G)
=

∏n
i=1

∏qi
j=1

∏ri
r=1 θ

γijr(S∪S′)
ijr

∏n
i=1

∏qi
j=1

∏ri
r=1 θ

γijr(S′)
ijr

=
n∏

i=1

qi∏

j=1

ri∏

r=1

θ
γijr(S)

ijr . (4)

For the second term of right hand side of Equality (2) we have

f(Θ|S′, G) =
P (S′|Θ, G)f(Θ|G)∫

ΩG(Θ)
P (S′|Θ, G)f(Θ|G)dΘ

(5)
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We assume theSOUP hypothesis and set each g(θij·|G) = (ri−1)!. The posterior probability
of Θ is conditioned on G in presence of sample S′, as shown in Equality (2). This approach is
is different from the one used in Cooper and Herskovits (1993) where SOUP hypothesis has
been applied directly without intervention of sample data. Then, we have

∫

ΩG(Θ)

P (S′|Θ, G)f(Θ|G)dΘ =
n∏

i=1

qi∏

j=1

(
(ri − 1)! ·

∏ri
r=1 γijr(S

′)!

(γij·(S′) + ri − 1)!

)
,

from Equality (3) and SOUP , LGI , and from a result from Jeffreys and Jeffreys (1988) (see
pages 468-470 of this reference). Thus, from the previous equalities and from (3) and (5) we
have,

f(Θ|S′, G) =
n∏

i=1

qi∏

j=1

Γ(γij·(S
′) + ri)

ri∏

r=1

θ
γijr(S′)
ijr

Γ(γijr(S′) + 1)
, (6)

where Γ is Euler’s function. Combining Equalities (2), (4) and (6) we obtain

P (S|G,S′) =
n∏

i=1

qi∏

j=1

Γ(γij·(S′) + ri)

Γ(γij·(S ∪ S′) + ri)
·

ri∏

r=1

Γ(γijr(S ∪ S′) + 1)

Γ(γijr(S′) + 1)
,

To approximate the quantity P (G|S) we use a slight variation of a measure called the

distribution distortion introduced in Baraty and Simovici (2009). Here we want to evaluate

the conditional independency captured by local Markov condition according to data, that is,

we want to assess to what degree the conditions fS(ui|nd(ui)) = fS(ui|Par(ui)) holds for

1 ≤ i ≤ n, where fS is the frequency function relative to sample S ⊆ D. To achieve this, we

measure the divergence of the set of probability distributions fS(ui|nd(ui) = U) from the set

of probability distributions fS(ui|Par(ui) = U [Par(ui)]) for all i and U ∈ Dom(nd(ui)).

Definition 2.1 The local Markov divergence of the fork structure at node ui of G according to

sample S, denoted by LMD
G
S (ui), is the number

∑

U

fS(nd(ui) = U) · KL
[
fS(ui|nd(ui) = U), fS(ui|Par(ui) = U [Par(ui)])

]
,

where the sum extends over all U ∈ Dom(nd(ui)). Here KL[p, q] is the Kullbach-Leibler

divergence between the probability distributions p = (p1, . . . , pn) and q = (q1, . . . , qn).

Let HS(πu) be the Shannon entropy of the set S partitioned according to the values of u,

and let HS(πu|πW) be the conditional Shannon entropy of the set S partitioned according to

the values of u, conditioned by the partition of S according to the assignment of the set of

attributesW (see Baraty and Simovici (2009)).

Theorem 2.2 For 1 ≤ i ≤ n we have LMD
G
S (ui) = HS(πui |πPar(ui)) − HS(πui |πnd(ui)).

Theorem 2.3 LMD
G
S (ui) = 0 if and only if fS(ui|nd(ui)) = fS(ui|Par(ui)).

Theorem 2.2 implies that 0 ≤ LMD
G
S (ui) ≤ HS(πui). By Theorem 2.3 the smaller the

value of LMD
G
S (ui) is, the closer is the fork structure at node ui to satisfy the local Markov

condition according to S. Therefore, the Markov condition is closer to be satisfied according

to sample S. On another hand, the closer LMD
G
S (ui) is toHS(πui) the more divergent the two
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probability distributions fS(ui|nd(ui) = U) and fS(ui|Par(ui) = U [Par(ui)]) are for every

U ∈ Dom(nd(ui)). When LMD
G
S (ui) = HS(πui), we haveHS(πui |πPar(ui)) = HS(πui) and

HS(πui |πnd(ui)) = 0. This means that the set Par(ui) has no prediction capability at all at the
node ui and the set nd(ui) has a perfect predication capability on ui. Let BNS(U) be the set
of all possible Bayesian structures on set of attributes U. Define P (G|S) as

P (G|S) =
∑n

i=1

(
HS(π

ui)− LMD
G
S (ui)

)
∑

G′∈BNS(U)

∑n
i=1

(
HS(πui)− LMD

G′
S (ui)

) .

Using the previous evaluations, SAMPk(G,D) can be written as

(
k∏

q=1

P (S2q−1|G, S2q) · P (G|S2q)

) 1
k

=




k∏

q=1

∑n
s=1

(
HS2q (π

us )− LMD
G
S2q

(us)
)

∑
G′∈BNS(U)

∑n
s=1

(
HS2q (π

us )− LMD
G′
S2q

(us)
)

·
qi∏

j=1

Γ(γij·(S2q) + ri)

Γ(γij·(S2q−1 ∪ S2q) + ri)

ri∏

r=1

Γ(γijr(S2q−1 ∪ S2q) + 1)

Γ(γijr(S2q) + 1)

) 1
k

.

If we consistently sample the data across different structures, we can drop the constant entities

with respect to BNS G and assuming P
S2q

G =
∑n

s=1(HS2q(π
us)− LMD

G
S2q

(us)) we set,

SAMPk(G,D) =

(
k∏

q=1

P
S2q

G

n∏

i=1

qi∏

j=1

Γ(γij·(S2q) + ri)

Γ(γij·(S2q−1 ∪ S2q) + ri)

ri∏

r=1

Γ(γijr(S2q−1 ∪ S2q) + 1)

Γ(γijr(S2q) + 1)

) 1
k

.

3 Experimental Results and Conclusions

We conducted experiments on three well-known structures GAM , GCAR and GNC for

domains Alarm, Car Diagnosis2 and Neapolitan Cancer with 37, 18 and 5 nodes respec-

tively. For the first two structures we randomly generated the corresponding probability tables,

ΘAM and ΘCAR. Then, based on probability distributions introduced by (GAM , ΘAM ) and
(GCAR, ΘCAR) we generated data sets of sizes 80000 and 100000 respectively. For the GNC

we used its corresponding data set in the literature with 7565 with no missing values.

For each data set we randomly generated a number of structures of different complexities.

The number of the edges for these structures ranged from 1 − 10, 12 − 108 and 12 − 330 for

NC, CAR and AM data sets respectively.

Figures 1(a), 1(b) and 1(c) show very strong correlations between the CH score and the

SAMP score for various values for k. The derived measure is cheaper to compute, since it

works with samples much smaller than the entire data.

We introduced a measure based on posterior probability for measuring the fitness of a

Bayesian network structure based on data. The conclusion of this work is that our sampling-

based scoring is a viable and much cheaper alternative to the CH score. The fact that we use

sampling to reduce the set of assumptions and we get a very strong correlation between two

measure confirms that the SOUP and uniform distribution on P (G) are safe assumptions and

do not distort the search.
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(a) Alarm data (b) Car Diagnosis2 data

(c) Neapolitan Cancer data (d) time comparison diagram

FIG. 1 – Correlations between log(SAMPk(G,D)) and log(CH) and time in ms needed for computing

log(SAMP1)(G,CAR) and CH scores
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Résumé

L’évaluation qualitative la plus connue des réseaux Bayesiens en présence de données est le

critère Cooper-Herskovitz. Cette technique implique des quantités massives de données donc,

par conséquent, des nombreux calculs. Nous proposons une méthode d’évaluation plus efficace

utilisant des suppositions simplifiées et qui produit des évaluations fortement corrélées avec le

critère Cooper-Herskovitz.

- 16 -


