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Résumé.Cet article présente une carte auto-organisatrice probabiliste pour l’ana-
lyse et la classification topologique des données catégorielles. En considérant un
modèle de mélanges parcimonieux nous introduisons une nouvelle carte auto-
organisatrice (SOM) probabiliste. L’estimation des paramètres de notre modèle
est réalisée à l’aide de l’algorithme EM classique. Contrairement à SOM, l’al-
gorithme d’apprentissage proposé optimise une fonction objective. Ces perfor-
mances ont été évaluées sur des données réelles et les résultats obtenus sont
encourageants et prometteurs à la fois pour la classification et pour la modélisa-
tion.

1 Introduction

Data visualization is an important step in the exploratory phase of data analysis. This step
is more difficult when it involves binary data and categorical variables (Andreopoulos et al.,
2006; Saund, 1995). Self-organizing maps are being increasingly used as tools for visualiza-
tion, as they allow projection over small areas that are generally two dimensional. The basic
model proposed by (Kohonen, 2001), was only designed for numerical data, but it has been
successfully applied to treating textual data, (Kaski et al., 1998). This algorithm has also been
applied to binary data following transformation of the original data (Ibbou et Cottrell, 1995;
Lebbah et al., 2000). Developing generative models of the Kohonen map has long been an
important goal. These models vary in the form of the interactions, and they assume the hid-
den generators may follow in generating the observations. Some extensions and reformulations
of the Kohonen model have been described in the literature. They include probabilistic self-
organizing maps (Anouar et al., 1997) which define a map as a gaussian mixture and use the
maximum likelihood approach to define an iterative algorithm.

In Verbeek et al. (2005), the authors propose a probabilistic generalization of Kohonen’s
SOM which maximizes the variational free-energy that sums data log-likelihood and Kullback-
Leibler divergence between a normalized neighbourhood function and the posterior distribu-
tion on the given data for the components. We have also Soft topographic vector quantization
(STVQ), which uses some measure of divergence between data items and cells to minimize a
new error function (Heskes, 2001; Graepel et al., 1998). Another model, often presented as the
probabilistic version of the self-organizing map, is the Generative Topographic Map (GTM)
(Bishop et al., 1998; Kaban et Girolami, 2001). However, the manner in which GTM achieves
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the topographic organization is quite different from those used in the SOM models. In GTM
mixture components are parameterized by a linear combination of nonlinear functions of the
locations of the components in the latent space. The GTM was developed for continuous data.
A specific GTM model was subsequently developed for binary data by adopting a variational
approximation to the binomial likelihood (Graepel et al., 1998).

Also, in Kaban et al. (2004), the authors concentrate on modelling binary coded data where
only the presence or absence of a variable is of interest. In contrast to other approaches, the
model is linear. The model is seen as a Bernoulli analogue of the multinomial decomposition
model. In Jollois et Nadif (2007), the main of the proposed method is to speed-up convergence
of EM, and second to yield same results (or not so far) than traditional EM using categorical
data. Others similar techniques have been developed to cluster large data sets (Kostiainen et
Lampinen, 2002; Hofmann, 2001).

Here, we concentrate on modelling qualitative data using binary coding. This model in-
volves use of the probabilistic formalism of the topological map used in (Anouar et al., 1997);
therefore, it consists of estimating the parameters of the model by maximizing the likelihood
of the data set. The learning algorithm that we propose is an application of the EM standard
algorithm, (McLachlan et Krishman, 1997). Some variants are proposed to speed-up EM in
reducing the time spent in the E-step in the case of categorical data, (Jollois et Nadif, 2007). In
this paper we proposed a new method called WeCSOM (Weighted Categorical Self-Organizing
Map) which combine the benefits of SOMs, K-mode (Huang, 1998) algorithm and mixture
models to design a new mixture for categorical data. This approach is based on the model of
the self-organizing maps and uses a parsimonious mixture models which has the advantage
of being directly applicable to the categorical data without using a specific encoding a priori.
The proposed learning algorithm is an application of the classical EM algorithm that allows to
weight the variables considering the number of modes of each one during the learning process,
thus achieving an optimized classification of the data.

The rest of this paper is organized as follows: we present the principle of probabilistic map
and categorical data in section 2. Our proposed approach is presented in sections 2.1 and 2.2.
In sections 3, we present different results and, finally the paper ends with a conclusion and
some future works for the proposed methods.

2 Categorical data and Probabilistic self-organizing map

As with a traditional self-organizing map, we assume that the latticeC has a discrete topo-
logy (discrete output space) defined by an undirect graph. Usually, this graph is a regular grid
in one or two dimensions. We denote the number of cells inC asNcell. For each pair of cells
(c,r) on the map, the distanceδ(c,r) is defined as the length of the shortest chain linking cells
r andc.

2.1 General probabilistic formalism

To define the model of topological maps based on mixture models we associate to each cellc
of the mapC a density functionfc(x) = p(x|θc) whose parameters are denoted byθ. Follo-
wing the bayesian formalism, presented in (Luttrel, 1994; Anouar et al., 1997), we assume that
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each observationx is generated by the following process: We start by associating to each cell
c ∈ C a probabilityp(x|c) wherex is a vector in the data space. Next, we pick a cellc∗ from
C according to the prior probabilityp(c∗). For each cellc∗, we select an associated cellc ∈ C
following the conditional probabilityp(c|c∗). All cells c ∈ C contribute to the generation ofx
with p(x|c) according to the proximity toc∗ described by the probabilityp(c|c∗). Thus, a high
proximity to c∗ implies a high probabilityp(c|c∗), and therefore the contribution ofc to the
generation ofx is high.

Due to the "Markov" property,p(x|c,c∗) = p(x|c), the probability distribution of the ob-
servations generated by a cellc∗ of C is a mixturepc∗(x|c∗) of probabilities completely defined
from the map as:

pc∗(x|c∗) =
∑

c∈C
p(c|c∗)p(x|c).

The generative model considers the mixture of probabilities, given by :

p(x) =
∑

c,c∗∈C
p(c,c∗,x) =

∑

c,c∗∈C
p(x|c)p(c|c∗)p(c∗) =

∑

c∗∈C
p(c∗)pc∗(x), (1)

with
pc∗(x) = p(x|c∗) =

∑

c∈C
p(c|c∗)p(x|c), (2)

where the conditional probabilityp(c|c∗) is assumed to be known. To introduce the self-
organizing process in the mixture model learning, we assume thatp(c|c∗) can be defined as:

p(c|c∗) = KT (δ(c,c∗))∑
r∈CK

T (δ(r,c∗))
,

whereKT is a neighbourhood function depending on the parameterT (called temperature):
KT (δ) = K(δ/T ), whereK is a particular kernel function which is positive and symmetric (
lim
|x|→∞

K(x) = 0). ThusK defines for each cellc∗ a neighbourhood region inC. The parameter

T allows control of the size of the neighbourhood influencing a given cell on the map. As with
the Kohonen algorithm, we decrease the value ofT between two valuesTmax andTmin.

2.2 The proposed model

In the following, let we focus on categorical data. Let be a set ofN instancesx1, . . . ,xN

described byn categorical attributesx1, . . . ,xn. The data matrix is notedx and defined by
x = {(xji ); i = 1, . . . ,N ; k = 1, . . . ,n}. Each instancei is represented as[x1i , . . . ,x

n
i ] and

for each attributexj , we notecj the number of categories. We consider a restricted latent class
model [16], then the conditional distribution inp(xi|c) is now given as the product of univariate
single distributions

p(xi|c) = fc(xi|wc,εc) =

n∏

k=1

fc(x
k
i |wk

c ,ε
k
c ),

wherewc = (w1
c , . . . ,w

n
c ) represents the vector of categories andεc = (ε1c , . . . ,ε

n
c ) is a vector

of probabilities. Taking

fc(x
k
i |wk

c ,ε
k
c ) = (1− εkc )1−d(x

k
i ,w

k
c )

(
εkc

ck − 1

)d(xk
i ,w

k
c )

,
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whered(a,b) = 1 if a = b and 0 otherwise, we define a parsimonious model where the parame-
ter c consists of(wc,εc) with wc is the mode of the the component andεc is a k-dimensional
vector of probabilities indicating the degree of heterogeneity. The densityfc(xi|wc,εc) ex-
presses that, forc, the attributexk takes categorywk

c with the greatest probability(1− εkc ) and

takes each other category with the same probabilityε
k
c

(ck−1) . Note that, setting the clustering
problem under the classification maximum likelihood approach, the authors in [16] have defi-
ned a generalization of thekmodes criterion and proposed better fit criteria. In our situation,
we can assume that the parameterεkc depends only on a cellc ∈ C. Then, the model mixture
generator becomes:

p(x) =
∑

c∗∈C
p(c∗)

∑

c∈C
p(c|c∗)fc(x,wc,εc). (3)

Therefore, the parametersθ = θC ∪ θC∗ which define the model mixture generator (3) are
constituted of the parameters (θC = {θc,c = 1..Ncell}, whereθc = (wc,εc)), and all the prior
probabilities, also called mixing coefficients (θC

∗
= {θc∗ ,c∗ = 1..Ncell} whereθc

∗
= p(c∗)).

The difficulty now is to define the cost function and the learning algorithm for estimating all
these parameters dedicated to categorical data. Our WeCSOM algorithm was inspired by a
probabilistic SOM model proposed by (Anouar et al., 1997) and represents a generalization of
the model proposed by (Lebbah et al., 2007).

2.3 Cost function and optimization algorithm

The learning algorithm is based on maximizing the likelihood of the observations by ap-
plying the EM algorithm (Dempster et al., 1977). Learning is facilitated by introducingN
hidden variablesΞ = (ξ1, . . . ,ξN ); each hidden variableξ = (c,c∗) indicates which of the
cell pairsc andc∗, generate the corresponding data observationx. We introduce the hidden
variableξ = (c,c∗) in expression (3):

p(x) =
∑

ξ∈C×C
p(x,ξ) =

∑

c,c∗∈C
p(c∗)p(c|c∗)fc(x,wc,εc). (4)

We define a binary indicator variableα(c,c∗)
i which indicates the hidden generator that may

follow in generating the observationxi as:α(c,c∗)
i =

{
1 for ξi = (c,c∗)
0 otherwise

. Using expres-

sion (4), and the binary indicatorα(c,c∗)
i , we can define the classification likelihood of the

observations using the hidden variables as follows:

LT (,Ξ; θ) =

N∏

i=1

∏

c∗∈C

∏

c∈C

[
θc
∗
p(c|c∗)fc(x,wc,εc)

]α(c,c∗)
i

.

The log-likelihood becomes:

lnLT (,Ξ; θ) =
N∑

i=1

∑

c,c∗∈C
α
(c,c∗)
i

[
ln(θc

∗
) + ln

(
KT (δ(c∗,c))

Tc∗

)
+ ln(fc(x,wc,εc))

]
,
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whereTc∗ =
∑

r∈CK
T (δ(r,c∗)). The application of the EM algorithm [7] for the maximiza-

tion of log-likelihood requiresQT (θt,θt−1) to be maximised for a fixed temperatureT defined
as:

QT (θt,θt−1) = E
[
lnLT (,Ξ; θt)|,θt−1

]
,

where θt is the set of the parameters estimated at thetth step of the learning algorithm.
However, the E-step calculates the expectation of log-likelihood with respect to the hidden
variable while maintaining the established parameterθt−1. During the M-step, after upda-
ting QT (θt,θt−1) from the previous step, we maximize theQT (θt,θt−1) with respect toθt,
(θt = argmaxθ(Q

T (θ,θt−1))). The two-steps increase the function likelihood. The function
QT (θt,θt−1) is defined as:

QT (θt,θt−1) =
N∑

i=1

∑

c∗∈C

∑

c∈C
E(α

(c,c∗)
i |xi,θ

t−1)

×
[
ln(θc

∗
) + ln

(
KT (δ(c∗,c)

Tc∗

)
+ ln(fc(x,wc,εc))

]

whereE(α
(c,c∗)
i |xi,θ

t−1) = p(α
(c,c∗)
i = 1|xi,θ

t−1) = p(c,c∗|xi,θ
t−1), with

p(c,c∗|xi,θ
t−1) =

p(c∗)p(c|c∗)p(x|c)
p(x)

.

The functionQT (θt,θt−1) breaks into three terms

QT (θt,θt−1) = QT
1 (θ
C ,θt−1) +QT

2 (θ
C∗ ,θt−1) +QT

3 (θ
t−1) (5)

where

QT
1 (θ
C ,θt−1) =

n∑

k=1

N∑

i=1

∑

c∈C

∑

c∗∈C
p(c,c∗|xi,θ

t−1) ln(fc(x
k,wk

c ,ε
k
c )),

QT
2 (θ
C∗ ,θt−1) =

N∑

i=1

∑

c∗∈C

∑

c∈C
p(c,c∗|xi,θ

t−1) ln(θc
∗
),

QT
3 (θ

t−1) =
N∑

i=1

∑

c∗∈C

∑

c∈C
p(c,c∗|xi,θ

t−1) ln

(
KT (δ(c∗,c)

Tc∗

)
.

The parametersθC andθC
∗

indicate the parameters estimated at thetth step. The first term
QT

1 (θ
C ,θt−1) depends onθc,k = (wk

c ,ε
k
c ); the second termQT

2 (θ
C∗ ,θt−1) depends onθc

∗
,

and the third term is constant. MaximizingQT (θt,θt−1) with respect toθc
∗

andθc can be
performed separately including the parameterwc andεc. The maximization ofQT (θt,θt−1)
leads to the updates that are calculated using the parameters estimated at thet− 1th step. The
expressions are defined as follows:

θc
∗
= p(c∗) =

∑
xi∈A p(c

∗|xi,θ
t−1)

N
(6)
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where
p(c∗|xi,θ

t−1) =
∑

c∈C p(c,c
∗|xi,θ

t−1) and p(c|xi,θ
t−1) =

∑
c∗∈C p(c,c

∗|xi,θ
t−1). Each

component ofwc = (w1
c , . . . ,w

k
c , . . . ,w

n
c ) andεc = (ε1c ,ε

2
c , . . . ,ε

k
c , . . . ,ε

n
c ) is then compu-

ted as follows:

wk
c =e=1,...,ck

N∑

i=1

p(c|xi,θ
t−1)d(xki ,w

k
c ) (7)

and

εkc =

∑N
i=1 p(c|xi,θ

t−1)d(xki ,w
k
c )∑N

i=1 p(c|i,θt−1)
, (8)

The application of EM for the maximization gives rise to the iterative algorihtm of WeCSOM.
The version of the WeCSOM algorithm for a fixedT parameter is presented in the following
way:

Algorithm 1 Principal stages of the learning algorithm WeCSOM

1. Initialization (iteration t = 0) Choose the initial parameters (θ0) and the number of
iterationsNiter.

2. Basic Iteration at a constantT (iteration t ≥ 1) Calculate all the parametersθt =
{θc∗ ,wc,εc} from the previous parametersθt−1 associated with each cellc andc∗ by
applying the formulas: (6), (7) and (8).

3. Repeatthe basic iteration untilt > Niter.

The WeCSOM learning algorithm allows us to estimate the parameters maximizing the log-
likelihood function for a fixedT . As in the SOM algorithm, we decrease the value ofT between
two valuesTmax andTmin, to control the size of the neighbourhood influencing a given cell on
the map. For eachT value, we get a likelihood functionLT , and therefore the expression varies
with T . When decreasingT , the learning algorithm of WeCSOM is defined in the Algorithm
2.

Algorithm 2 Algorithm WeCSOM varyingT

1. Initialization Phase (iterationt = 0): ChooseTmax, Tmin andNiter. Apply the princi-
pal stages of WeCSOM algorithm described above for the value ofT fixed toTmax.

2. Iterative step: We assume that the previous parameterθt are known. Compute the new

value ofT by applying the following formula:T = Tmax

(
Tmin

Tmax

) t
Niter−1

.

For fixed value of the parameterT , apply the basic iteration described in the principal
stages, which estimates the new parameterθt+1 using the formulas (6), (7) and (8).

3. Repeatthe Iterative step whilet ≤ Niter.

We can define two steps in the operating of the algorithm:
– The first step corresponds to highT values. In this case, the influencing neighbourhood

of each cellc on the map is important and corresponds to higher values ofKT (δ(c,r)).
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Formulas (6), (7) and (8) use a high number of observations to estimate model parame-
ters. This step provides the topological order.

– The second step corresponds to smallT values. The number of observations in formulas
(6), (7) and (8) is limited. Therefore, the adaptation is very local. The parameters are
accurately computed from the local density of the data.

3 Experimentations and validations

To evaluate the quality of clustering, we adopt the approach of comparing the results to a
"ground truth". We use the clustering accuracy for measuring the clustering results. This is a
common approach in the general area of data clustering.

This procedure is defined by (Jain et Dubes, 1988) as "validating clustering by extrinsic
classification", and has been followed in many other studies (Andreopoulos et al., 2006; Khan
et Kant, 2007).

Thus, to adopt this approach we need labeled data sets, where the external (extrinsic) know-
ledge is the class information provided by labels. Hence, if the WeCSOM finds significant
clusters in the data, these will be reflected by the distribution of classes. Therefore we operate
a vote step for clusters and compare them to the behavior methods from the literature. The
so-called vote step consists in the following. For each clusterc ∈ C:

– Count the number of observation of each classl (call it Ncl).
– Count the total number of observation assigned to the cellc (call it Nc).
– Compute the proportion of observations of each class (call itScl = Ncl|Nc).
– Assign to the cluster the label of the most represented class(l∗ = argmaxl(Scl).

A clusterc for whichScl = 1 for some class labeledl is usually termed a "pure" cluster, and a
purity measure can be expressed as the percentage of elements of the assigned class in a cluster.
The experimental results are then expressed as the fraction of observations falling in clusters
which are labeled with a class different from that of the observation. This quantity is expressed
as a percentage and termed "purity percentage" (indicated asPurity% in the results).

To test the performance of our approach we used many publics data sets extracted from the
UCI repository (Asuncion et Newman, 2007). The table 1 summarizes a short description of
these data sets.

TAB . 1 – – Description of the used datasets for the validations.

Data set Size nb. of classes
Zoo 101× 16 7

Congressional vote 435× 16 2
Wisconsis-B-C 699× 9 2

Nursery 12960× 8 2
Car 1728× 6 4

Post-Operative 90× 8 3

To conduct experimental comparison and to verify the efficacy of our proposed model, we
compare our method with the RTC (Relational Topological Clustering), (Labiod et al., 2010).
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We choose this method because it is based on the same principle of the Kohonens model
(conservation of the data topological order) and uses the Relational Analysis formalism by
optimizing a cost function defined by analogy with Condorcet criterion. One disavantage of
the RTC method is that this approach treats all the features equally. We use the same categori-
cal data sets obtained from UCI repository (Asuncion et Newman, 2007) and used in (Labiod
et al., 2010).
For each dataset we learned a map of different sizes (from 5x5 to 10x10) and we indicate in
the table 2 the purity of clustering for RTC technique and WeCSOM. The results illustrate that
the proposed technique increase the purity index compared to the RTC and also presents the
advantage to treat directly the categorical data without using the binary coding.

We compared also the performance of our method with the result provided in (Khan et
Kant, 2007) that used a version of K-modes clustering method dedicated to categorical data.
Table 3 lists the classification error obtained with different methods. We compute the fraction
of observations falling in clusters which are labeled with a class different from that of the ob-
servation. We can observe that our results are much better then the results provided by K-modes
(Khan et Kant, 2007). Also we improve the error rate compared to BinBatch algorithm which
represents the classical SOM approach dedicated to binary data using Hamming distance.

TAB . 2 – – Comparison between RTC et WeCSOM using purity index. RTC : Relational Topo-
logical Clustering dedicated to categorical data using the Relational Analysis formalism.

Purity:% Size map RTC WeCSOM
Zoo (5× 5) 97.84 98.13

Nursery (6× 6) 78.69 81.52
Car (10× 10) 80.17 82.19

Post-Operative (5× 5) 78.21 81.34

TAB . 3 – – Comparison of the classification performances reached by K-modes, BinBatch and
WeCSOM clustering algorithms.

Error rate:% K-modes BinBatch WeCSOM
Wisconsis-B-C 13.2 3.87 2.34

Zoo 16.6 2.97 1.87
Congressional vote 13.2 5.91 5.77

4 Conclusion

This study reports the development of a computationally efficient EM approach to maximize
the likelihood of the data set to estimate the parameters of a probabilistic self-organizing map
model dedicated to categorical variables. This algorithm has the advantage of providing a pro-
totype with the same coding as the input data. The extention of the proposed method to the
co-clustering will be an interesting future work for dealing with large-scale problems.
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Summary

This paper introduces a probabilistic self-organizing map for topographic clustering, anal-
ysis of categorical data. By considering a parsimonious mixture model, we present a new
probabilistic Self-Organizing Map (SOM). The estimation of parameters is performed by the
EM algorithm. Contrary to SOM, our proposed learning algorithm optimizes an objective
function. Its performance is evaluated on real datasets.
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