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Abstract. In recent years, the amount of data to process has increased in many
application areas such as network monitoring, web click and sensor data anal-
ysis. Data stream mining answers to the challenge of massive data processing,
this paradigm allows for treating pieces of data on the fly and overcoming data
storage. The detection of changes in a data stream distribution is an important
issue. This article proposes a new schema of change detection : i) the summa-
rization of the input data stream by a set of micro-clusters; ii) the estimate of
the data stream distribution exploiting micro-clusters; iii) the estimate of the di-
vergence between the current estimated distribution and a reference distribution;
iv) diagnostic step through the contribution of each predictive variable to the
overall divergence between both distributions. Our schema of change detection
is applied and evaluated on artificial data streams.

1 Introduction

In recent years, the amount of data to process has increased in many application areas such
as network flows, web click and sensor data analysis. Data stream mining indicates algorithms
which process tuples 1 on the fly : when they are emitted, without storing them. The processing
of tuples should be as fast as possible which allows for managing high rate data streams. An
important issue in processing data streams is detecting changes in underlying distribution that
is generated by tuples. The designing of change detection schemes which are general, scalable
and statistically relevant is a great challenge.

A change in the underlying distribution can be interpreted into different ways : i) the ob-
served phenomenon is naturally drifting due to a change in some hidden context (Widmer and
Kubat, 1996) which is not explicitly given by predictive features; ii) an abnormal change is
taking place in the observed system. Distinguish the two cases is a very difficult issue which
requires expertise on the application. In this article we assume an expert, who well knows the
observed data stream, may rule on the interpretation of detected changes.

An overview of the main change detection approaches is given by A. Dries (Dries and
Rückert, 2009) : Change detection in the distribution of tuples can be considered as a statistical
hypothesis test which involves two samples of multidimensional tuples. Such problems are
studied in the statistical literature. The Wald-Wolfowitz and Smirnov tests was generalized

1. The term “tuple” refers to a piece of data which is emitted from the input stream.
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to multidimensional data sets in (Friedman and Rafsky, 2006). Later, approaches based on
nearest-neighbor analyses (Hall, 2002) or distance between density estimates (Anderson et al.,
1994) have been developed. Most recently, statistics based on maximum mean discrepancy for
universal kernels have become popular (Gretton et al., 2006). A range of statistical work on
abrupt change detection have been done (Basseville and Nikiforov, 1993; Desobry and Davy,
2003) .

In this article, a new schema of change detection is proposed (see Figure 1). This schema
is composed by four successive steps. In Section 2 the input data stream is summarized by
a micro-clustering algorithm. This first step is necessary because of the high rate of the input
data stream, in practice all tuples can not be processed in real time. The “Denstream” algorithm
(Feng Cao et al., 2006) has the ability to summarize dense areas of the input space and to forget
the old tuples through a time-based weighting. We propose a simple way to tune this algorithm
in terms of durations. In Section 3 a new variant of Parzen window is proposed and it is used
to estimate the underlying distribution of the data stream. This density estimator exploits the
summary of the input data stream instead of tuples. This step is periodically repeated with a
lower rate than the emission of tuples from the data stream. Section 4 shows how the distance
between the current estimated distribution and a reference distribution can be evaluated by
the Kullback-Leibler divergence. This measure allows for sending an alarm to the expert when
both distributions are significantly different. The last step of our schema consists in a diagnostic
which is given to the expert to help him understand the causes of the detected anomaly. The
contribution of each variable to the overall distance between both distributions is evaluated
owing to a new proposed criterion.

Synopsis of the

input data stream based on the synopsis

Density estimation DiagnosticEvents detection

Density based Clustering

(DenStream)
Addapted Parzen

Window estimator 

Kullback−Leibler

divergence

Contribution of each

variable to the divergence

step 1 ( see Section 2 ) step 2 ( see Section 3 ) step 3 ( see Section 4 ) step 4 ( see Section 4 )

FIG. 1 – global schema for change detection in the input data stream distribution.

Finally, our approach is applied and evaluated on two artificial data streams in Section 5.
Possible industrial applications of our schema and future works are discussed in Section 6.

2 Summarization of the input data stream

In the data stream paradigm, emitted tuples can not be exhaustively stored and processed
due to the high rate of the input stream. This section presents the summarization of the input
data stream which is a preliminary step in the change detection processing. Our approach
exploits the “Denstream” algorithm (Feng Cao et al., 2006) to summarize the data stream : a
time based weighting is applied on a set of micro-clusters.
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2.1 Weighted data stream

Tuples are progressively emitted from the data stream and are weighted with regard to
their age. More precisely, tuples (denoted by xi) are defined in Rk and are characterized by the
vector {x1

i , x
2
i ...x

k
i }. Each tuple xi is emitted at the instant (tcurrent − αi) with αi denoting

the age of xi. At current time tcurrent each tuple is weighted by wi = 2−λ.αi , where λ is
a fading parameter belonging to the interval ]0,∞]. The higher the value of λ, the lower the
importance of the historical data compared to more recent data. In this article, N denotes the
total number of emitted tuples at tcurrent.

Let WN be the overall weight of the data stream at the instant tcurrent when N tuples
were emitted. We have WN =

∑N
i=1 2−λ.αi and WN+1 =

∑N
i=1 2−λ(αi+Δt) + 1, with

Δt corresponding to the elapsed time between the emission of the two last tuples. Under
the hypothesis that the rate of the data stream is constant, the overall weight is recursively
defined as WN+1 = 1 + 2−λ.Δt × WN . This “arithmetic geometric” serie converges 2 to
limN→+∞ WN = 1

1−2−λΔt
.

2.2 Micro-clusters

A set of micro-clusters aims at summarizing the input data stream keeping information on
the density distribution. This synopsis is maintained in memory at any time. The “jth” micro-
cluster mcj(cj , rj , wj) is defined by : i) a weight wj that corresponds to the sum of the weights
of tuples belonging to the cluster (denoted by x1j , x2j ...xnjj) with wj =

∑nj

i=1 2−λαij ; ii) the
center cj that is a vector corresponding to the weighted barycenter of examples with cj =
1

wj

∑nj

i=1 wijxij ; iii) the radius rj that is a vector corresponding to the weighted standard

deviation with rj = 1
wj

√∑nj

i=1 wij .d(xij , cj)2 with the Euclidean distance denoted by d().
The “age” of tuples increases when a new tuple is emitted such as αi ← αi + Δt, the

elapsed time between two tuple Δt is considered as constant. The new tuple is affected to the
closer micro-cluster. The set of micro-clusters is maintained owing to an iterative process. The
weights of micro-clusters are maintained through the following successive steps :

1. the aging of all micro-clusters such as w
(1)
j ← wj .2−λΔt ∀j ∈ [1, C];

2. the increase of the weight of the micro-cluster j∗ where the emitted tuple is affected
such as w

(2)
j∗ ← w

(1)
j∗ + 1.

Two clusters features are required to maintain the center and the radius of micro-clusters
(Zhang et al., 1996). Let CF 1

j [respectively CF 2
j ] be a k-dimentional vector storing, for each

variable, the weighted sum of coordinates [respectively the sum of squared coordinates] of
examples belonging to the “jth” micro-cluster : CF 1

j =
∑nj

i=1 wijxij [respectively CF 2
j =∑nj

i=1 wijx
2
ij]. cj and rj are maintained as follows : cj = CF 1

wj
and rj =

√
|CF 2

j |
wj

−
( |CF 1

j |
wj

)2

2.3 The Denstream approach

The Denstream approach handles two kinds of micro-cluster corresponding to different
functions. The set of "potential-micro-clusters", denoted by mcp, summarizes significant in-

2. In this case, the condition |2−λΔt | ≤ 1 is always satisfied.

RNTI-E-19- 231 -



Density estimation on data stream

formation from the data stream. Micro-clusters exceeding a minimal weight are considered
as representing significant information. The set of "outlier-micro-clusters", denoted by mco,
consists in a buffer keeping insignificant information from the data stream. The intuition is
the following : a slight micro-cluster (under the minimal weight) can grow if the density dis-
tribution of the data stream is changing. The objective is to keep insignificant information to
early detect new dense areas in data stream. Two constraints are applied on micro-clusters :
i) micro-clusters of which the weight decreases below a minimum weight (denoted by μ) are
deleted; ii) a new tuple is merged into its nearest micro-cluster if its updated radius r∗j is less
than a maximum standard deviation (denoted by ε). These constraints ensure the micro-clusters
represent dense areas of the space Rk where tuples have appeared recently. A pruning strategy
is implemented by the “Denstream” algorithm. This strategy aims at regulating the memory
space necessary to store the two sets of micro-clusters mcp and mco.

How we tune parameters in terms of durations : We assume our change detection ap-
proach is exploited by an expert who well knows phenomena embedded into the data stream.
The “Denstream” algorithm involves several parameters (λ, μ and ε) that may be difficult to
adjust by the expert. In this paragraph, consideration is made about how to adjust parameters in
a understandable way. The expert knows the length of validity of emitted tuples and he is able
to set up a half-live period 3 (denoted by ΔHalfLive

t ). The fading parameter can be determined
in a second time such as λ = − log2(

1
2 )/ΔHalfLive

t . We demonstrate that the parameter μ
which represents the minimum weight of clusters is bounded as follows :

2−λΔClusMin
t

1 − 2−λΔt
> μ ≥ 1

1 − 2−λΔClusMax
t

Let ΔClusMax
t be the span of time beyond the arrival of a new tuple into a p-micro-cluster that

is not suffisant to keep the “potential” status. For any p-micro-cluster, we have wj .2−λΔClusMax
t +

1 < μ and wj < μ. At the end we obtain μ > 1/(1 − 2−λΔClusMax
t ). Let ΔClusMin

t be the
minimum span of time that an un-updated p-micro-cluster must be maintained in the synopsis.
For any p-micro-cluster, we have wj .2−λΔClusMin

t > μ. The weight of a p-micro-cluster is
inferior or equal to the overall weight of the data stream, thus we have W.2−λΔClusMin

t > μ.
At the end we obtain (2−λΔClusMin

t )/(1 − 2−λΔt) > μ. In this article, we adopt the same
choice than in (Feng Cao et al., 2006) where the authors define the pruning time period T as
the minimum of ΔClusMax

t . We consider that T and ΔHalfLive
t are given by the expert. In

these conditions μ can be expressed as follows :

μ =
1

1 − 2
− T

ΔHalfLive
t

A new micro-cluster is created when the maximum standard deviation ε is reached in the
nearest micro-cluster of an emitted tuple. Intuitively, the value of ε influences the number of
potential micro-clusters which are maintained in memory. The tuning of ε is an issue because
the overall standard deviation of the input data stream is not known in the general case. In this
article, we assume the overall standard deviation to be known by the expert and ε is adjusted
as a proportion of the overall standard deviation.

3. The value of wi is periodically divided by 2.
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Notations :

• mcp the set of potential-micro-cluster;

• mco the set of outlier-micro-cluster;

• μ the minimum weight of a potential-micro-cluster;

• ε the maximum standard deviation of a potential-micro-cluster;

• T the pruning time period.

Repeat

Get the next point xi+1 from the data stream.

/*merging procedure*/
Try to merge xi+1 to its nearest p-micro-cluster, denoted by mc�p(c�p, r�p, w�

p).
Let r∗�p be the new radius of mc�p.
If r∗�p ≤ ε then

Merge xi+1 into mc�p, and update c�p, r�p, w�
p .

else
Try to merge xi+1 to its nearest o-micro-cluster, denoted by mc�o(c

�
o, r�o , w�

o). Let r∗�o

be the new radius of mc�o.
If r∗�o ≤ ε then

Merge xi+1 into mc�o, and update c�o, r�o , w�
o .

If w�
o > μ then

Remove mc�o from outlier-buffer and create a new p-microcluster by mc�o.
end If

else

Create a new o-micro-cluster by xi+1 and insert it into the outlier-buffer.
end If

end If

/*pruning procedure*/
If The pruning periode T is elapsed then

For each p-micro-cluster mcp(cp, rp, wp) do

If wp < μ then

Delete mcp

end If

end For
For each o-micro-cluster mco(co, ro, wo) do

If wo < 2−λ(to+T )−1
2−λT −1

then

Delete mco

end If

end For

end If

until the data stream exists

Algorithm 1: Data stream synopsis by Denstream approach
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3 Density estimation exploiting the synopsis

This section shows how the synopsis of the input data stream is exploited to estimate the
density of data. We modify the Parzen window density estimator (Parzen, 1962) to exploit
micro-clusters instead of tuples. Subsection 3.1 presents the classical Parzen window in the
case of gaussian kernel, in subsection 3.2 this density estimator is adapted to micro-clusters.

3.1 Parzen Windows

Among the large range of models able to estimate data density from a set of tuples, Parzen
window provided with a gaussian kernel (Shawe-Taylor and Cristianini, 2004) has the advan-
tage of requiring few parameters. Equation 1 corresponds to the “output” of this predictive
model which is an estimate of the probability to observe the tuple x ∈ Rk. K(x − xi) is a
kernel function evaluating the proximity between the tuples x and xi, this function is summed
over all emitted tuples.

P̂ (x) =
1
N

N∑
i=1

K(x − xi) (1)

In practice, the kernel function must be specified. Equation 2 corresponds to the “output”
of a Parzen window provided with a gaussian kernel 4. In this case, the Parzen window involves
a single parameter that is σ : the standard deviation of the gaussian kernel.

K(x − xi) =
1(

σ
√

2π
)k exp− d(x,xi)

2

2.σ2 (2)

Figure 2 illustrates the estimate of P (x) by a Parzen windows estimator. Gaussian kernels
are positioned on each tuple, next they are summed and normalized. In this case, each tuple
contributes to the estimate of P (x).

x

P(x) Parzen window density estimation

Contribution of each training example

Training examples

FIG. 2 – Estimation of the data stream distribution owing to a Parzen windows.

4. We consider the standard deviation of the gaussian kernel is constant over all dimension of the input space R
k .
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3.2 Our modified Parzen windows

In this subsection, the Parzen window density estimator is adapted to exploit the set of po-
tential micro-clusters instead of tuples. The distribution of P (x) is approximated by Equation
3 :

P̂ ∗(x) =
1

C.W

C∑
j=1

ωj√
2π
(
δ2 + r2

j

)k exp
− d(x,cj)2

2(δ2+r2
j) (3)

• W denotes the total weight of the data stream;

• C denotes the number of potential micro-clusters summarizing the data stream;

• ωj denotes the weight of the jth micro cluster;

• cj denotes the barycenter of weighted points belonging to the jth micro cluster;

• rj denotes the standard deviation of weighted points belonging to the jth micro cluster;

• δ denotes a flatness parameter which plays the same role than σ in Equation 2.

Each observed tuple is supposed to be the most probable of an unobserved set of tuples
which is normally distributed with a standard deviation equal to δ. Under this assumption,
the law of total variance gives the variance of the “jth” potential micro-cluster as the sum
of the within-variance δ2 and the between-variance r2

j . In Equation 3 gaussian kernels are
positioned on the center of each potential micro-cluster. Then gaussian kernels are summed
and normalized regarding the number of potential micro-clusters and the overall weight of the
data stream.

Standard deviation ot training exemples

x

P(x)

location of the center and value of weight 

Training examples

Micro Cluster

Parzen window density estimation

FIG. 3 – Influence of the weight of micro-cluster on the density estimate

Figure 3 illustrates the estimate of P (x) by our modified Parzen windows. On this figure,
the set of tuples is split into two potential micro-clusters which radius are symbolized by a
horizontal full line and weights are symbolized by a vertical dashed line. On the one hand, the
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estimate of P (x) is less accurate than on Figure 2 because of the loss of each tuple location.
On the other hand, this estimate takes into account the weight of each cluster. The estimate of
the distribution of P (x) changes over time due to the aging of micro-clusters. If no changes
occur into the underlying distribution, the tuples whose weight decreases are replaced by new
emitted ones : in this case, the estimate of P (x) will not change. Otherwise, non-replaced
tuples into a micro-cluster engender a decrease in its weight : then a change of the estimate of
P (x) is observed.

4 Change detection and diagnostic

We assume that an anomaly that occurs in the input data stream results in a change in dis-
tribution of P (x). A reference distribution is set up after a learning period without anomalies
to detect . The expert examines the input data stream to ensure no anomaly has occurred during
this period. Then the current estimate of the distribution of P (x) is compared to the reference
distribution owing to the Kullback-Leibler divergence (Hershey and Olsen, 2007) shown by
Equation 4. The Kullback-Leibler divergence has interesting statistical properties, in particu-
lar finding parameters of a statistical model maximizing the likelihood is analogous to finding
parameters minimizing the divergence (Eguchi and Copas, 2006). The Kullback-Leibler diver-
gence generalizes standard statistical tests as the t-test and the χ2 : i) the t-test is equivalent to
the Kullback-Leigler divergence between two normal distributions; ii) the χ2 function is the
first term in the Taylor expansion of the Kullback-Leigler divergence. In our change detection
schema, an alarm is sent to the expert when the divergence between distributions Pref and P̂ ∗

reaches a fixed threshold.

KL < Pref (x)‖P̂ ∗(x) >= −
∫

Rk

Pref (x) log
Pref (x)
P̂ ∗(x)

dx (4)

A diagnostic is required by the expert in order to give a proper response to the alarm.
The diagnostic phase aims at evaluating the contribution of each variable to the divergence
between Pref and P̂ ∗. Thus, the expert is informed which predictive features are involved in
the detected change. The contribution of variables is evaluated by Equation 5. Let KLi

minus be
the Kullback-Leigler divergence evaluated in a (k − 1) dimensional subspace after exclusion
of the “ith” variable. When the contribution of the“lth” variable is evaluated, KLl

minus is
compared to the sum of KLminus over all variables, then the contribution is normalized.

Contrib(l) =

(∑k
i=1 KLi

minus

)
− KLl

minus∑k
i=1 KLi

minus

(5)

The contribution of each variable aims at assisting the expert to rule on the interpretation
of the detected change. In practice, the expert may be allowed to update the reference distri-
bution with the current distribution if the detected change is not an abnormality. This update
constitutes one possible way to take into account natural drift of the observed phenomenon.
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5 Experiments

In this section, our schema of change detection is applied on two artificial data streams.
The objective is to evaluate the ability of our schema to detect two different types of changes
: i) a change in the mean of a normal distribution; i) a change in the standard deviation of a
normal distribution.

5.1 Experimental protocol

The two considered artificial data streams share the same temporal structure. Each second,
one tuple is drawn from an underlying distribution which changes over time. Figure 4 shows
how the underlying distribution evolves. The 2000 first tuples are emitted from the “initial
distribution” which represents the usual operation. At this moment the reference distribution
is set up : our schema of change detection starts. Between 4000 and 6000 seconds, the under-
lying distribution progressively moves from the “initial” to the “modified” distribution. Then
2000 tuples are emitted from the “modified” distribution. Between 8000 and 10000 seconds,
the underlying distribution progressively returns to its “initial” state. At last, 2000 tuples are
emitted from the “initial” distribution.

Distribution of the data stream

0 4000 8000

Time (sec)

12000

Initial distribution

Reference set up

Modified distribution

FIG. 4 – Temporal structure of both artificial data streams.

In our experiments tuples are defined in R2. The “initial” and “modified” distributions
are defined on Table 1 for both artificial data streams. These normal distributions are denoted
by N (m, v), where m is a two-dimensional vector corresponding to the mean and v is the
covariance matrix.

initial distribution modified distribution

Data stream 1 : change in mean N
„

0 0 ,
1 0
0 1

«
N

„
4 8 ,

1 0
0 1

«

Data stream 2 : change in standard deviation N
„

0 0 ,
1 0
0 1

«
N

„
0 0 ,

4 0
0 9

«

TAB. 1 – Definition of “initial” and “modified” distributions for both artificial data streams.

Our schema of change detection involves several parameters which must be fixed before the
experiments. The “Denstream” algorithm which summarize the input data stream (see Section
2.3) is parametrized by ε = 0.1, ΔHalfLive

t = 300s and T = 1000s. The flatness parameter
of our density estimator (see Section 3.2) is fixed by δ = 1.
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5.2 Results

Figure 5 presents the results of our experiments, the left chart [respectively the right chart]
shows the detection of a change in the mean [respectively in the standard deviation] of the
underlying distribution (described on Table 1). On both chart, the horizontal axis corresponds
to the time and starts when the “reference” distribution is set up (at t = 2000). The vertical
axis corresponds to the divergence between the “reference” and the “current” distributions.
The contribution of each variable to the divergence is also symbolized by colors.

FIG. 5 – Change detection in the distribution of both artificial data streams.

The first artificial data stream involves a change in the mean of a normal distribution (left
chart on Figure 5). In this case the change which occur when t ∈ [4000, 6000] is early detected,
indeed the divergence increases significantly once t = 4500. Between 6000 and 8000 seconds,
the divergence increases to its maximum (KL = 25) and the contributions well estimate the
move of the underlying distribution on both dimensions. The return to the initial underlying
distribution (t ∈ [8000, 10000]) is detected relatively late. The divergence keeps high values
until t = 9000 and drops sharply after. This behavior can be explained be the span of time
necessary to delete useless potential micro-clusters in the summary of the input data stream.

The second artificial data stream involves a change in the standard deviation of a normal
distribution (right chart on Figure 5). In this case, change detection is less distinct than pre-
viously : i) the divergence strongly varies over time and does not stabilize; ii) the divergence
reaches a small maximum value (KL = 0.6). However, the first change in the underlying dis-
tribution is detected : the divergence increases from t = 4800 to t = 6000. Between 6000 and
8000 seconds, the divergence reaches its maximum value that is consistent with the structure
of the input data stream. During this period of time, the contribution of the second variable
tends to be more important than the first variable. At last, the return to the initial underlying
distribution is detected in time.

These experiments show the interest of our approach for the detection of progressive drift
in the underlying distribution. Others conclusive tests have been done on abrupt changes. In
this case, a very short latency is observed because of the span of time necessary to create new
potential micro-clusters. We notice the tuning of the fading parameter λ is sensitive and raises
the dilemma between reducing the latency of detections and ensuring the statistical significance
of the distribution estimate. Adjusting the parameter λ could be less sensitive in practice, if the
pace of changes is known in advance by the expert.
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6 Conclusion and perspectives

This article proposes a new schema of change detection in the underlying distribution of a
data stream. Our approach is composed by four successive steps. First, the input data stream is
summarized by a set of micro-clusters owing to the “Denstream” algorithm (Feng Cao et al.,
2006), thus data streams with high rate can be processed. The “Denstream” algorithm has the
ability to summarize dense areas of the input space and to forget the old tuples through a time-
based weighting. We propose a simple way to tune the parameters of this algorithm in terms of
durations. The second step consists in an estimation of the underlying distribution exploiting
the summary of the data stream : a new variant of the Parzen window estimator (Parzen, 1962)
is proposed. Then, the drift of the current estimated distribution is evaluated in comparison
to a reference distribution : the Kullback-Leibler divergence is exploited (Hershey and Olsen,
2007). At the end, a diagnostic is given by a new criterion which estimates the contribution of
each variable to the overall distance between both distributions. In practice, this last step could
be helpful to understand the causes of a detected anomaly and respond to it in a proper way.

Since our schema of change detection involves a density estimator, the probability of each
emitted tuple could be estimated by the current Parzen window. This information should be
exploited to early detect abrupt changes in the underlying distribution, under the assumption
that a change causes the emission of an improbable sequence of tuples. In this case the main
difficulty is to manage the temporal dependency of emitted tuples, future works will study
this point. An other aspect on which we are working on is the theoretical quantification of the
information that is lost using micro-clusters instead of tuples, when the distribution of the data
stream is estimated.

The “Denstream” algorithm handles the variance of each micro-cluster as a single scalar
value, this represents a loss of substantial information. For instance, the covariance matrix of
emitted tuples could be maintained online for each micro-cluster. In futur works, we will study
the online maintaining of the covariance matrix and higher statistical moments, and we will
use these new pieces of information to estimate more precisely the distribution of tuples.

Our schema of change detection was favorably evaluated on two artificial data streams.
In future works, others experiments will evaluate the influence of increasing the dimension of
the input space on the ability of our schema to detect changes. At last, our schema will be
applied on real data streams. In particular, we aim at improving the preventive maintenance in
power plants thanks to the detection of unusual events. More generally, our schema of change
detection could be exploited in many applications areas. For instance, the NASA began a large
research program in Integrated Vehicle Health Management of which goal is to automatically
detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft (Srivastava,
2009). The early detection of anomalies on sensor data streams represents a real interest for
the scientific community.
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Résumé

Ces dernières années, la quantité de données à traiter à considérablement augmentée dans
de nombreuses applications. La fouille de flux de données répond au défi des données mas-
sives par des traitements à la volée qui requièrent une capacité de stockage raisonnable. La
détection de changements dans la densité de probabilité d’un flux est une question importante.
Cet article propose un nouveau schéma de détection de changement qui se compose de quatre
étapes successives : i) le résumé du flux par un ensemble de micro-clusters; ii) l’estimation la
densité de probabilité du flux grâce aux micro-clusters; iii) l’estimation de la divergence entre
la densité estimée à l’instant courant et une densité de référence; iv) un diagnostic estimant la
contribution de chaque variable descriptive à la divergence globale qui sépare les deux densi-
tés. Notre schéma de détection de changement est finalement appliqué et évalué sur deux flux
de données artificiels.
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