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Summary. Histogram representation of a large set of data is a good way to 
summarize and visualize data and is frequently performed in order to optimize 
query estimation in DBMS. In this paper, we show the performance and the 
properties of two strategies for an optimal construction of histograms on a sin-
gle real valued descriptor on the base of a prior choice of the number of buck-
ets. The first one is based on the Fisher algorithm, while the second one is 
based on a geometrical procedure for the interpolation of the empirical distri-
bution function by a piecewise linear function. The goodness of fit is computed 
using the Wasserstein metric between distributions. We compare the proposed 
method performances against some existing ones on artificial and real datasets. 

1 Introduction  

Today’s storage information mechanism fails to capture a large amount of data and pre-
process them in their entirety, while only a summary is stored. In this context histogram plays 
the role of a tool for producing a suitable summarizing description and quickly answering to 
decision support queries. Following the guide phrase "An image says more than one hun-
dred words",  the histogram represents a simple and intuitive graphical tool to describe data 
distribution. It smoothes the data to display the general shape of an empirical distribution. The 
problem is that it can give a false impression of the shape of the dataset distribution, because 
its construction depends on the choice of the number and the length of the subintervals - usu-
ally called buckets or bins - of the real lines on which the histogram is based. Ideally it could 
have the situation in which for large bins the nature of the dataset is bimodal and for small 
bins the plot reduces to unimodal representation. The matter at stake here concerns the kind of 
bin width that can take into account the best graphical representation of the underlying DBMS 
and how it  can be  constructed with minimal error approximation. 
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In database community, and in particular in the framework of query optimization, the search of 
a good histogram for the representation of a large set of data is best known as the “selectivity 
estimation” problem. Estimates can be used to select the best plan among many competing 
ones.  
There are two main classes of methods for selectivity estimation: sampling methods and statis-
tical methods; in this paper the second kind (nonparametric statistical methods) is taken into 
account.  
In Sec. 2 some of the histogram methods are briefly reviewed, while an excellent taxonomy of 
histograms can be found in Poosala et al. (1996). 
Many data sets have continuous valued attributes such as scientific and statistical data sets. The 
state-of-the-art histograms implicitly deals with discrete or categorical attribute value domains 
in which there are relatively few distinct values in the attribute, such methods are used for 
estimating join selectivities too (see Ioannidis and Poosala (1995)). In the absence of numerous 
duplicate values in many scientific and statistical data sets, an equi-join will effectively result in 
the empty set, causing these methods to be ineffective. 
Starting from this point, our approach tries to capture statistical variable characteristics, so 
we can consider it a  statistical model based approach, since we aim to approximate (based) 
the cumulative function by piecewise polynomial (geometrical model). 
The proposed methods try to solve the histogram computation in presence of almost continu-
ous datasets according to two different approaches: the first is based on the Fisher algorithm 
for the partition of ordered data, the latter is based on the best interpolation of the distribution 
function of data. 
The sensitivity of the alternative proposed algorithm is investigated using several dataset and 
the quality of approximation is computed proposing a goodness of fit measure based on the 
L2 Wasserstein metric between two distribution functions. An application on an artificial and 
on two real dataset is performed in order to corroborate our procedure.  

2 Keys proprieties of histogram and a little review of the ex-
isting techniques 

Let us examine the definition of histogram. 
 
Definition 1 
A histogram on a variable X is constructed by partitioning the data distribution into subsets 
called buckets and approximating the frequencies f and values in each bucket in some common 
fashion (Ioannidis, 1993). 
  
In this definition it is not mentioned how to draw specific histogram classes and which are the 
main aspects to consider for its construction. There are six main aspects to be considered in 
histogram construction: Partition Rule, Construction Algorithm,  Frequency Approximation, 
Value approximation, Error Guarantes  (Ioannidis, 1995). 

In the earliest proposed approaches the bin widths were equally spaced and the proposals 
have been essentially based on choosing the number of bins (Wand, 1997). Nevertheless these 
methods have the disadvantage of losing the details of high density partition of data. In the last 
years several types of histogram have been proposed to overcome this problem. In all of them 
the common guideline is to find the best location of cut points in addition to the number of bind 
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width to estimate density function (Kooi, 1980). This problem has received attention not only 
in statistics and database community but also in numerical analysis, where the density function 
is approximated by a class of polynomial piecewise of some fixed degree. 

The common schemes for constructing histograms in DBMS differ in terms of their accu-
racy of partition constraints. The first proposal goes back to Kooi's PhD Thesis. He introduces a 
common concept used in statistical literature, the simplest form of histogram, where the value 
set is divided into ranges of equal length, the so called equi-width histogram. In particular val-
ues and frequencies within each bucket, are approximated by the height of the bucket. How-
ever, equi-width histograms had not a good improvement over the uniform distribution as-
sumption for the entire value set, that’s why new proposals has been done. The so called equi-
height or equi-depth histograms (Piatetski-Shapiro, 1984) is one of these. In particular it con-
sists of dividing the set of attribute in buckets that have as approximately the same number of 
tuples. After these proposals the attention has been shifted to the study of the way in which 
initial approximation errors is maintained in estimating database through these techniques. The 
V-optimal histograms (Ioannidis, 1995) have been proposed to minimize the average square 
error for selectivity estimation problem. In this technique, the partition of the data distribution 
is computed so that the variance of a source-parameter values within each bucket is minimized. 
In addition to V-optimal partition constraints, others methods, as this last one, have been devel-
oped aiming mainly to group fast several source-parameter values together in the same bucket. 
Among them, we can distinguish Maxdiff (Ioannidis Y., 1993), which places bucket boundaries 
between adjacent source-parameter. In addition to these solutions for partition constraints, 
numerical solution for capturing the shape distribution has received only few attention. Among 
them it has been proposed to find linear splines for each bin by a least-square regression prob-
lem (Konig, 1999), however not much attention has been devoted to the number of parameters 
to estimate and to the efficient construction cost. 
On the basis of the partition rule, histograms can be classified according to their mutually 
orthogonally proprieties (Poosala et al., 1997). The table 1 summarizes and at the same time 
describes how the existent methods can be collocated. In this frame our method takes place 
in the context of methods that use the values of observed variable and the relative cumulative 
frequency.  
 

SORT 
PARAMETER 

SOURCE PAREMETER 
Spread (S)  Frequency (F)         Area(A)        Cumul. Freq. (C)    Values(V) 

Values (V) Equi-Sum Equi-Sum 
V-Optimal 
Max-.Diff 

Compressed
 

V-Optimal 
Max-.Diff 

Compressed 
 

Spline-Based 
V-Optimal 
Piecewise 

Fisher 

Frequency (F)    V-OPtimal 
Maxdiff 

   

Area (A)   Maxdiff   

 
TAB. 1. – Map of the main approaches to histogram construction. The algorithms proposed 
in the present paper are underlined. 
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3 The proposed techiques 

Let X be a numerical variable whose domain consists of V ordered values.  
Let (x1, x2,…, xN) be a list of N observation (tuples) for the variable X, while (v1, v2,…, vV) 

is the set of distinct values assumed by X in the dataset. The empirical mass function of the 
X is defined by: 

{ }:1 , /i j if j j N x v N= # ≤ ≤ =                                             
We describe the empirical distribution function of X as: 

1

i

i j
j

c f
=

= ∑  

In the same way we define the mass of an interval ] ] ( ), ,a b ⊆ −∞ +∞ as: 

] ]( ) { }, :1 , /if a b j j N a x b N= # ≤ ≤ < ≤  

If the domain is partitioned into β buckets, assuming uniform distribution into the buck-
ets, we calculate the empirical density for the j-th (1 j β≤ ≤ ) bucket as: 

( ) ( ) ( ), ,j j j j j jd b b f b b b b⎤ ⎤ ⎤ ⎤= −⎦ ⎦ ⎦ ⎦ . 

The density can be displayed by a histogram, that is a bar graph in which proportion in 
list are represented by the areas of various bars. 

3.1 The Fisher algorithm 

The Fisher algorithm can be considered as a V-Optimal(V,V) algorithm. Indeed, the ob-
ject function that is minimized is the sum of the within buckets variance. V-Optimal algo-
rithm, being fixed a number of buckets β partitioning the domain of values, optimizes a func-
tion of the source parameter according to the following formula: 

1
min ( )h h

h

w VAR X
β

=
∑  

Where X is the source parameter and w is a weight of the source parameter. 
If the source parameter is the domain of values and w=1 it correspond to the minimiza-

tion of the variance within buckets and leads to the implementation of the dynamic algorithm 
of partition due to Fisher (1958) for ordered data. 

Let us define the following quantities: 
 

( )
1 1

2
1 1 1

: [ , ] : [ , ]
( 1) ([ , ]) ([ , ])  where ([ , ])

i V i V

V i i V V i i
i v v v i v v v

VAR k VAR v v f v AVG v v AVG v v f v
∈ ∈

= = = − =∑ ∑  

The upper bound vi of the new k-th bucket is chosen according to the following dynamic 
formulation: 

( )( ) ( ) ( )
1

1
min ( ) | 1  and , , ,
i

H

i j j j i i j
v h

Arg VAR h VAR j j k v b b VAR b v VAR v b
−

=

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ∈ − ∈ + +⎨ ⎬⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭
∑

where 1 1j H k β≤ ≤ − ≤ ≤  and ,j jb b⎡ ⎤
⎣ ⎦  is the interval notation of the j-th bucket. 

The computational cost is in terms of operations in the worst case is equal to O(V2β). 
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3.2 Piece-wise interpolation of the empirical distribution function 

The method starts from the trivial histogram -one bucket histogram or the uniform ap-
proximation- and at each step the bound of the new bucket is chosen on the base of that value 
for which it is observed the maximum L2 distance between the predicted value and the ob-
served value. The distance can be unweighed (in the standard version of the algorithm), or 
weighted by the number of observations within the buckets. In the second case, if two values 
have the same error, it is chosen the value in the most populated bucket, according to the 
practical motivation that it is better to remove an error from a bucket that approximate a 
large set of observation than from a smallest one. 

We start considering the trivial histogram such that: 
0( , )VTriv U v v∼  

where v0 is an artificial point added to the dataset such that [ ]( )0 1 1,f v v f=  
In order to identify the best cut point belonging to the vis into k buckets we solve the fol-

lowing algorithm at each step in order to find β cutpoints. For the standard algorithm (PWst) 
and for the weighted version (PWw) we have: 

 

( ){ } ( ){ }2 2*  (PWst) or ( ) *  (PWw)
i i

i i i i
v v

Argmax v v Argmax f j v v− −  

where f(j) is the frequency of the j-th bucket which includes vi and where *iv  is computed by 
means of the quantile function: 

( )*   ,  for 1,..., 1
( )

j j

i j j i i j j

b b
v b c b c v b b j k

f j

−
⎡ ⎤⎡ ⎤= + − ↔ ∈ = −⎣ ⎦ ⎣ ⎦  

The computational cost in terms of operations is, in the worst case, equal to O(Vβ). 
 

4 The quality measure representation 

In the following paragraph we present a more consistent way to compute the mean error 
square of the obtained histogram and the data distribution according to a metric between 
distribution. 

We develop a measure of accuracy taking into consideration the sum of square differ-
ences between the predicted and the observed value, considering the (hypothesised) continu-
ous nature of the model against the discrete observed values. 

When we use a continuous function with an histogram (i.e. a mixture of β uniforms with 
non overlapping supports) to interpolate a discrete right continuous function we always ad-
mit an error estimation. Given a vector [v1,..,vi,…,vV] of values with mass function equal to fi, 
the best histogram consists of V buckets, and can be represented by a piecewise linear func-
tion, where the general linear piece has bounds ( , ( ))i iv F v  and 1 1( , ( ))i iv F v+ + . The histogram 
is the best in the sense of piecewise linear interpolation. 

Our proposal is to evaluate the procedure accuracy by means of a distance computation 
between the obtained model of uniforms mixture and the best histogram. 
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We propose to use the L2 Wasserstein distance to do the comparison (Gibbs and su, 2002, 
Barrio et al., 1999, and Verde and Irpino, 2006). It can be considered as the natural extension 
of the Euclidean distance from point data to distribution data, and it has interesting decompo-
sition properties. 

Given two distribution functions F and G, the L2 Wassertein distance can be computed 
according to the following formula: 

( )
1

22 1 1

0

( ) ( )Wd F t G t dt− −= −∫
 

where F-1 and G-1 are the quantile functions of the two distributions. The distance compu-
tation is heavy when distribution are continuous, but in Verde and Irpino (2006) is showed 
its feasibility when dealing with histograms. 

In Appendix we show that the proposed distance can be decomposed as the sum of the 
square difference of the means, the square difference of the standard deviations and a resid-
ual part that can be assumed as a shape distance between two distributions. The decomposi-
tion is summarized as: 

( ) ( )2 22 2 (1 ( , ))W f g f g f g QQ

ShapeLocation Size

d Corr F Gµ µ σ σ σ σ= − + − + −
�����	����
��	�
 ��	�


 

We consider as maximum error allowed by interpolating data with histogram the L2 
Wasserstein distance between the trivial histogram (the histogram allowing a single bucket) 
and the optimal one, we may obtain a relative goodness of fit index as the ratio between the 
square distance of the obtained model (M*) and the optimal histogram (Opt) and the square 
distance between the trivial (Tri) model and the optimal. We call this measure of as SGFR 
(Square of Goodness of Fit Ratio ): 

2

2

( *, )
( *)

( , )
W

W

d M Opt
SGFR M

d Tri Opt
=  

Using the decomposition of the square distance, we may evaluate the “quality” of good-
ness of fit considering how much of the distance is influenced by a location, a size or a shape 
difference. 

5 An application on real and artificial dataset 

We test the proposed techniques on three dataset. The first one is an artificial dataset that 
derives from the random generation of 10.000 values. It derives from a mixture of three nor-
mal distribution f(x)=0.33N(20,20)+0.33N(40,10)+0.34N(70,25). 

The second set consists of the 10.000 observations of the variable dst_bytes from the 
KDD Cup 99 database1. This dataset has been chosen for its characteristic of being an 
example of a peaky (discontinuous) distribution. 

The third set collects the first 10.000 observation of the variable Elevation from the 
Forest cover type database2. This dataset has been chosen for being an example of a 
smooth (continuous) distribution. 
                                                 
1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
2 http://kdd.ics.uci.edu/databases/covertype/covertype.html 
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Artificial Dataset Values=10.000 Obs.=10.000   
  Buckets   
Algorithm Measures 10 25 50 100 200 
 Time in sec. 0.55955 0.604214 0.566546 0.58457 0.56958 
MD SSE 65.58197 69.49141 75.58185 82.9155 89.14396 
 SGFR 1.033287 1.06364 1.109271 1.1618 1.20468 
 Time in sec. 40.14913 52.06039 65.02176 82.95111 111.3314 
Vopt SSE 7.71032 2.902464 0.339665 0.13697 0.02490 
 SGFR 0.354292 0.217371 0.074347 0.04719 0.02008 
 Time in sec. 19.07574 33.5456 55.99695 97.6234 173.8116 
FISHER SSE 8.211255 5.167489 0.955339 0.00252 0.00097 
 SGFR 0.36562 0.290044 0.124707 0.00633 0.00386 
 Time in sec. 0.240339 0.23878 0.315012 0.52743 1.11027 
PWst SSE 0.512781 0.048029 0.004592 0.00196 0.00052 
 SGFR 0.091357 0.027947 0.00862 0.00563 0.00289 
 Time in sec. 0.19953 0.23803 0.31237 0.52245 1.500763 
PWw SSE 0.51278 0.02326 0.00285 0.00100 0.00036 
 SGFR 0.09135 0.01942 0.00676 0.00396 0.00234 

 
TAB. 2 – Synoptics of the performances of the five algorithmes using the first dataset: 
MD(Maxdiff(F,F)), Vopt (V-Optimal(V,F), Fisher, PWst (Piece Wise approximation to the 
distribution function, unweighted), PWw (Piece Wise approximation to the distribution func-
tion, weighted by the bucket frequency). In bold the best results are showed. 

 
The comparison methods used here are the MaxDiff(F,F), the V-Optimal(V,F) the Fisher 

algorithm, the standard and the weighted version of the Piecewise cumulative interpolation 
algorithm. We measured the operational time using MATLABTM on a PC (CPU Intel Cen-
trino  1,77Mhz, RAM 1024 MB). The accuracy is computed using the classic error function 
and the new accuracy measure based on the L2 Wasserstein metric between distributions. 

The main results are collected in tables 2 to 5. While the MaxDiff(F,F) algorithm have 
the best performances in terms of time spent for the histogram estimation it is less accurate 
when the number of values of the domain of the variable is very large. The piecewise algo-
rithm is always the best in terms of CPU time and accuracy.  To illustrate the enhanced accu-
racy of the proposed approaches  Figure 1 shows the main results for β=10 of the Artificial 
Dataset. 

 Concerning the quality  of goodness of fit (Tab. 5) the more are the buckets the best all 
the algorithms (except for the MaxDiff, and the Voptimal(V,F) for the skewed dataset 
KDD99) fit the first two moments. Fisher algorithm and piecewise ones have better perform-
ance over the others. Comparing the quality of goodness of fit between Fisher and piecewise 
algorithms (Tab. 5), the last seem to be more accurate into the estimation of the first two 
moments when the number of buckets increases. We suppose that this is due to the fact that 
the Fisher algorithms, being based on a variance criterion, allow to group data into spherical 
classes, while piecewise methods are based on the best linear fit of the distribution function, 
implicitly emphasizing the local uniform density of data. 
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Forest cov. Dataset Values=360 Obs.=10.000  
  Buckets  
Algorithm Measures 10 25 50 100 200 
 Time in sec. 0.00147 0.00144 0.00150 0.00152 0.00165 
MD SSE 25.28642 19.70946 0.22061 0.07711 0.00861 
 SGFR 0.16422 0.14530 0.01547 0.00912 0.00281 
 Time in sec. 0.11676 0.24917 0.44977 0.98323 1.37233 
Vopt SSE 0.85188 0.07816 0.07039 0.05140 0.02625 
 SGFR 0.03025 0.00849 0.00801 0.00689 0.00481 
 Time in sec. 15.11523 30.80159 51.00386 92.46458 165.41046 
FISHER SSE 1.91894 0.22606 0.08548 0.04502 0.02175 
 SGFR 0.04506 0.01500 0.00875 0.00603 0.00368 
 Time in sec. 0.19329 0.24187 0.32029 0.53857 1.47643 
PWst SSE 0.44978 0.08213 0.03813 0.01217 0.00153 
 SGFR 0.02136 0.00902 0.00596 0.00323 0.00105 
 Time in sec. 0.19092 0.24211 0.50761 0.55726 1.20335 
PWw SSE 0.44978 0.09306 0.04329 0.01098 0.00153 
 SGFR 0.02136 0.00959 0.00628 0.00306 0.00106 

 
TAB. 3 – Synoptics of the performances of the five algorithmes using the Forest cover type 
dataset: MD(Maxdiff(F,F)), Vopt (V-Optimal(V,F), Fisher, PWst (Piece Wise approximation 
to the distribution function, unweighted), PWw (Piece Wise approximation to the distribution 
function, weighted by the bucket frequency). In bold the best results are showed. 

 
KDD99 Dataset Values=2096 Obs.=10.000   
  Buckets   
Algorithm Measures 10 25 50 100 200 
 Time in sec. 0.03753 0.07955 0.02525 0.02647 0.02837 
MD SSE 1.2998E+10 1.2516E+09 1.2516E+09 2.6199E+08 1.5893E+08 
 SGFR 0.78485 0.24139 0.24139 0.10965 0.08537 
 Time in sec. 3.63551 6.94830 11.83113 18.52914 33.68945 
Vopt SSE 8.3791E+09 5.7991E+09 5.7991E+09 1.7037E+09 1.5893E+08 
 SGFR 0.62976 0.52340 0.52340 0.28197 0.08537 
 Time in sec. 29.57838 73.82461 130.39616 232.45977 309.87441 
FISHER SSE 1.1452E+09 8.0053E+07 4.6098E+04 9.8253E+03 1.8049E+03 
 SGFR 0.23301 0.06158 0.00154 0.00068 0.00027 
 Time in sec. 0.19037 0.24140 0.34018 0.56922 1.34964 
PWst SSE 2.0296E+06 3.0148E+05 1.9798E+04 4.5786E+03 4.9934E+02 
 SGFR 0.00965 0.00370 0.00098 0.00046 0.00015 
 Time in sec. 0.19179 0.24546 0.33983 0.56360 1.16070 
PWw SSE 2.4614E+05 3.8040E+04 8.3669E+03 1.8198E+03 221.99776 
 SGFR 0.00342 0.00128 0.00052 0.00026 0.00009 
 

TAB. 4 – Synoptics of the performances of the five algorithmes using the KDD 99 dataset: 
MD(Maxdiff(F,F)), Vopt (V-Optimal(V,F), Fisher, PWst (Piece Wise approximation to the 
distribution function, unweighted), PWw (Piece Wise approximation to the distribution func-
tion, weighted by the bucket frequency). In bold the best results are showed. 
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  Artificial Forest  Kdd 99  
Alg. Measures β=10 β=200 β=10 β=200 β=10 β=200 
 d2(M,Opt) 65.58186 89.14386 25.23811 0.00737 1.296E+10 1.533E+08 
MD µ%, 

σ%, 
s% 

41.5% 
32.5% 
26.0% 

71.5% 
10.5% 
18.0% 

1.3% 
0.8% 

97.9% 

1.6% 
0.2% 

98.2% 

47.2% 
47.0% 

5.7% 

1.3% 
76.2% 
22.5% 

 d2(M,Opt) 7.71016 0.02479 0.85628 0.02167 8.342E+09 1.533E+08 
Vopt µ%, 

σ%, 
s% 

1.1% 
27.0% 
71.8% 

0.0% 
2.0% 

98.0% 

0.1% 
1.4% 

98.5% 

0.2% 
0.1% 

99.7% 

31.8%. 
61.5% 

6.8% 

1.3% 
76.2% 
22.5% 

 d2(M,Opt) 8.21110 0.00092 1.90010 0.01265 1.142E+09 1.565E+03 
FISHER µ%, 

σ%, 
s% 

2.7% 
4.7% 

92.6% 

12.0% 
0.8% 

87.2% 

0.6% 
0.3% 

99.1% 

0.4% 
0.0% 

99.6% 

75.1% 
10.6% 
14.3% 

5.2% 
0.9% 

93.8% 
T d2(M,Opt) 0.51266 0.00051 0.42695 0.00103 1.960E+06 5.026E+02 
PWst µ%, 

σ%, 
s% 

1.8% 
15.5% 
82.7% 

0.3% 
1.2% 

98.4% 

14.5% 
6.4% 

79.1% 

0.8% 
0.0% 

99.1% 

38.7% 
1.1% 

60.2% 

3.0% 
0.3% 

96.7% 
 d2(M,Opt) 0.51266 0.00034 0.42695 0.00105 2.465E+05 1.830E+02 
PWw µ%, 

σ%, 
s% 

1.8% 
15.5% 
82.7% 

0.2% 
1.0% 

98.8% 

14.5% 
6.4% 

79.1% 

0.8% 
0.2% 

99.0% 

5.8% 
10.9% 
83.3% 

0.7% 
0.0% 

99.2% 
 

TAB. 5 – Synopses: quality of fit goodness between the model and the best histogram, ac-
cording to the proposed decomposition of the square Wasserstein distance. 
 

 
FIG. 1 – Histogram representation  for the Artificial Dataset and illustration of the empirical 
distribution function approximation  for the various  methods . 

 

6 Conclusions and perspectives 

In the present paper, several well-established algorithms for the construction of histo-
grams from data have shown to fail in accuracy when the data contained in the database are 
quasi-continuous, i.e. when the values assumed by the domain of a variable are not so few 

                   MD                          Vopt                             Fisher                            PWw 
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with respect the stored tuples. The proposed techniques seems more capable to face this 
problem. Further, considering the goodness of fit to the best model, the decomposition of the 
L2 Wasserstein metric allows to discover the quality of the approximation of a histogram to 
the data, explaining the distance in terms of goodness of fit of the first two moments and the 
part of distance due to only a shape factor. 

In the present paper the multivariate histogram construction was not considered this will 
be our  next step, naturally in comparison with the existing techniques that seems to suffer 
the “curse of dimensionality” problem. 

A deeper insight needs to be given in order to test the proposed techniques in a data 
stream framework for studying their properties in the case of moving windows histograms or 
in the case of continuous updates of the histogram models. 
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Appendix 

Proof of the decomposition of the Wasserstein distance. 

( )
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  (1) 

Let us observe two density functions fi(x) and fj(x) having the first two moments finite. To   
each density function can be associated the distribution functions Fi(x) and Fj(x), the means 
µi and µj, the standard deviations σi and σj where: 

1
1

0

( ) ( )i i ix f x dx F t dtµ
+∞

−

−∞

= ⋅ =∫ ∫   (2) 
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+∞ +∞

−∞ −∞

=∫ ∫  

if t=F(x) and considering that 
1 1( ( )) ( )x F F x F t− −= =  

by substitution we obtain 
1

1

0

( )F t dtµ −= ∫                                                    (3) 

And where: 

         ( )
1
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0
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= − = −∫ ∫   (4) 

for the same substitutions adopted above 
Now let assume to centre the two distributions using their means such that: 

      1 1 1( ) ( ) ( )c c
i i i i iz x F t z F t F tµ µ− − −= − = = −   (5) 

In Barrio et al. (1999) is proven that  

( ) ( )( ) ( ) ( ) ( )( )22 2, : ,c c
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where 
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Developing the square we obtain 
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Let us consider the following quantity 
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It can be considered as the correlation of two series of data where each couple of observa-
tions is represented respectively by the t-th quantile of the first distribution and the t-th quan-
tile of the second. In this sense we may consider it as the correlation between quantile func-
tions represented by the curve of the infinite quantile points in a QQ plot. 

It is worth noting that 0 1QQρ< ≤  differently from the classical range of variation of the 
Bravais-Pearson’s correlation index (-1,+1). 

Equation (8) can be rewritten as 
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Adding and subtracting 2 i jσ σ  we obtain 

( ) ( )( ) ( ) ( )22 2 2, : 2 2 2 2 1c c
W i j i j i j i j QQ i j i j i j QQd F x F x σ σ σ σ σ σ ρ σ σ σ σ σ σ ρ= + − + − = − + − (11) 

We may replace this result in (6) obtaining: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 22 2, : , 2 1c c
W i j i j W i j i j i j i j QQd F x F x d F x F xµ µ µ µ σ σ σ σ ρ= − + = − + − + −

QED 

Résumé 

La représentation d'histogramme d'un grand ensemble de données est une bonne manière 
pour résumer et visualiser des données et est fréquemment exécutée afin d'optimiser l'évalua-
tion de requêtes dans le système de gestion de bases de données. En cet article, nous mon-
trons les performance et les propriétés de deux stratégies pour une construction optimale des 
histogrammes sur un descripteur à valeurs réelles sur la base d'un choix apriori du nombre de 
intervalles élémentaires. Le premier est basé sur l'algorithme de Fisher, alors que le second 
est basé sur un procédé géométrique pour l'interpolation de la fonction de distribution em-
pirique par une fonction par morceaux linéaire. La qualité de l'ajustement est calculée en 
utilisant le Wasserstein métrique entre les distributions. Nous comparons les exécutions des 
méthodes proposées contre quelques celles existantes sur des ensembles de données artifi-
ciels et réels. 


