Ontology Evolution and Source Autonomy in
Ontology-based Data Warehouses

Dung Nguyen XuahLadjel Bellatreché Guy Pierra*

* LISI/ENSMA - Poitiers University
1 Avenue Clément Ader 86960 Futuroscope - France
(nguyenx, bellatreche, pierra)@ensma.fr

Abstract. Ontology-based integration systems (OBIS) use ontologiesder
to describe the semantic of sources and to make the contelitiexTwo major
architectures of OBISs are available: (i) those using agusbntology, and (ii)
those using multiple ontologies. In the first architectalésources are related
to one shared ontology. This architecture suffers from gharof ontology and
sources which can affect the conceptualization of the domegresented in the
ontology. Any change in the ontology may affect the sourdéerefore, sources
are not really autonomous. In hybrid ontologies, each soisrdescribed by its
own ontology, called local ontology. Each one referencapbna shared on-
tology in order to guarantee that each source shares thesarabulary. The
articulation between local ontologies and the shared ogyotan be done either
a posteriori or a priori. Two major issues are raised in thifiéecture: (i) evo-
lution of the shared ontology and its consequence on thgratied system, and
(ii) autonomy of the ontology and the local schema of eachicguln this pa-
per, we propose an approach and a model to manage asynchmvaution of
warehouse integrated systems where the articulation is thoan a priori man-
ner. The fundamental hypothesis of our work, caltethciple of ontological
continuity, supposes that an evolution of an ontology does not make &alsx-
iom that was previously true. This principle allows to mamagch old instance
using the actual ontology. Therefore, it simplifies sigmifity the management
of the evolution process and allows a complete automatiahefvhole inte-
gration process. Our work is motivated by the automatiajratgon of catalogs
of industrial components in engineering databases. It bas alidated by a
prototype using ECCO environment and EXPRESS language.

Introduction

It is widely recognized that an automatic integration ofehegjeneous data sources is one

of the keys to improve management and productivity of séagpglication domains like data

warehouse, bio-informatic, e-commerce, etc. Generaltjata integration system combines
the data residing at different heterogeneous and autonesmurces, and provides an unified,
reconciled view of these data, called global schema, whichlie queried by the users. A

-B5-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

warehouse integration consists in materializing the data imultiple sources into a warehouse
and executing all queries on the data contained in the wasshaather than in the actual
sources. Warehousing emphasizes data translation, asexpfmoquery translation in mediator-
based integration Wiederhold (1992).

There is an important number of research projects dealitfydeta integration. The spec-
trum ranges from early multi-database systems Lander asériderg (1982) over mediator
systems (e.g., Garlic Roth et al. (1996); Wiederhold (1B9&arehouse systems Bellatreche
et al. (2004a) to ontology-based integration approachegs, (©bserver Mena et al. (1996),
Picsel Reynaud and Giraldo (2003), and a priori integraietiatreche et al. (2004a)).

Note that each integration system addresses the followswes: (i) the source autonomy,
known asthe receiver heterogeneity proble@oh et al. (1994), and (ii) resolution of vari-
ous conflicts from multiple sources due to semantic hetereities. Among these conflicts
we can cite Goh et al. (1999naming conflictsscaling conflictsconfounding conflictand
representation conflicts

Source autonomy: Sources are not forced to adapt their data and their sersaatictegrate
sources Goh et al. (1994). Therefore, most of the sourcesi@pautonomously: i.e., they
are free to modify their ontology and/or schema, remove state without any prior "public”
notification, or occasionally block access to the sourcenfaintenance or other purposes.
Moreover, they may not always be aware of or concerned by stheces referencing them or
integration systems accessing them. Consequently, tatoebetween the integrated system
represented by a warehouse and its autonomous sourceghidystioupled. Consequently, it
may generates maintenance anomalies Chen et al. (2004)atlndntext (where changes are
asynchronous), evolution management concerns schemaoguithpions of sources, and the
shared and local ontologies.

The problem of source autonomy has received a little atiaitithe literature, especially in the
context of ontology-based integration systems comparéuktéirst issue (conflict resolution).

Conflict Resolution: The fundamental challenge of the source integration systenthe
difficulty to integrate automatically, at the meaning levalltiple sources Levy et al. (1996),
Doan et al. (2004), Lawrence and Barker (2001), Chawathle @%94), Reynaud and Giraldo
(2003) and Castano and Antonellis (1997). By exploring thistieg integration systems, two
generations of integration are distinguished: In the fiestagation of integration systems (e.g.,
TSIMMIS Chawathe et al. (1994)), data meaning was not eitlylicepresented. Thus, the
meaning of concepts and the mappings between concepts veanealty encoded in a view
definition Chawathe et al. (1994) (SQL view).

Systems in the second generation use ontology and in parti@shared ontology to map
meaning of each data source Wache et al. (2001). Ontologsde a way to represent
explicitly the formal semantics. These systems are caliedlogy-based integration systems
(OBISs). An ontology is "an explicit specification of a coptugalization" Gruber (1995). A
classical definition of an ontology is an explicit, and fofistzared and referencable description
of concepts and their relationships that exist in a certaimarse of discourse. References to
an ontology provides a shared vocabulary that labels case#pm domain. Ontologies are
then used in an integration task to describe the semantieafdurces and to make the content

-56-

Xuan et al.

explicit. Two main architectures of OBISs are available Wéet al. (2001): (i) those using an
unique ontology, and (ii) those using multiple ontologies.

1. Inthe unique ontology architecture, all information s@s are related to one shared on-
tology. A prominent approach of this kind of architectur&I8S Arens and Knoblock
(1993). This architecture suffers from changes of ontolagg sources which can af-
fect the conceptualization of the domain represented ithelogy. Any change in the
ontology may affect the sources. Therefore, sources aneally autonomous.

2. In hybrid ontologies, each source is described by its awtalogy, called local ontology.
Each one references a shared ontology in order to guardr@tedach source shares the
same vocabulary Mitra et al. (2000); Hakimpour and Gep2892); Goh et al. (1999).
The articulation (or linkage) between local ontologies éimel shared ontology (each
concept of a local ontolog®; is mapped into a concept of the shared ontology) can
be done either a posteriori Mitra et al. (2000) or a prioril8&éche et al. (2004a). In
a posteriori articulation it is hard to ensure a fully autdimantegration process Mitra
et al. (2000).

In a number of domains, including Web service, e-procurgpsymchronization of dis-
tributed databases, the nehallengeis to perform a fully automatic integration of au-
tonomous sources.

Claim 1 In order to avoid a human-controlled mapping between cotgagintegration
time, this mapping shall be domepriori at the database design time.

This means that some formal shared ontologies must exidteach local source shall
embed some ontological data that references explicity/ghared ontology. Some sys-
tems are already developed based on this hypothesis: PiBsginaud and Giraldo
(2003) project for integrating Web services, the COIN peoj@r exchanging for in-
stance financial data Goh et al. (1999). Their weaknessistite the shared ontology
is defined, each source shall used the common vocabularysfdred ontology is in
fact a global ontology and each source is less autonomous.

Two major issues are raised in the multiple ontologies &chire: (i) the evolution of the
shared ontology and its consequence on the integratedsyestel (ii) the schematic autonomy
of the local ontology and the local schema of each source.

Our work deals with an integration of autonomous and asyrabus data sources, where
each one has its own ontology referencing a shared one ieltet et al. (2004b). In this
situation, it may be impossible to find a local ontology sanito the shared one. This is
because of two reasons: (i) the first one concerns the codemaain (autonomy of domains
of each source), and (ii) the second one concerns the symshr@gasynchronous evolution):

1. generally, the covered domain is not the same:

e each local source references the shared ontology, buti$ jakt a fragment of that
ontology,

e conversely, usually, some shared concepts have to be rdénellly in order to
represent the local requirements. Our goal is to ensure anmbautonomy of
sources, and provides an automatic integration.

-57-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

Shared
ontology

Shared
ontology

(a) Unique ontology architecture (b) Hybrid ontology architecture

FiG. 1 — The two possible ways for using ontologies for content eapbn.

2. Ontologies evolve, and it is impossible to completelyctyonize them. This is due to
following factors:

¢ the evolution of the shared ontology and existing data: anecg may disparate,
and we want to save the old data,

¢ the time needed to broadcast evolution among local anddloatelogies.

We have already proposed a solution for the problem of dormaionomy, calledsemantic
integration approach by articulating ontologi&ellatreche et al. (2004a). It consists in giving
to each source the autonomy on defining its own ontology,ibsihould (the local ontology)
references systematically shared ontology(ies) (th@naif smallest subsumes class reference
Bellatreche et al. (2004b)).

In this paper, we propose an approach and model dealing éthroblem of management
of asynchronous evolution of ontologies and data. Our aggras based on the particular
characteristics of ontologies (contrary to conceptual eflpdvhich consists in defining a set
of constraints to be respected simultaneously by the shartdogy and all the data sources
participating in the integration process.

2 Problem Position

Let’s consider a warehouse integrated system describejime=2. LetO be the shared
ontology, andS = {Si, ..., S, } a set of data sources patrticipating in the integration E®ce
where each sourc§; (1 < i < n), stores explicitly its local ontology referencing the sdth
oneO (this reference is done a priori), and the mappings betweeiotal ontology and the
data. This kind of sources, is callezhtology-based data sour¢®BDS) Pierra et al. (2004).
The warehouse integrated system has also an OBDS strudtueedata warehouse ontology
may be the shared one.

In several situations, members of a community defining aalogy (resulting from a con-
sensus) want to extend it. This extension may refine someadirenodeled concepts or to
acknowledge an evolution in the conceptualized world. Retance, in a product ontology,
the fact that a new kind of products have been appeared ondHestnIn this case, we cannot
assume that each source willimmediately reflect the chaingés shared ontology.

-58-

Xuan et al.

Shared
-z ontology

Warehouse

Source
integration

FIG. 2 — Semantic integration by a priori ontology articulation.

In this context, where changes occur in a asynchronous magness the various sources
and the shared ontologiyree problemshould be resolved:

1. The traceability of two links between local ontologies ahe shared ontologylocal
ontologies define the meaning of local data. Moreover, wHenal ontology references
a shared ontology, the meaning of the local ontology enaifesthemselves imported
from the shared one. Therefore, if the shared ontology egplit should contribute
with a particular release to the definition of local data. sTinioblem may be solved by
assigning a version number to each concept of the sharetbgyt@nd by increasing
this number when some changes occur in the concept defimiigrand Klein (2003);
Klein and Noy (2003).

2. The data access transparencgvolution of the shared ontology must not destroy the
integration system: a single version of the shared ontologgt provide an access to all
integrated data, despite the fact that they might correspomlifferent versions of the
shared ontology.

3. The management of life cycle of instancessome situations it will be interesting to
know at each moment the existence of each instance. Thigesda save all versioned
instances of all tables. This problem is known as "schemsiam@ng" in the literature
Wei and Elmasri (1999). But two difficulties exist: (i) theptieation of data (mainte-
nance and storage overhead) et (ii) the conflict betweenutwemeatic refreshment and
the query processing on multi-versioned data Wei and EiniE&989).

Example 1 To illustrate these problems, let consider the followingraple:

Figure 3 shows a warehouse integrating two ontology-based®s,Sourcel andSource2,
where each one references a shared ontology. Suppose thataitt, the version of the local
and shared ontologies is 1. At instgtt 1), the shared ontology and th#urce, endure the
following asynchronous evolutions:

1. The shared ontology evolves independently from sourdese its clasg€’ changes and
its version becomes 2,

2. TheSources has a change in the ontology level, where a new attribute éeddo class
Cs. Consequently, the clags, and its sub clas€’;; have the version 2,

-59-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

Shared ontology -al ——
Vi a2 ﬁ Evolution

table C,, =~ 250 instances™

900 instances

table C21

Source 2 (Version Source 2
1 (Version 2)

FiG. 3 — Evolution examples.

3. Two different changes are done on the table corresporiditige sub clas§’s; on con-
tent and schema levels, respectively: (1) insertion anetttel operations (750 instances
are deleted et 900 are inserted), and (2) the attribiutés deleted and., is added.

These evolution scenarios of sources and ontologies caedeltowing problems:

1. How to integrate th&Sources of version 2 which does not reference the last version of
the shared ontology in the warehouse?

2. Suppose that an user wants to store the c@ss version 2 in the warehouse. In this
case, is it possible to access data%furce; using the clasg’ of version 2'? How the
link between the class with version 2 andSource; is established?

3. Suppose that we want to store all data of two versions détab,, in the warehouse.
Therefore, how we dial with replicated data and its maintere?

In the following sections, we give answers to these problems

3 Notions of the semantic integration method using an a pri-
ori articulation of ontologies

In this section, we present formally our approach for an matiic integration process
based on a priori articulation between local ontologies arghared ontology. In the next
section, this model will be used to present our proposal €anieg both ontology evolution
and source autonomy.

3.1 Basic concepts

Formally, an ontology is defined as the 4-tuples< C, P, Sub, Applic >, with:

Inote that the articulation betweeSource; and the shared ontology is represented by the relation kestvilee
classC and the clas€”; all of version 1

-60 -

Xuan et al.

C is the set of the classes used to describe the concepts oéa ddmain (like travel
service Reynaud and Giraldo (2003), equipment failurestednic components Pierra
et al. (2003) etc.).

P is the set of properties used to describe the instances @ tlasses. Note that it is
assumed thaP defines a much greater number of properties that are usegitgsented
in a database. Only a subset of them might be selected by atiguar databasé.

Sub is the subsumption function defined gisb : C — 2¢ 3, where for a class; of the
ontology it associates its direct subsumed clags@sb defines a partial order over.

Finally, Applic is a function defined adpplic : C — 2F. It associates to each ontology
class those properties that are applicable (i.e., rigid@&eh instance of this class. Appli-
cable properties are inherited through the is-a relatiprestd partially imported through
the case-of relationship, i.€¢;, c € C, ¢s € Sub(c) = Applic(c) C Applic(cs).

Example 2 To illustrate the case-of relationship, let's consider g 4 showing an
extension of the shared ontology Hard Disk using the cagelafionship. The local
ontologyExternal Diskof Sy imports some properties of the shared one (Model Code,
Capacity, Interface, Transfer rate, etc.). Note that thusdl ontology does not import
some properties of the shared ontology like Rotational,rBt&a buffer, etc. To satisfy
its needs, it adds other properties describing its Extelesk like Read Rate, Write
Rate, Marque and Price. This particular relationship is & keechanism allowing each
source both to make its own extensions and to exchange iafiommwith other actors
referencing the same shared ontology.

Hard Disk Ontology (shared ontology)

Interface - S 1 Model Code
2 capacity
z 3

Is-depended-of
Transfer rate

Hard Disk [Rotational rate

Weight o 8 | L= + pata buffer

Dimension —2 | = Seek time
Is-A

11 10 o
External Disk 12 SC?;tC\:\f:re requirement

Is-Case-Of
S2 : a source extending locally a sharedgntology

Imported
properties from
«External Disk>

Power type

————= Read Rate
-— " - Write Rate

My
External Disk us3
-— ——= mMarque

CONONR

12 —— = Price

Marque Model Code Capacity Interface Transfer rate
Toshiba TS2002/128 128MB usB1.1 12Mb/sec

Kingston KUSBDTI/1GB 102aMB usB2.0 AaA80Mb/sec

FIG. 4 — Case_of and IS_A relationships.

To associate instances with an ontology, we define the tloteEsving constraints referenced
to as the ontology-instance’s strong typing assumptioeg®et al. (2004); Jean et al. (2005):

2a particular database may also extendZhset
3We use the symbdl© to denote the power set 6f.
4C subsumeg; iff Vo € Cy,z € C}.

-61-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

1. R1- We assume that the set of classes to which an instance beagsordered by the
subsumption relationship has an unique minimal classg@aiktance basis clays

2. R2- Each ontology specifies for each of its classes, those piepé¢hat are allowed for
use in a class instance (applicable properties).

3. R3-Each object can be described only by applicable propertiesluasis class{pplic(c),
wherec is the basic class of the considered instance).

On the basis of these assumptions, an ontology-based datzeg®BDB) may be formally
defined as 4-tuples O, I, Sch, Pop >, where:

e Ois anontology Q :< C, P, Sub, Applic >);

e [is the set of instances of the source; each one representadiastance of its basis
class;

e Pop: C — 2! associates to each class (leaf class or not) its own iresgpolymorph),
that consists of instances of which this class, or any oflilksamed classes, is the basic
class.

e Sch : C — 2T associates to each ontology classof C' the properties which are
effectively used to describe the instances of the alasSch has two definitions based
on the nature of each class (a leaf or a no-leaf class). Fdr@assc;, Schg;) shall
satisfy the following:Sch(c;) C Applic(c;).

Note thatSch and Pop are two functions linking the ontology part and data partrirGBDS.
For each leaf class of the subsumption hierarchy, i.e., elasisc; such thatSub(c;) = ¢, its
corresponding tabl@; is such that: (i) the schema @f is Sch(c;), and (ii) the population of
T; is Pop(c;). For all non leave classes,, Pop(cx) is union of population of all the tables
associated with classes that are subsumed, by ch(c;) is the projection oMpplic(cy,), of
the union of schemas of all classes subsumed, 5y

3.2 An a Priori Integration Approach

LetO :< C, P, Sub, Applic > the shared ontology anfl= {5, ..., S,,} the set of OBDSs
participating in the integration process. In an a priorégration, we first integrate ontologies,
and then data Bellatreche et al. (2004b). Integration ablogtes is done using subsumption
relationships between classes of different ontologiestgntimportation” of properties from
the subsuming class to the sub summed class. We assume #teath sourcé; has been
designed following two steps Bellatreche et al. (2004b,a):

1. The source administrator has to define its own ontoloyy: < C;, P;, Sub;, Applic; >.
But we assume that that each local ontology clas®ferences by a case-of relation-
ship, its smallest (w.r.t sub order) subsuming clgs# the shared ontology. We also

5in the presentation aPop(cy,), a property ofSch(cs,) which is not represented for a sub class, will be , for a
particular need, valued to null. This allows to integratarses do not having the same choice about the properties of
the ontology that are not used effectively for each class

-62-

Xuan et al.

assume that through this case-of relationshiffimports" from¢;, all the properties of
Applic(cq) that the source administrator wants to use in the contexsaiwn source.
These mappings are stored in the souscand constitute aarticulation M; between
O andO; that defines a functionM; : C' — 2%, whereM;(c) is the set of classes of
C; directly subsumed by € C,

2. The administrator chooses for each clgsgi) its schemaSch; (¢;), and (ii) its instances
Pop;(c;) ©.

A sourceS; articulated with the shared ontology can thus be formulated as follows:
S; :< O4,1;, Schy, Pop;, M; >. The integration system is also an OBDS structupél’ :<
Opw, Ipw,Schpw, Poppw >. We assume that in the integration system, each instance of
each particular source is represented as an instance ofatiest subsuming class in the shared
ontology. This means that each classSpfeferences (directly or by inheritance) its smallest
subsumed class(es) of the shared ontology. It (the clasg)amports from the subsumed
classes of the shared ontology the relevant propertiexl@dses and properties §f that are
not identified to the imported ones are specific to the sofiyce

1. Opw is computed as an integration of the local ontologies ingosthared one.

(@ Cpw = CU (Ui<i<nCi),
(b) Pow = P U (Ui<i<nF),

Applic(c), ifceC

(©) Applicpw (c) = { Applici(c), if c € C;

] N Sub(c)UM;(c), ifceC
(@ Subpw (e) = { Sub;(c), if c € C;

2. Ipw = Ui<i<nd,

The instances are stored in tables as in their sources.
(@) Ve; € Cpw Ae; € Cy AV € [Ln):

e Schpw(c;) = Schi(c;), and
e Poppw(c;) = Popi(c;),

(@) Vee C
e Schpw (c) = Applic(c) N (Sch(c) U (Ue,esubpw () Sch(c;))),
L POpDW(C) = UCJESub(c)POp(Cj)

Sfor non leaf classes, these choices should respect caristrasulting from the polymorphisrivc; € Sub(cy) :
Pop(c;) C Pop(ck), Sch(c;) N Applic(cy) C Sch(c;)

-63-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

4 Constraints for evolving warehouse ontology-based inte-
gration systems

4.1 The Principle of Ontological Continuity

The constraints that we should define in order to handle thieigon of warehouse ontology-
based integration systems result from the fundamentardifices existing between the evolu-
tion of conceptual models and ontologies. According to Myna conceptual model is a object
allowing to respond questions on another object, named tiietad domain Minsky (1979).
When the questions change (when the organizational obgsctive modified), its conceptual
model is modified too, without broadcasting the informatioat the modeled domain is mod-
ified. Contrary to conceptual models, an ontology is a con@djzation aiming to represent
entities of a particular domain in consensual form for a camity. It is a logic theory of a part
of the world, shared by the whole of the community, and alltevtheir members to under-
stand each others. That can be, for example, the set theompéthematicians), mechanic (for
mechanics) or analytical counting (for accountants). R type of ontologies, two changes
should be identifiednormal evolution andrevolution A normal evolution of a theory is its
deepening. New truths, more detailed are added to the digstriWhat was true yesterday
remains true today. Concepts are never deleted contranatmbhe et al. (2002). But it may
be possible that axioms of a theory become false. In this tisenot any more an evolution
but arevolution where two different logical systems will coexist or be oppd.

The ontologies that we consider correspond to this phillbgophey are ontologies either
standardized, for example at the international level, dindd by significant consortium which
formalize in a stable way knowledge of a technical domaine Thanges in which we are
interested in our approach are those representing evolafithe axioms of an ontology and
not revolution.

Therefore, we thus impose to all manipulated ontologiesafland shared) to respect the
following principle:

Principle of ontological continuity: if we consider that each ontology of the integrated sys-
tem as a set of axioms, then any true axiom for a certain viessid ontology will remain true
for all the later versions.

4.2 Constraints on the Evolution of Ontologies

In this section, we show the constraint on each conceptdetaselation between classes,
properties and instances) of an ontology. Dét=< C*, P*, Sub*, Applic* > be the ontol-
ogy with versionk.

4.2.1 Permanence of the classes

The existence of a class could not be disapproved in a laagest’* ¢ C**!. To take
into account the reality, it will be relevant to consider kitsolete. It will then be marked as
("defecated"), but will continue to form part of the latersiens of the ontology. In addition,
the definition of a class could be refined without inferring thembership of form instance to
that class. This is means that:

Xuan et al.

e The definition of classes itself may evolve,

e Each class definition will be associated to a version number.

4.2.2 Permanence of properties

Similarly P* ¢ P**+1. A property may become obsolete while the existing valuéhaf t
property remains undisputed. Similarly, a definition or andin values of a property may
evolve. Taking into account the ontological principle ohtauity, the domain of values could
be only increasing, certain values may eventually markeabaslete.

4.2.3 Permanence of the Subsumption

Subsumption is also an ontological concept which could eahfirmed. LetSub* : C' —
2¢ be the transitive closure of the direct subsumption refasiob. We have then:
YC € CF, Sub*™*(c) C Sub*™*+1(c).
This constraint allows obviously a refreshment of the highrg of subsumption of the classes,
for example by intercalating intermediate classes betweerclasses linked by a relation of
subsumption.

4.2.4 Description of instances

The fact that a property € Applic(c) means that this property is rigid for each instance
of ¢. This is an axiom that cannot be infirmed:
Ve € CF, Applic*®(c) C Applic™*+1(c).

Note that this does not suppose that same properties argsalvgad to describe the in-
stances of the same class. It is not a question of an ontalogi@racteristic but only of a
schematic nature.

4.3 |dentification of Different Elements

Evolution management supposes the power to indicate ardidentify all the evolved
elements.

4.3.1 Identification of classes and properties

We already specified that any class and any property wereiagso universal identifiers
(GUI). In fact these identifiers contain two parts: a codeque) and a version (integergUI:
= version code

Any reference between elements using the GUI is itself waesd by the versions of its
extremities Finally, any definition of class or property contains intmadar the date from
which this version is valid.

Note that a class has three types of evolution: (1) an onitabgvolution (for example,
modification of the definition or augmentation of the apdieaproperties), (2) a schematic
evolution (more or less properties used to describe tharigss), and (3) evolution of its pop-
ulation (insertion and deletion of instances). For reasafremplicity, these three types of

-65-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

changes is ensured by incrementing the same indicator ofttséon. A version thus charac-
terizes a definition, a schema and a population.

4.3.2 lIdentification of instances

In order to recognize at the maintenance time of the wareh@us source must define for
each class having a populatiorsamantic key This key is constituted by the representation
(in character string form) of one or several values of apglie properties of this class. The
properties are always provided for each instance of the elag will have never to be modified.
The other properties could or not be provided according tocels (with each version) of the
schema of the instances of the class. Their values will ne¢han the other hand, to be
modified from one version to another.

The life cycle of an instance (appearance and disappegrariben defined by the versions
of the classes to which it belongs.

5 Floating Version Model

Our management model has several objectives: (i) to allovtad access to the whole of
the existing instances of the warehouse via shared ontofdg know the history of the in-
stances, and (iii) possibly, to know, for each instancectviiersion of ontology it corresponds.
We describe below successively how we can reach the threetasgbove defined.

5.1 Management of Updates

We suppose that our warehouse is refreshed in the followag ¥t given moments cho-
sen by the data warehouse administrator, the current veo$ia sources; is integrated in the
warehouse. It includes its ontology, its references toeshantology, and its contengser-
tain instances were eventually already integrated, otla@esnew, others are removedJhis
scenario corresponds, for example, in the engineering ofowith a warehouse consolidating
descriptions of components of a whole of suppliers. A maiatee is carried out each time
that a new version of an electronic catalogue of a suppliexdsived.

5.2 A Global Access to Current Instances

We call current instances of the warehouse the instancelingsfrom most recent mainte-
nance from each source. The principal difficulty, resulfirgn the autonomy of each source,
is that during two successive maintenance done by two diftesources, the same class of
shared ontology: can be referred by an articulation of subsumption (see@e&i2) in dif-
ferent versions. For exampté andc*+7 by two classes? andcg. According to ontological
principle of continuity, it is advisable to note that:

1. All applicable properties in* are also applicable id*7,

2. All subsumed classes ljj are also subsumed k7,

- 66 -

Xuan et al.

The relation of subsumption betweéhandc} could be replaced by a relation of subsumption
betweenc®+7 andc?. The class” is not thus necessary to reach the instances ofThis
remark leads us to propose a model, cafteatlel of the floating versiong/hich enables us to
reach the data via only one version of the warehouse ontoldlig version, calledcurrent
version"of the warehouse ontology, such as the current version f @ae of its classes’ is
higher or equal to the largest version of that class refdvyeah articulation of subsumption at
the time of any maintenance.

In practice, this condition is satisfied as follows:

o Ifan articulation); references a clag$ with a version lower thaif, then); is updated
in order to reference’,

e If an articulation)M; references a clags with a version greater thafi, then the ware-
house load the last version of the shared ontology and reigdt referenced/; (i =
1..n) to new current versions.

Example 3 During the maintenance process of a cl&ss that references the clags with
version2, the version of”' in current ontology isl. In this case, the warehouse downloads
the current version of shared ontology. This one being 3efbes the clas€”; is modified to
reference the version 3 (Figure 5).

Current

C C Version 1 version

- C Version 3
version3

result

Shared —
Cl Cl1 Version 1 ontology
Version 2
Version 2 Cl1

Source

Warehouse Warehouse

FIG. 5 — A Model of the floating versions.

If the only requirements of users is to know the current instés, then, at each mainte-
nance step, the table eventually associated to each clasagérom a local ontology in the
warehouse is simply replaced by the corresponding curadte in the local source.

5.3 Representation of history of instances

In some situations, it may be useful to know the existencesthinces in the warehouse
at any last moment. To do so, we do not need to archive alsodtsons of ontologies
since the current version is compatible with all the lastanses. This problem is known by
"schema versioning" Wei and Elmasri (1999), where all wersd data of a table are saved.
Two solutions are possible to satisfy this requirement:

-67-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

e In the approaclexplicit storageBebel et al. (2004); Wei and Elmasri (1999), all the ver-
sions of each table are explicitly stored (see Figure 6)s $biution has two advantages:
(i) it is easy to implement and allows an automation of theepss of update of data, and
(ii) query processing is straitforward in cases where weipeethe versions on which
the search will be done. On the other hand, the query prawessst can be very impor-
tant if the query needs an exploration of all versioned dath@warehouse. Another
drawback is due to the storage of the replicated data.

In the approaclmplicit storagéVei and Elmasri (1999): only one version of schema of
each tablerl is stored. This schema is obtained by making uhé@n of all properties
appearing in various versions. To each maintenance, weleddxisting instance of
the current table. The instances are supplemented by Hukwgsee Figure 6). This
solution avoid the exploration of several versions of agitable. The major drawbacks
of this solution are: (i) the problem of replicated data isals present, (ii) the imple-
mentation is more difficult than the previous one concertireggautomatic computation
of the schema of stored tables; (iii) the layout of the cydléfe of data is difficult to
implement {valid time" Wei and Elmasri (1999)) and (iv) the semantics ambiguity of
the null values.

Table Person of version V1

. Citizenship

% SSN amilyNam¢ Name (198 countries)

E] 001 Lee Dung Vietnam

= 002

=]

P

] ...

-2 1000

s

=z Person Table of version V2

=]

@ Salary Citizenship

1)

s SSN Name ©) (200 pays)

£ 300 Deh 1400 Tchad

E- 1000
=) 1001 |

. Salary Citizenship
NoSS HKamilyNamg Name -

@ € (200 countries)
E" 001 Lee Dung null ...

2 null
B 300 Deh ... 1400 Tchad
& 1001 ... null

null

FIG. 6 — Implicit and explicit storage.

Our solution follows the second approach and solves thegmabin the following way:

1. The problem ofeplicated data is solved thanks to the single semantic identification
(value of the semantic key) of each instance of data,

-68-

Xuan et al.

2. The problem of automation of the update process of taliiersa is solved through the
use of universal identifiers (GUI) for all the properties wihcan result from a null value
in the table of a source, or the need for supplementing eatarioe.

3. The problem of the representation of the cycle of life efitstances is solved by a pair
of properties:(Version,in, Version,..). It enables us to know the validation of a

given instance.

4. The problem of semantic ambiguity of the null values: isdiad by archiving the func-
tions Sch of various versions of each basic class of a table. This aatmables us to
determine the true schema of version of a table, and thusttial irepresentation of

each instance.

5.4 The Data Warehouse Structure

Historized warehouse
Current

ontolo P ===
2y I I N N N I I A I
g A o s e e

I

Version_min/
Version max

Archive
of ontologies

Archive of classes

I
S I
I

archive of Sch |

Mutiversionned
tables

FIG. 7 — Structure of warehouse integrated system.

The articulation between a local ontology and shared ogjotbat is stored in the current
version of the warehouse ontology may not be its originahitégdn (see the Figure 5). In this
case, it is necessary to reach an instance through the gidalaefinitions existed when this
instance was itself activated. It is necessary to archise all the versions of the warehouse
ontology. It can be useful, for example, to know what washatime of the instance, the exact

domain of its enumerated properties.

We also implemented this possibility to offer the archivaaimarehouse, all versions of
classes having existed in the life of the warehouse, anti@liglations in their original form.
Note that the principle of ontological continuity seems k& seldom necessary this complex
archive. To summarize, we present the complete structuaerafrehouse in a multiversioned

environment (see Figure 7). This structure composed by thaets:

1. The current ontology: it contains the current versionta wvarehouse ontology. It

represent also a generic interface to access data.

2. Ontology archive: contains all versions of each class @nogerty of the warehouse
ontology. This part gives to users the true definitions o§iaers of each concept if it is

-69-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

necessary. Versions of schema of tabjeare also historized by archiving the function
Sch¥(c;) of each versiork of ¢; wherec; corresponds to the tablg .

3. multiversioned tables: contain all instances and thest éind last activated versions.

Warehouse historized

«al
~a2 ersion 2
a3 ‘C

a4

«al version 2 1 version 1) - .)
«a3 ca — Version_min/
cad C2 «a3 Cc 1 —‘:4/' version_max

ersion 2

e L e

~
al| a3 | bl [a4

null } 1000
250 { instances
instances 900

instances

null

FiG. 8 — Figure 3 after the maintenance phase.

The result of problem of asynchronous evolution managerpergented in example of
section 2 is illustrated in Figure 8.

6 Implementation

In order to validate our work, we have developed a prototypegrating several OBDSs
(Figure 9), where ontologies and sources are described (dilB ontology models Pierra
et al. (2003)which are specified by Express language SchrehWélson (1994) . Such ontolo-
gies are exchangeable as instances of EXPRESS files ("phfigt). To compile EXPRESS
files, the ECCO Toolkit of PDTec which offers the following imdunctions Staub and Maier
(1997):

1. Edition and syntax and semantic checker of EXPRESS models

2. Generation of functions (Java and C++) for reading, ngitind checking integrity con-
straints of a physical file representing population of ins&s of an EXPRESS schema;

3. Manipulation of the population (physical file) of EXPRES8®dels using a graphical
user interface;

4. Access to the description of a schema in the form of objetts meta-model of EX-
PRESS;

-70-

Xuan et al.

5. Availability of a programming language called EXPRESSHGs an extension of the
EXPRESS language. It allows managing an EXPRESS scheméasdndtance objects.
It has two main extensions: capability to make input-outpitih external environments
and to support event-based programming i.e., triggeringg@ram by event occurrence.

PLIB EDITOR

Edition, Evolve, Visualize INTERFACE (JAVA)
ontologies and OBDS

PLIB API (ECCO)

Visualize / querying -~
S
<9 v
=
==
-z
&8
= OBDS
- =
=
BDBO =

FiG. 9 — Architecture of our Prototype.

An ontology (or OBDS), described in file of instances of Exgmeis created via editor
called, PLIBEditor. It is used also to visualize, edit analege ontologies and sources. It
uses a set of PLIB API developed under ECCO. PLIBEditor psepa QBE-like graphical
interface to query the data from the ontologies. This iaiEzfrelies on the OntoQL query
language Jean et al. (2005) to retrieve the result of thediatigely constructed queries. Figure
10 shows an ontology defining concepts of the LMD (Licensestela Doctorate) university
cursus in the PLIB ontology model Pierra et al. (2003). Digsion of shared ontology and
local ontologies is done using PLIBEditor.

PLIB “Query desig!
3 Student Property
@ (] working student —
@ ‘3 Diploma E [Preferred name credit required Code T1FCANBBA2GAE
e % il & ShartName crag version 001
aster
© [Dactorate Preferred symbol Revision 001
- Domain Integer Type Details Change | Name scope SLALOM
——
[nurnber of credits required for this diploma |
Note | |
.= Remark | |
-STUDENT
first name | last hame | diploma prepared credit required |
[vi [vi []
- credits obtained + 100 T e T
OntaQL query T %m disjonctive condition in gquery
Exacut
SELECT "FIRST MAME", "LAST MAME", —— ¥ Polymorphic query
FROM STUDENT Join with another class
HERE "DIPLOMA PREPARED CREDIT REQUIRED »
“CREDITS OBTAINED" + 100

FiG. 10 — PLIBEditor.

-71-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

l generic access through

e ctandard ontorey l Thanks to an generic access, nail instances of all specific catalogues are loaded in the same table]

& Integrated system. | T —
@ 3 Root Class i
? Qmsce
@ (2 Fasteners
o ([8ss
Clamps and staples
© (13 Nuts
9 3 Pins,nails
9 &3 Ping nails frponent
¢ QR

L2

Material tyne Norninal diam eter Norninal length Thread size [l 15 Mass Manufact
10 0.4[[150_13584_25
12 0.1/[150_13584_25
11 0.1//150_13584_25
10 0.1/[130_13584_35
12 0.4][150_13584_35
11 0.4[180_13584_25
11 0.4/[150_13584_25
14 0.1/[150_13584_25
7 0.1/[150_13584_25
0.1)/150_13584_25
B 0.41][130_13584_35
10 0.4[1s0_13584_35
11 0.4/[180_13584_25
12 0.4/[150_13584_25
13 0.1/[150_13584_25
14 0.1//150_13584_25
15 0.1/[130_13584_35
16 0.4][150_13584_35
17 0.4[180_13584_25

= Nails of China company
& Nails of French company
4= Nails of German company

¥ Nails of Thai compary

= Nails of USA company
*+ Nails of Vietna company

© [Pins

© [Pingnalls feature
Rings,bushes,sleeves cflars
© 1] Rivet
© (] Washers,ockingflements
Hardness

specific assess
to each catalogue

|l=

FIG. 11 — An example of nail integrated system.

We have developed a set of integration API allowing the manamt of the warehouse
integrated system through a domain ontology and integr8®$3 in that warehouse. Figure
11 shows a scenario of integrating sources modeling nascompanies from China, France,
Germany, Thailand, USA and Vietnam. We have also implemamnbraological archiving
option, allowing to store just relevant versions (chosethieywarehouse administrator). These
integration APIs are incorporated in PLIBEditor.

7 Conclusion

In this article, we presented the problem of managementysfcsonous evolution of the
data and ontologies in a warehouse ontology-based integrsygstems. The sources that we
considered are those containing local ontologies reféngrin a priori manner a shared one.
These sources are autonomous and heterogeneous. Ouatfictegrrocess integrates first on-
tologies and then the data. The presence of ontologies aiovautomation of the integration
process of integration by facilitating the conflict res@uat But it makes the management of
autonomy of sources more difficult. This difficulty is due e tpresence of a new dimension
which is the ontology. To solve this problem, we presentediliirsersion approach. Initially,
some constraints on ontologies and the data of the souraesdeéned. The evolution of on-
tologies is carried out according to the principle of ongéal continuity (an evolution of an
ontology cannot cancel an axiom previously true). A strreetf a ontology-based warehouse
(which references also the shared ontology) is presentecbnkists of three parts, namely,
(1) the current ontology which contains the current versibtihe warehouse ontology, (2) the
archive of ontologies which contains all the versions ofheelass and property of the ware-
house ontology, and (3) the multiversioned tables comigiail instances and their first and
last version of activities. This structure allows the tracthe cycle of life of the instances and
the data access is done in a transparent manner. Our modelalidated under ECCO by
considering several domain ontologies, where for each@gyoa set of sources was defined.

-72-

Xuan et al.

It would be interested to consider a mediator architectbioceioproposed model and archi-
tecture, the problem of view maintenance in an ontologyetagarehouse and finally, evalua-
tion of our approach in order to measure its scalability.

References

Arens, Y. and C. A. Knoblock (1993). Sims: Retrieving ancegrating information from
multiple sources. Proceedings of the International Conference on Managernémata
(SIGMOD’1993) 562-563.

Bebel, B., J. Eder, C. Koncilia, T. Morzy, and R. Wrembel (200@reation and management
of versions in multiversion data warehouderoceedings of the 2004 ACM symposium on
Applied computing717-723.

Bellatreche, L., G. Pierra, D. Nguyen Xuan, H. Dehainsatal ¥ Ait Ameur (2004a). An
a priori approach for automatic integration of heterogeiseand autonomous databases.
International Conference on Database and Expert Systerptications (DEXA'04)(475-
485).

Bellatreche, L., G. Pierra, D. Xuan, and D. Hondjack (2004k)tégration de sources de
données autonomes par articulation a priori d’ontologisc. du 23éme congres Inforsid
283-298.

Castano, S. and V. Antonellis (1997). Semantic dictionasigh for database interoperability.
Proceedings of the International Conference on Data Engjiimg) (ICDE), 43-54.

Chawathe, S. S., H. Garcia-Molina, J. Hammer, K. IrelandP&pakonstantinou, J. D. Ull-
man, and J. Widom (1994). The tsimmis project: Integratibhaterogeneous information
sources.Proceedings of the 10th Meeting of the Information ProcesSiociety of Japan
7-18.

Chen, S., B. Liu, and E. A. Rundensteiner (2004). Multivensbased view maintenance over
distributed data source&CM Transactions on Database Syster(94, 675-709.

Doan, A., N. F. Noy, and A. Y. Halevy (2004). Introduction keetissue on semantic integration.
SIGMOD Record 3@L).

Goh, C., S. Bressan, E. Madnick, and M. D. Siegel (1999). &drihterchange: New fea-
tures and formalisms for the intelligent integration ofarrhation. ACM Transactions on
Information Systems 13), 270-293.

Goh, C. H., S. E. Madnick, and M. Siegel (1994). Context change: Overcoming the
challenges of large-scale interoperable database systeadynamic environmentn Pro-
ceedings of the Third International Conference on Infoiipratind Knowledge Management
(CIKM’'94), 337-346.

Gruber, T. (1995). A translation approach to portable aggplspecification. Knowledge
Acquisition §2), 199-220.

Hakimpour, F. and A. Geppert (2002). Global schema gemeratsing formal ontologiesn
Proceedings of 21th International Conference on Concdpilaaleling (ER’02) 307-321.
Jean, S., G. Pierra, and Y. Ait-Ameur (2005). Ontogl: an eitation language for obdbs.

VLDB Ph.D. Workshop41-45.

-73-

Ontology Evolution and Source Autonomy in Ontology-basedeDNarehouses

Klein, M. and N. F. Noy (2003). A component-based framewarkadntology evolution Pro-
ceedings of eighteenth International Joint Conference ifiédal Intelligence

Lander, T. and R. L. Rosenberg (1982). An overview of mu#ihain Proceedings of the
Second Symposium of Distributed Databases

Lawrence, R. and K. Barker (2001). Integrating relationatatbase schemas using a stan-
dardized dictionaryin Proceedings of the ACM Symposium on Applied Computin@)SA
225-230.

Levy, A. Y., A. Rajaraman, and J. J. Ordille (1996). The worldle web as a collection
of views: Query processing in the information manifolltoceedings of the International
Workshop on Materialized Views: Techniques and Applicati¢tyIEW'1996) 43-55.

Maedche, A., B. Motik, L. Stojanovic, R. Studer, and R. Vak0Q2). Managing multiple
ontologies and ontology evolution in ontologginigtelligent Information Processing1—
63.

Mena, E., V. Vipul Kashyap, A. lllarramendi, and A. P. ShetB$6). Managing multiple in-
formation sources through ontologies: Relationship betweocabulary heterogeneity and
loss of informationin Proceedings of Third Workshop on Knowledge Represemaflieets
Databases

Minsky, M. (1979). Computer science and the representati&mowledge.in The Computer
Age: A Twenty-Year View, Michael Dertouzos and Joel Mosé&E Rvess 392—-421.

Mitra, P., G. Wiederhold, and M. Kersten (2000). A grapteated model for articulation of
ontology interdependenciem Proceedings of the 7th International Conference on Eckten
ing Database Technology (EDBT'Q@®6—-100.

Noy, N. F. and M. Klein (2003). Ontology evolution: Not thensa as schema evolution.
Knowledge and Information Systems 5

Pierra, G., H. Dehainsala, Y. A. Ameur, L.Bellatreche, Jo€hon, and M. Mimoune (2004).
Base de Données a Base Ontologique : le modele Ontédd&eeding of Base de Données
Avancées 20emes Journées4’'04), 263-286.

Pierra, G., J. C. Potier, and E. Sardet (2003). From dighigdties to electronic catalogues for
engineering and manufacturingnternational Journal of Computer Applications in Tech-
nology (IJCAT) 1827-42.

Reynaud, C. and G. Giraldo (2003). An application of the ratxtiapproach to services
over the web. Special track "Data Integration in Engineering, Concurtrdengineering
(CE’2003) - the vision for the Future Generation in Reseank Applications209-216.

Roth, M. T., M. Arya, L. Haas, M. Carey, W. Cody, R. agin, P. ®alz, J. Thomas, and
E. Wimmers (1996). The garlic projecRroceedings of the ACM SIGMOD International
Conference on Management of Daf&7-557.

Schenk, D. and P. Wilson (1994nformation Modelling The EXPRESS Wa&yxford Univer-
sity Press.

Staub, G. and M. Maier (1997). Ecco tool kit - an environnenfienthe evaluation of express
models and the development of step based it applicatidser Manual

Wache, H., T. Vogele, U. Visser, H. Stuckenschmidt, G. Sehrubl. Neumann, and S. Hiibner
(2001). Ontology-based integration of information - a gyref existing approache®ro-

-74-

Xuan et al.

ceedings of the International Workshop on Ontologies aforination Sharing108-117.

Wei, H.-C. and R. Elmasri (1999). Study and comparison oéswversioning and database
conversion techniques for bi-temporal databasBsoceedings of the Sixth International
Workshop on Temporal Representation and Reasoning (IEEEpGr)

Wiederhold, G. (1992). Mediators in the architecture ofifatinformation systemsIEEE
Computer 283), 38-49.

Résumeé

Une nouvelle génération de systemes d'intégration utdisge ontologies pour résoudre
les conflits sémantiques et structurels entre les difféeeaburces de données participant au
processus d'intégration. Ces systemes supposent I'existé’'une ontologie partagée de do-
maine et que chaque source possede une ontologie locatdépance, et éventuellement étend
I'ontologie partagée. Le processus d’intégration estsalmsé sur ces références qui consti-
tuent une articulation des ontologies locales et I'ontEquartagée. Notons que les sources
de données sont indépendantes, chacune peut évoluer midépment des autres, ce qui en-
gendre un probléme d'évolution asynchrone. Dans le comtéxine telle intégration a base
ontologique, les évolutions concernent donc a la fois léelogies, les schémas et les don-
nées. Dans cet article, nous proposons un modele pour amgest I'évolution des systemes
d’intégration a base ontologique, dont le résultat est radige sous forme d’'un entrepbt de
données. L’hypothése fondamentale de notre travail, @éppel principe de continuité onto-
logique stipule qu’une évolution d’'une ontologie ne peut infirmaraxiome antérieurement
vrai. Ce principe permet d’interpréter toute instance éspntée. En conséquence, il simplifie
considérablement la gestion de I'évolution des ontologieci permet d’assurer une inté-
gration automatique. Ce travail a été motivé par l'intégraButomatique des catalogues de
composants industriels dans les bases de données d'ingéhia été validé par un prototype
sous un environnement ECCO et le langage EXPRESS.

-75-

-76 -

