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Abstract

It is shown that an interval estimate for a contrast between means can be straight-
forwardly computed, given only the observed contrast and the associated t or F test
statistic (or equivalently the corresponding p-value). This interval can be seen as a fre-
quentist confidence interval, as a standard Bayesian credibility interval, or as a fiducial
interval.

This gives Null Hypothesis Significance Tests (NHST) users the possibility of an easy
transition towards more appropriate statistical practices. Conceptual links between NHST
and interval estimates are outlined.

Introduction

Many recent papers have stressed on the necessity of changes in reporting experimental
results. A more and more widespread opinion is that inferential procedures that provide
genuine information about the size of effects must be used in addition or in place of Null
Hypothesis Significance Tests (NHST). So, in psychology, this has been recently made
official by the American Psychological Association Task Force on Statistical Inference.
The Task Force has proposed guidelines for revising the statistical section of the American
Psychological Association Manual. Following these guidelines, “interval estimates should
be given for any effect sizes involving principal outcomes” (Wilkinson et al., 1999).

Therefore a salutary project should be to equip NSHT users with tools that should
facilitate a smooth transition towards interval estimates. In this perspective a surprisingly
simple and virtually ignored result is the easiness to get an interval estimate for a difference
between two means (and more generally for a contrast between means) from the associated
t or F test.
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Such an interval estimate can receive different justifications and interpretations. It
can be seen as a frequentist confidence interval as well as a standard Bayesian credibility
interval, or again as a Fisher’s fiducial interval (Fisher, 1990). Theoretical discussions
about these frameworks are outside the scope of this paper. Let us mention however that
the authors’ opinion is that a Bayesian approach with a fiducial flavor is ideally suited for
experimental data analysis and scientific reporting. The interested reader can be refered to
Lecoutre et al. (2001) and Rouanet et al. (2000). Here we shall use the expression “interval
estimate”, leaving the reader free to choose between the justification and interpretation
frameworks.

From F Ratios to interval estimates for contrasts bet-

ween means

As an illustration consider an experiment involving two crossed factors Age and Treat-
ment, each with two modalities. The means of the four experimental conditions (with 10
subjects in each) are respectively 5.77 (a1,t1), 5.25 (a2,t1), 4.83 (a1,t2) and 4.71 (a2,t2).

The following typical comments based on ANOVA F tests are found in an experimental
review :

“the only significant effect is a main effect of treatment (F [1,36]=6.39, p=0.016),
reflecting a substantial improvement”

and again

“clearly, there is no evidence (F[1,36] = 0.47, p = 0.50) of an interaction”.

Such comments are commonly found in experimental publications. It is strongly sug-
gested to a reader, little informed of the rhetoric going with the use of NHST, that it has
been demonstrated both a large main effect of treatment and a small interaction effect.
But there is nothing of the kind !

The difference between the two observed treatment means is

d =
1

2
(5.77 + 5.25)− 1

2
(4.83 + 4.71) = +0.74

and the interaction effect can be characterized by the difference of differences

d = (5.77− 4.83)− (5.25− 4.71) = +0.40

A simple and general result is that the 100(1−α)% interval estimate for the true effect
δ can be deduced from the F ratio (with one and q degrees of freedom). It is (assuming
d 6= 0) :

[
d− (|d|/

√
F )tq;α

2
, d + (|d|/

√
F )tq;α

2

]

where tq;α
2

is the (α
2
)% upper point of the standard Student’s distribution with q degrees

of freedom (recall that the square of tq;α
2

is the α% upper point of the F distribution with
one and q degrees of freedom). Moreover a good approximation can be straightforwardly

obtained (i.e. without referring to statistical tables) by replacing tq;α
2

with 1.96
√

q/(q − 2),
or again more simply with 2 when q is large.
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This result brings to the fore the fundamental property of the F test statistic of being
an estimate of the experimental accuracy, conditionally on the observed value d. More
explicitly d2/F estimates the sampling error variance of d. The same result applies to
usual Student’s t tests, replacing |d|/√F with d/t.

From t36;0.025 = 2.028, we get here the 95% interval estimates [+0.15 , +1.33] for
the difference between the two treatments and [-0.78 , +1.58] for the interaction effect.
This clearly shows that it cannot be concluded both to a substantive difference between
treatment means and to a small, or at least relatively negligible, interaction effect.

Significance levels and interval estimates

Since the t or F test statistics can be computed from the p-value (assumed known
with a sufficient degree of accuracy), interval estimates can be deduced directly from
the p-value. It follows that, given the observed d, the p-value is also an estimate of the
experimental accuracy. Hence, intuitively, the more significant the result (the more p less
than α), the more δ should be close to d. It is enlightening to remark that the 100(1−α)%
interval estimate can again be written as [d− dα , d+ dα], where dα = (|d|/√F )tq;α

2
is the

(positive) critical value of d such that the test is declared significant at two-sided level α
if |d| exceeds dα.

As an other illustration consider a study designed to test the efficacy of a new drug
by comparing two groups (new drug vs. placebo) of 20 subjects each. The new drug is
considered as efficient (clinically interesting) by experts in the field if the raw difference is
more than +2. Four possible cases of results are constructed by crossing the outcome of
the t test (significant, p = 0.001 vs. nonsignificant, p = 0.60, two-sided) and the observed
difference between the two means d (large, d = +4.92 vs. small, d = +0.84).

The corresponding 95% interval estimates for the true difference δ are given in Table 1.
This table illustrates the shift from the knowledge of d and p (or t) to a conclusion about
the magnitude of δ (the efficacy of the new drug). From this table, it becomes easy to avoid
erroneous conclusions based on hasty interpretations of NHST. The following general rules
can be deduced.

Table 1 - 95% interval estimates for δ in the four cases of results
(t38;0.025 = 2.024, hence d0.05 = 2.024d/t)

case t p d d0.05 95% interval estimate conclusion
1 +3.566 0.001 +4.92 2.79 [+2.13 , +7.71] efficient
2 +3.566 0.001 +0.84 0.48 [+0.36 , +1.32] inefficient
3 +0.529 0.60 +4.92 18.83 [-13.91 , +23.75] no firm conclusion
4 +0.529 0.60 +0.84 3.22 [-2.38 , +4.06] no firm conclusion

Case 1 (significant test, large positive d). Such results seem generally very favorable
to NHST users. This is justified here, since d − d0.05 is greater than +2. However it
must be stressed that asserting a large difference needs some cautious. The test must be
“sufficiently significant”, i.e. p sufficiently smaller than α, to imply a large d − dα value.
Indeed, in the limiting case where d is positive and the test is just significant at two-sided
level α, it can only be concluded that δ is positive.
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Case 2 (significant test, small positive d). Since 0 < dα < d, these conditions imply
that dα and d− dα are small. Moreover, in the present results, d + d0.05 is also small (less
than +2), so that a small difference can be asserted. Since there is apparently conflict
between the small observed difference and the statistically significant outcome, this case
generally appears to NHST users to be cumbersome. There is no paradox however, since
this can only occur when the experimental accuracy is “very good” (i.e. when the sampling
error variance is a small). Therefore it is in fact a privileged case. But, as a consequence
the test is very powerful (dα small), so that even a small observed difference can be
statistically significant.

Case 3 (nonsignificant test, large positive d). As a general rule no firm inductive
conclusion can be reached : it is obviously out of the question that a small difference
can be asserted. Actually, these results indicate an insufficient experimental accuracy and
therefore are not really contradictory (only a very large observed difference should be
statistically significant). However, many NHST users feel this case cumbersome because
they cannot generalize the descriptive conclusion of a large difference.

Case 4 (nonsignificant test, small positive d). These conditions only imply that d is
less than dα. But they can correspond to small as well as large d− dα and d + dα values.
in the present results, d + d0.05 is distinctly larger than +2, so that no firm conclusion
can be reached. Nevertheless, like in the first case, the apparent convergence between the
observed difference and the test outcome seems often favorable to NHST users who tend
to erroneously conclude that the drug is inefficient.

Conclusion

In a sense, a p-value cannot be regarded as a rational measure of weight of evidence
(see e.g., Hacking, 1965 ; Spielman, 1974). It must also be stressed that a p-value in itself
says nothing about the magnitude of the effect. However it must be acknowledged that in
many usual cases the test statistic, or equivalently the p-value, can be straightforwardly
combined with a descriptive statistic to obtain an interval estimate. Unlike power this
interval estimate is directly and easily interpretable with respect to effect sizes. In actual
fact Seldmeier & Gigerenzer (1989) deplored the neglect of power in experimental publi-
cations. In front of the misuses of NHST, they stated that “given such misconceptions,
the calculation of power may appear obsolete because intuitively the level of significance
already seems to determine all we want to know” (page 314). A more relevant assertion
appears to be “given such misconceptions, the calculation of power may appear obsolete
because formally the level of significance may determine what we want to know”. This
confirms Goodman and Berlin’s assertion (1994) that “for interpretation of observed re-
sults, the concept of power has no place” (this does not mean that power cannot be useful
for sample size calculations).

In particular, regarding the common misuses of NHST (see e.g., Lecoutre et al., 2003),
it follows that a “very significant” result generally allows the descriptive result to be
extended. However, depending on the observed effect size, this can lead as well to assert
a large, a medium, or a small effect. On the contrary a “very nonsignificant” result will
lead to assert a small effect only if the observed effect is very small. In practice it will
correspond more often than not to a statement of ignorance.
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In conclusion, even if banning NHST in expérimental publications would be without
doubt a shock therapy (see Shrout, 1997), t statistics, F ratios and p-values would re-
main useful, at least for computations of interval estimates and reanalyzes of previously
published results. Ironically reporting them with sufficient accuracy appears then to be a
valuable practice for subsequent analyses about effect sizes.
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