EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS  March, 14-16, 2007 » Caserta, Italy

On Reservoir Sampling with Deletions

Rainer Gemulla!, Wolfpang Lehner!, Peter J. Haas®

! Technische Universitiat Dresden, Germany, {gemulla,lehner -@inf . tu-dresden.de
* IBM Almaden Research Conter, TTSA, phaas@us . iba. com

Abstract. Perhaps the mest flexible svnopsis of a database i= a random sample of the datag;
such samples are widely nsed to speed up processing of analytic gueries and data-mining
tasks, enhance query optimization, and facilitate information integration. In this paper, we
describe & recently proposed method for inerementally maintaining a unitorm random sample
of the items in a dataset in the presence of an arbitrary sequence of insertions and deletions.
Char scheme, called “random pairing” (RT?), maintaing o bonnded-size aniform sanple by
using newly inserted dala ilems o compensade Tor provioos deletions, The Y algoeithm is
the first extension of Che almost d0-yvear-old reservoir sampling algorithm to handle deletions;
RFP reduces to the “passive” algorithm in [1] when the insertions and deletions correspond
to o moving window over a data stream. We alzo prove that it is not possible to “resize” a
bronrnudead-size randon sample apwards withont accessing the base data.
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1 Introduction

Because of its Hexibility, sampling is widely used for quick approximate query answering, statistics
estimation, data stresm processing, data mining, and data integration. Uniform random sampling,
i which all sanples of the same sige are equally likely, is the most basic of Lhe available sampling
schomes. Unitorm sampling is ubiguitons in applications: most statistical estimators — as well as
the confidence-bonnd Tormmlas for these estimators — assnmne anounderlyving noiform sample. Thos
nniformity is a must if it 1s not known in advance how the sample will be used. In this paper, we show
how to maintain a bonnded-size sample of a dataset defined by s stream of insertion and deletion
Lransactions. Ineremental sample mainlenance is a powerlol lechoigue, becanse Lhe absiracl nolion
of the underlving “datasct”™ can be interpreted very broadly in applications. Indecd, the datasct can
actially be an arbitrary view, ez over the resnlt of an arbitrary SOL guery, Samples over views
ave particularly good candidates for incremental maintenance, because producing such samples on
the flv can reguire very expensive base-diata accesses. The idea is to, ineffect, compute the “delta”
(mel ol nsertions, updates, and delelions) o the view as the underlving tables are updated and
then apply gencral sample-maintenance methods to the resulting sequence of view modifications.

In the contest of a data stream management system [(DEMS)) often only a subset of the data
stream is relevant for query processing. On the one hand, windowing techniques [1] restrict the
relevant scetion of the stream to the most recent clements, where recency is defined cither by the
position of the elewenis in the siream or by & tmeslamp associaled wilh each element. On the
other hand, suppose that the stream itsclf consists of updates to a sct of items such as the locations
of cars om a highway, Many qneries only foons on g certain area of interest, say, a specific section
of the highway. In both cases, the scope of the query is continously evalving, that is, items enter
and lesve. Viewing the query scope as a dataset, cach cloment of the stream can be seen as one or
more insertions into or deletions from this dataset. Due to the vast mnonber of data stresms and for
the high arrival rate of their clements, it is often necessary to compress the relevant part of the
data stresm to Gt into memory or o redues processing cost. Again, sampling has proven to be s
powerful tool for this type of dataset summearization.

This paper bricfly deseribes a reeently proposed method [2] for inerementally maintaining a
unilorin random sample of an evolving dalasel. We also show (hal il s mpossible o “resize” a
bounded-size random sample upwards without aceessing the base data.
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2 Related Work

We consider a (possibly infinite) set 1" = {#;,%2,... } of unique, distinguishable items that arc
inserled inlo and deleted rom the datasel & over time. As indicated above, we do ool reqguire
It to be accessible or even materialized. In gencral, items that are deleted may be subscoguently
re-inserted. Withont loss of generality, we assmne thronghont that B s initially empty. Thos we
consider an infinite sequence of transactions, where each transaction is either an insertion or a
deletion of item £ from A, We restrict attention to “feasible” scquences such that K ois a troe
sel and ilems can only be deleted 1 ihey are present in B, Our goal = Lo ensure thal, aller each
transaction is processed. 5 is a uniform sample from F.

We limit our attention to hounded-size sampling schemes which do not require aceess to B at
any time The best known method for inerementally maintaining s sample in the presence of a
stream of insertions to the dataset is the classical “reservoir sampling” algorithm [4] (IRS), which
maintaing i simple random sample of a specified size M. The general procednre is as follows:
Tnelude the Grsl M ilems ot the sanple. For each suecessive iusertion inlo the datasel, include
the inserted item into the sample with probability M /| R|, where || s the size of the datasct
just after the fnsertion; an inelnded e replaces a randomly selected item in the sample. One
deficiency of this method is that it cannot handle deletions, amd the most obvious modifications
for handling deletions either vield procedures for which the sample sive systematically shrinks to
0 over Lime or which require aceess lo I3

The ouly konown bounded-sige sampling scheme which can handle both insertions and deletions
has been proposed in (3. The idea is to include every item into the sample with probability g and
to directly remove deleted items from the sample, iF present. The sample i then purged every
time it cxeerds the upper bound, so that the algorithm is best described as Bernoulli sampling
with purging (BSP). Starting with g — |, we decrease g at every purge step. With ¢ being the
new value of g, the sample is subsampled using Bernoulli sampling with sampling rale (g /g). This
procedure is ropeated until the sample size has fallen below M. 'The choice of g is challonging:
on the one hand, if ¢' is chosen small with respect to g, the sanple sise drops significantly below
the upper bound in expectation. On the other hand, a high value of ¢ leads to frequent purges,
thereby reducing performance. Due to the diffienlty of choosing g and, ss disenssed in the seqnel,
instabilily i the sample siees, Chis algoriiho can be dillicull to nse o practice,

Our new R algorithm, described in Section 3, maintaing a bounded-size uniform sample in
the presence of arbitrary insertions and deletions without requiring access to the base data. The
RF algorithin produces samples that are significantly larger (ie, more space efficient) and more
stable than those prodoced o BSIY at lower cost.

3 Random Pairing

To motivate the idea behind the random-pairing scheme, we ficst consider an “obwious” passive
algorithm for maintaining a bounded mnitorm sample 5 of o dataset B The algorithm avoids access-
ing base data by making use of new insertions (o “compensate” [or previons deletions. Whenever
an item is deleted from the data sct, it is also deleted from the sample, if present. Whenever the
samnple sive les at its npper bonnd M the algorithm handles msertions identically to BS; whenever
the sample size lies below the upper bound and an item s inserted into the dataset, the item is
alzo Inserted into the sample. Althongh simple, this algorithm is anfortimately ineorrect, beeanse
it fails to gnarantes uniformity. To see this, suppose that, al some stage, |S) = M < |B| = N,
Also suppose that an item £ 65 then deleted from the dataset £, divectly followed by an insertion
of 1. Denote by 57 the sample after these two operations. [f the sample 35 to be traly waiform,
Lhen the probabilily that (7 £ 87 should equal M/N, conditional on [S] = M. Sinee [~ £ 8 wilk

# A broader summary of available uniform sampling schemes can be found in [2].
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probability M /N, it follows that

+ " - — _ P M My M M
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conditional on |5 = M. Thus an ilew inserled just aller a deletion has an overly high probabilily
of being included in the sample. The basic idea behind BRI is to avoid the foregoing problem T
including an inserted itemn into the sample with a probability less than | when the sample siee
lies below the upper bound. The key question s how to select the nclusion probability to ensure
uniformity.

4.1  Algorithm Description

In the RI" schome, overy deletion from the dataset is cventually compensated by a subscquent
insertion. At any given time, there are 0 or more “nneompensated” deletions; the munber of
nncompensated deletions is simply the difference between the cumulative number of nserticns
and the commlative immber of deletions. The RP algorithm maintainsg & connter o that records
the muuber of nneompensaled deletions in which the deleted ilem was o the sample (so0 that the
deletion also decremented the sample size by 1), The RI* algorithm also maintains a counter oz
that records the nmober of uncompensated deletions in which the deleted it was not in the
sample (so that the deletion did not affect the sample). Clearly, d = ¢; + ¢z is the total number of
uncompensated deletions.

The algorithm works as [ollows, Deletion of an ilem 15 handled by removing the ilem [rom the
sample, if present, and by incrementing the value of ¢ or ea, as appropriate. If d = 0, i.c., there are
o mneotnpensated deletions, then insertions are processed as in standard RS, 104 = 00 then we flip
a coin at each insertion step, and nclude the incoming insertion into the sample with probability
o1/ (e + ez)s otherwise, we exclude the item from the sample. We then decrease cither o or e,
depending on whellier the insertion has been included inlo the sample or nol.

Conceptually, whenever an item is inserted and o = 0, the item is paired with a randomly
selected nneompensated deletion, called the “partner” deletion. The inserted item is incladed into
the sample if its partoer was in the sample at the time of its deletion, and excluded otherwise, The
probability that the partner was in the sample is o J-"'I:(‘q } (‘-2]. For the purpose of the algorithm.
il is nol pecessary W keep lrack of the ideulily of the random partoer; 160 sallices 1o wainlain
the counters ¢ and ez, Note that if we repeat the above caleulation using BRI, we now have
Pt & 8 17 inelnded | — 0, and we obtain the desived resnlt P {4 2 87} — M/N. A correctness
proof for the random pairing algorithm is given in [2].

The RI* algorithm with M = 2 is illustrated in Figure 1 (left). The figure shows all possible
states of the sample, along with the probabilities of the varions state transitions. The examnple starts
aftcr ¢+ = 2 items have heen inscrted into an cpty datasct, i.c., the sample coincides with B, The
insertion of item fy leads to the execntion of & standard BS step since there are no anmeompensated
deletions, This step has three possible outcomes, each equally likely, Next, we remove items 12 and
ty from both the dataset and the sample. T'hus, at ¢ = 5, there are two uncompensated deletions.
The insertion of £ triggers the sxecntion of & paiving step. Ttemn £ is conceptually paired with sither
ty Or ta these scenarios arce denoted by a) and &) respectively and cach of these pairings is
eoually likely. 1'hns £y compensates its partner, and is ineloded in the soanple iF and only 3F the
partuer was in the sanple prior o ils delelion. This pairing step amonods o ineluding £y with
praobability o /(e1 + e2) and excluding 4 with probability e2/{c7 + e2). where the values of ¢ and
e depend on which path is faken throngh the tree of possibilities. A pairing step s also execnted
at the insertion of £5, but this time there is only one uncompensated deletion left: ¢; in scenario o)
or £ in seenario b). Observe that the sampling scheme is indeesd aniform: at each time point, all
samples of Lhe same sive are equally likely (o have been materialined.

Figure 1 (right) displays the time-average sample size for a range of dataset sizes when running
RF and BSP (with ¢ = (L.8g). For each dataset size, we nsed a sequence of insertions to ereate both
the dataset and an initial sample (A = 100, 000}, and then measured changes in the sample size
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as we inserted and deleted  TOO00000 items at random. Clearly, RP prodoces nmmeh more stable
samples Lhan BSP, sinee the laller adjusis the sampling rale only sl specilic poials ol Lime.

3.2 A Negative Result: Resizing Samples Upwards

Omne might hope that there cxist algorithims for resizing a sample upwards without accessing the
base data. In general, we consider algorithms that start with a aniform sample 5 of sive at most
M lrom a datasel I oand aller some [inile (possibly wero) nuwmber of arbilracry lransaciions
on K — produce a uniform sample S of size M from the resulting moditicd dataset B, where
M = M" = |R|. Unfortunately, there exists no resizing algorithm that ean avold aceessing the
base dataset It To see this. suppose to the contrary that such an algorithm exists, and consider
the case Inowhich the transactions on B consist entirely of insertions. Fix a set A © R sneh that
|A] = M and A contains M + 1 elemenls of B such a sel can always be constructed uoder our
assumptions. Becanse the hypothesized algorithm produces uniform samples of size A from K,
we st have P{ 8" = A4 1 =00 Bot clearly P{ 58" = A} =1L sinee |5 <2 M and, by assamption,
no further elements of It have been added to the sample, Thus we have a contradiction, and the
result follows, A time-optimal resizing algovithm (which may access the base data) is given in 2],

4 Summary

Technigues [or incrementally wainlaining bounded samples over “dalasels” — whelher relational
tables, views, data streams or other data collections arc crucial for unlocking the full power
of database sampling technigues. Our new RP algorithm is the algorithm of choiee with respect
to speed and sample-size stability. We have also shown that it s impossible to resize a bounded
sample npwards withont accessing hase data.

References

1. Brian Babcock, Mayur Datar, and Rajeev Motwani, Sampling from a moving window over streaming
data. In Proe. SODA, pages G33-0634, 2002,

2. Rainer Cemulla, Wolfgang Lehner, and Peter 1 Haas. A dip in the reseevoir: Maintaining sample
synopeses of evolving datasets. In Proc. VEIE pages 5395 606, 2006,

3. Phillip B, Gibbons and Yossi Matias, New sampling-based summary statistics for improving approxi-
mate query answers. In Proc, ACM SIGMOD, pages 331-342, 1995,

4. I E. Kouth, The Art of Computer Programamdng, Volume 20 Seminumerioad Algorithms. Addison-
Woesloy, 1sl edition, 19659,

JERA Electronic Journal of Symbaolic Dada Analysis

WoRKSHOP 0N DATA STREAM ANALYSIE  San Lewcto, ffaly - Morch, 15-16, 2007

© Revue MODULAD, 2007 17 Numéro 36
— I ————



