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Abstract. Thizs paper deseribes FACIL, a classifier based on decision
riales sl Bosreker cxamples Whal avoids aecessary revisions when vie-
tual drifts are present in dats, Rules in FACIL are both pure - consistend, -
and impure - inconsistent -, Pure rules classify new test examples by cove-
cring and impure rules classify them by distance as the nearest neighbor
algorithn In addition. the system provides an implicit, forgetting hee-
istie S0 Lhad pessilive sl negadive examples are removed Tromeoa rsle
when theyv are not near one another.

1 Introduction

Formally. a data stream is an ordered sequence of data items <2 oooep 1 <5 =
Errp .- == rend o Inereasing order of the indices @0 In practice, & data stresm
is an unbounded seqguence of items liable to both noise and concept drift, and
received at aoso high rate that each one can be read ot most onee by a real
Lime application [2]. Thus, data sireains coulexts compel Lo learning svslems Lo
give approximate answers nsing small and constant time per cxample [3]. Recent
wirks on diba streans classification has been mainly addressed by two different
approaches; decision trees [1,3, 4] and ensemble methaods [5, 8, 9]

Domingos & Hulten’s VEDT and CVFDT systems (3] build a decision troe
based on Heellding bounds, which guarantee counstanl Lime aond wemory per
cxwample and an output model asymptotically nearly identical to that given by
a bateh conventional lesrner from enongh exanples. Sinee VFDT and OYFDT
are evaluated for data streams with svimbolic attributes, Jin & Agrawal propose
in 4] s momerical interval priming approach to reduee the processing time for
munerical abiribates, withoul loss in aceuracy, Gama el al.’s VFDTe system [1]
extends the VFDIT propertics in fwo divcctions: the ability to deal with numerical
attribudes amd the ability to apply nave Bayes classifisrs in tres leaves,

Ensemble batch learning alporithins such as Boosting and Bageing have
proven to be highly effective from disk—resident data sots. These technigques
perform repeated ressnpling of the lraining sel, wakiog (hem a prior inappro-
priate in a data streams cnvironment. Despite what might be expected, novel
ensetnble wethods are nereasingly gaining attention becanse of they have proved
to offer an improvement in prediction accuracy. In general, every neremental en-
semble approach nses some eviteria to dynamically delete, roactivate, or ereate
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new ensemble leamers in o response to the base models” econsisteney with the
eurrenl, data. SEA [8] is a [asl algorithm that requires approximalely conslanl,
memory. It huilds separate classificrs on scqguential chunks of training cxamples.
combining them into a Axed—size ensemble according to a henristic replacement
strategy, From sequential blocks as well, Wang et al. [9] propose using ensemble
of classifiors woighted based on their expected classification acenracy on the tost
examples. In [5] Koller & Malool propose DWM., an ensemble method based oo
the Weighted Majority algorithm [6].

As pointed ont in (9], & drawhback of decision trees is that even s slight drift
of the target [unction may trigger several changes in the model and severely
compromise learning efficiencey. On the other hand, ensemble methods avoid ex-
pensive revisions by weighling the members, bl mway o the risk of building
unneccessary learncrs when virtual drifts are present in data. Rule scts take ad-
vantage of not being hierarchically stroctured, so coneept deseriptions can be
updated or removed when becoming oul of date without hardly allecling ithe
learning efficiency. Mining potentially mfinite data sequences nsnally resnlts in
large, complex and incomprehensible models, so we claim interaciive, paramel-
crized alzorithms for moving on the expert’s priovitics to less accurate but more
comprehensible answers. In this sense, mle sets conld be a more nseful know-
ledpe representalion than disjoloted and hierarchically siructured by percubes
miven by decision trecs, from which of the nser need to cxplore paths of scveral
dozen ol levels lo know inleresiing pallerns.

2 The FACIL approach

The core of our approach lies in avolding specific rules and allowing they may
not be consistent. Within rle leaming, each training example is said a maxim-
ally specilic rule. O the other hand, a rule is said pure or consistent when does
not cover any cxample of different label. In addition, impore males are linked
with border exanples, e different label examples which are very near one an
other, The goal is to seize border examples up to a threshold 2 15 reached,
This threshold is given as an nser parameter and sets the minimm parity of a
rule. Sinee FACIL 15 aimed al mlli-class problems, lel us exlend the concepls
of positive and negative example aceording to the next notation.

Let i be the munber of attributes A; (7 {1..... mp). Let ¥ = 4.0 U:l
be the set of class labels, Let ¢; = (], u;) be the i*™ example arriving, where &,
i o veetor with moattribute valoes and 5 35 8 diserete valoe in V.U he anteecdent
ol a rule R in FACIL is given by a conjunciion of s conditions T; (hal defines a
region inside the multidimensional attribute space. T; is a closed interval [{5, I;,]
when A; is & nmmerical attribute so that T denotes lower bound and w apper
bound. IT.A; is symbolic, then T is a set of values o; © P(A;) belonging to the
attribute domain A5} and standing for a disjonetion of all those walies.

Definition 1 (Positive Coverage of a rule (pe)) The positive coverage pe
af a rule B is the number of same Tobel cxamples covered by the rule B, Thus,
an crample o; = (7. 1;) is said positive for a rule R with label 3’ if y' = u;.
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Definition 2 (Negative Coverage of a rale (ne)) The negative coverige ne
of a rule R is the number of different label evwmples covered by e rule . Thus,
an cxample ¢; = (xi, ) 45 soid negative for o rule B with label ' if " 2 w.

Definition 3 (Purity of a rule (w)) Lel pe and ne be the positive and negal
i covernge of a rule W, respectively, The purity or confidence of 'R s defined
e

pe

0 w(R) = —2= &
pe -+ ne

Thos, the pority of & mle is the ratio between the munber of positive exanples
that it covers and its total nuwmber of covered examples, positive and negative,
When the threshold 2 35 reached by aomle B {w(R) < 12). FACIL npdates the
wodel [row the examples associated wilh R, geueraliog vew cowsislent rules
that describe both positive and negative examples that R has covored.

This approsch is simdlar to the AQLI-PM algorithuon [T, which selects positive
examples rom the boundaries of its rules {hyper rectangles) and stores them in
memory. When new examples arvive, AQLI-PM combines them with those held
in wemory, applies the AQLL alporitlun o wodily the currend sel. ol rales, and
selects now positive examples from the corners, edges, or surfaces of such hyvper
rectangles (ertreme ecmmples).

FACIL dilfers [rom AQLI-PM iu that only pure rules store examples, pos-
itive and negative ones. Snch examples are not necessary extroeme and the mles
are nol repaired every Lime ey become ineonsistent, reducing (he compula-
tional complexity, The more number pe of positive cxamples covered by a rale
. the more munber ne of negative examples that T can store, 2o every time
ne ncreases by one uuil, a pew posilive example is stored, Posilive exawples
of a rule are npdated for them fo be nearer to negative covered examples than
positive ones. For example, let 2 = 008% be the miniimnm purity threshold.
When a rule B has covered 90 positive examples, the maximum number ne’ of
negative examples that 7 can store 15 100 On covering its handredth positive
example ¢, ne' increases in one unil, 5o that FACIL maintains ¢ in wemory as a
member of the window associated with R, Thoerefore, every impure rale has an
independent sliding window of recent border examples.

Although this approach suffers the ordering eflects, it docs not severely com-
promdse the learming efficiency and gnarantees that an impare mile s abways
vevised lrom as positive as pegalive examples, o addition, FACIL is based on
instance by instonce learning instead of the most usnal block by Mock learning
approsch. Therefore, every time o new example € — (7. y;) arrives FACIL up
dates the set of rules. In this process, three tasks are at most performed in the
next order:

1. Posilive covering: «, 15 coversd Ly a rule associaled wiltly the same label
M-
2. Negative—covering: ©; 5 coverad by g mile associated with o different label
¢
¥ i
A New description: r; is not covered by any mile.
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Algorithm 1 FACIL — [IL npedating
INDPUT &, @ 2 real; o = (e e ) cxample
INPUT/OUTPUT M: Sel ol roles:
hezin
R, — &
candidate—positive—covering( | &, »., [T M, R.)
ir %, # @ then
R —megative covering(| 2. [T M. R,
if W' =& then
if R.+ @ then
replaced candidele, B )
walse
revise(| a5, R [T M)
if . = and | M, | < ¢ then
R —gencralize(r, )
My, My, U{R)

enil

Positive covering Algorithm 1 shows the global process to build the model,
which takes three nser parametors: o @ and 020 12 is the minimmm puarity
Lhreshold described above, & and & are deseribed later on Fiest, the roles as-
sociated with g are visited, Rules are stored in different sets M, depending
om the associated label. While visiting the rules in M, . FACIL compartes the
gencralization necessary to describe the new example &, according to Equation
I.

Definition 4 (Growth of a rule) Let W be o vole whose andecedend s formed
by ime conditions Ty, Let e = (@, y) b an example, The growth GUR, &) of the rule
R to cover the point 1 is defined according to Kguation 1:

i
G(R.x) — Y AL, 7,); (1)
i1
v e I ) i A s numerical; :
AlZx5) {a(a;;,-,:f}. if A; is.sywmbolic: (2)
(5, T;) = min(| Ly — x5 | [ @5 — Lju |); (3)
M SR s o
oz 1y = | e Yo 8L 4
;. Li) {ﬂ. = if x5 €255 )

This metric gives a rough estimate of the raction of total space that a rule
takes in order o cover a new positive cxample. Normalization is necessary fo
avold munerical aliribnies wilh a large range (e a real dowaing onlweigh al-
tributes with a small range, The main gain of this simple gencralization heuristics
is that it biases in favour of the e that involves stallest changes o least
ber of attributes, Increment in a symbolic attribute A, is proportional 1o the
mmber of valnes of s domain DA ).
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Ater visiting the males in M, . the one with the minirmm growth is marked
as firal candidale. Tenvelorily we denote Lhis role a5 7. However, a rule s ooly
taken into account as a possible candidate if it can cover the new cxample under
a woderite prowth, according to Definition 5.

Definition 5 (Moderate Growth) Let @ ¢ (0.1] be o real value given as an
wser puramneler, The growlh G of o rule R requires Lo deseribe an coomple e =
{m y) t5 said moderate if:

Wiedl....om}- AL, z;) =&

Sinee every tmmeric value is previonsly normabized o [0, 1], the divisor factor
for ihe dowain of each alivibule is omitted in delinition 4. When the list rule
covering r; is found - the resulting growth is therefore (0 - its support is increased
by one unil and the index of the last covered example is apdated as @0 I the
mumbier of negative cxamples that such a rule can store increases by one unit,
then the example is added to its window.

Negalive covering. Il .o, is uol covered by auy rule in M, then the rest
of rules of different label 3" £ 3 are visited. If a different label role R docs not
cover . Lhe intersection ) between B and the inal condidete T, 15 comnputed.
It ! £ @, then Re is rejected and no positive covering is possible. When the
first different label mle 17 covering oy is foumnd, its negative coverage is inereased
by one unil, and &, is added (o its window, Il w(R") < 2, then new consisten
miles according to the examples in its window are included in the model. Then
R is marked as wnrelinble so that it can vot be generalized and is not taken into
account to generalize other rules associated with a different label. In addition.
it window is Teset.

New descriplion. Aller above lasks, Lhe candidate rule is generalived il
docs not interseet with any other rule associated with a label o' 2 4. When no
rile covers Lhe new example and there is nob g candidate to be generalized, then
a maximally specific rule to describe it is generated. provided that | M, | < &,

Furthermore. the set of miles s sivmltaneonsly refined while the first two
Lasks are accowplishied, Belore compuling a rule covers Lhe new example, il is
removed if the last generalized mle of the same label (the last candidate) covers
it. After computing a rule does not cover the new exunple, it s removed if
satisties one of two conditions:

— It s an nnreliable rmle whose support is sialler than the support of any mle
generated [rom il

— The mamber of times the mile hinderved a different label mile to be generalized
is greater Lhay ils posilive coverage,

2.1 Forgetting Henristics

Strnilarly to AQ-PM. onr approach also involves a forgetiing mechanism that can
b either explicit or implicit. Explicit forgetting takes places when the examples
are older than an nser defimed threshold. Implicit forgetting is performed by
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romoving cxamples that are no lomger relevant as they do not enforee any coneept
deseriplion boundary, When a pegalive example o in a role v has ool g sae
label example as the nearcst one after the nmnber pe of positive cxamples that
roean store s incressed wo fimes since @ owas coversd, the system removes i,
Analogously, a positive example is removed i it has not a different label example
as the nearest ome after pe is inereased by two inits

2.2 Classification Heuristics

Finally, to elassify o new test example, the systems searches the mles that cover
it I there are reliable and voreliable vrules covering il Lthe latier ones are rejected,
Consistent rules classity new test examples by covering and inconsistent rules
classify them by distance a5 the pearest neighbour algorithom. I there is oo
rule covering it, the example is classiticd hasced on the label associated with the
reliable mile that involves the minimm growth and does not intersect with any
dillerent label rule,

3  Empirical Evaluation

Tn [3, 4] bolh robustuess and relisbility of incremental classifiers are evalualed
using syothetic data streams generated from a moving hyperplanc. As in [, here
concept drifts are stomlated with three parmmeters. Parmmeter o specifies the
Lotal munber of dimensions whose weighls are involved o changing, Parsweler
4 R specitics the magnitude of the change (every N examples) for weights
Re5in s i, and € =11} specifies the direction of change for each weight.
Each time the weights are updated, ag = 5 317 a; is recomputed so that the
class distribution is not distarbed. o addition. elass nodse is introdaeed by ran-
dowly switching (he labels of 5% of lhe examples, As i [9], 40% dimensions’
weights are changing at £0010 per 10000 cxamples.

T fisl set of experiments, we evaluated the compntational cost as o funetion
of the nuwmber of attributes. All the experiments were conducted on a I'C with
CPU L7GHz amd 512 MB of RAM mmning Windows XP. Fignres -3 show
the resulls wille explicil [orgetling alier 100000 examples are processed. The
minimum purity threshold 2 was sct to 90%, Training and test examples arc
generated on the fiy and directly passed to the algorithme. After S0 training
examples are generated, 100 test examples are used to evaluate the algorithm.

Fipure 1 shows the prediction accuracy as a function of the number of at-
tribmtes. Fignre 2 shows the thne o seconds spent on bnilding the model and
classifving new test examples, Figure 3 shows the final number of rules per la-
bel. Sinee rmmming time depends on the vomber of mles, the parameter W s
alternately lmited bo 50 and 100 rules per label,

Average accuracy is higher than 90% and averape running time is higher
than 100 examples per second. Tlowsver, the latter holds satisfctory trade—offs
between learning time and model complexity [rom low dimensionality data, so
that:
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Fig. 1. Accuracy (%) as a function of the number of attribates.

— With ten attribmtes, learning time is greater than 3500 exanples per second
and accuracy exceeds 98%.

— With fifty attributes, learning time is greater than G600 cxamples per second
and avenriey excoeds 880

T secowd sel of experimenis, the goal was Lo evaluale capacily (o delecl
drift in the distribution of the examples. Figores 4 6 show the results with ox-
plicil forgetting and U pmeric attributes, To this case, the minimmm purity
threshold £ was set to 95%. Analogously to the previous experiments, the max-
imm growth o i alternately Bmited to 75% and 10007, and the parameter W is
sel Lo 25 aud W rales per label, respeclively.

Fipure 4 shows the prediciion sceuracy as the muuber ol training examples
increases. which scems to respond to a logarithmic function. Figore 5 shows the
time in seconds, and Figure 6 shows the average munber of border esxcnnples
- both positive amd negative - per rule. The averape accuracy is higher than
95 andd the average mnming time 35 highor than 23000 ecamples per second.
Apain. FACIL shows a very salislaclory perlormance rom low dimensioualily
data. With rcspect to the number of border cxamples por rule, it secms to
fhaetnate sinnsoidally with o dowoward period. With o < 30 being the average
number of examples that an lmpure rule stores, FACIL provides a few rules amd
high acenracy without exceeding severe memory imitations,
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Fig. 2. Time (in scconds ) as a function of the mouber of attribates,

4 Conclusions and Future Work

FACIL iz am incremental mole learner with partial instance memory based on
parameterived seneralization and border examples. FACIL works onlines, pro
ciesscs cach new example in constant time, poerforms a single scan over the train-
ing exanples, takes drift into aceommt. Kxperimental resalts show a satisfactory
performance as a high speed data streans classilication wethod, Our [ulure re-
search directions are oricnted to drop irrelevant attributes, and recover dropped
attribmtes turmed relevant later.
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Motivation

Why Classify?

Why Rules?

Heterogeneous Data Sources - Noise, Missing Values, Inconsistency

High-Speed Data—> Fast algorithms, approximate answers

Open-Ended Data > On-line learning... complex models?

FACIL — The hybrid knowledge model
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FACIL — The Algorithm

Three user parameters

= Maximum number of rules / label
- necessary to bound the computational complexity

= Minimum accuracy (purity) / rule: p/(p+n)
- anytime,approximate answers

= Maximum growth / dimension

FACIL - lIL updating

General IL Approach

Successive Episodes - Updating: M, = f(V,M,_,)

Window of examples - V,: New [and] past examples

lIL: Every example = 1/3 cases:

1. Success
2. Anomaly
3. Novelty




FACIL - lIL / Success
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FACIL - Learning Approach / Case 3
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FACIL — IIL / Novelty: The Growth Distance
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FACIL - IIL / Novelty: The Moderate Growth Distance
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FACIL - Implicit and Explicit Forgetting Heuristics
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FACIL — Multi-strategy Classification
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Experiments — General Purpose Classifier Evaluation

FACIL as a UCI Repository

10 Folds Cross Validation, 10 times, t-student (0.05)
Implicit Forgetting Heuristic

Synthetic Data Streams

Change Magnitude = +0.1 for 40% attributes every 10* examples

INPUT: 105 examples - 5% class noise: 900 training / 100 testing
Both Implicit and Explicit Forgetting Heuristics




UCI Repository — Accuracy
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UCI Repository — Number of rules
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UCI Repository — Parametric Sensitivity
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UCI Repository — Parametric Sensitivity
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Moving Hyperplane — Accuracy, time, and number of rules

Max. Growth = 50%

Max. Growth = 75%

Ne Attributes | Accuracy | Time | N°Rules<25 | Accuracy | Time | N°Rules <25
10 ||=» >3500 examples / second ‘ ‘-) >2500 examples / second
20| 93,25 63 9| 9457 35 12
30| 91,04 124 3| 89.26 53 10
40 89,7 221 2| 89.19 67 7
50 |=» >180 examples / second ‘ ‘-) >650 examples / second




Moving Hyperplane — Sensitivity to the number of attributes
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Moving Hyperplane — Sensitivity to the number of examples

Accuracy
\
\

Lt

1000 10000 20000 30000 40000 50000

|- Max Crec. = 75 %, Max N° Reglas = 25 <~ Max Crec. = 100 %, Max N° Reglas = 10]




Future Work

Sensitivity to attribute
Removing / Recovering attributes
To adapt the Growth distance:

Changing attribute weights - improve the selection of rules
Reordering attributes according influence - speed-up the updating process

Processing streams with a variable number of attributes
To evaluate alternative distances between a rule and an example
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