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Abstract. This work focuses on testing the consistency of distributed real-time
systems when their configurations evolve dynamically, called also adaptable sys-
tems. In this context, runtime testing which is carried out on the final execution
environment is emerging as a new solution for the validation of these systems.
To reduce testing effort, cost and time, we apply the dependency analysis tech-
nique in order to identify affected parts of the system under test due to runtime
reconfiguration. In addition, we propose a flexible and evolvable distributed test
architecture made of two kinds of testers: Single Component Testers and Compo-
nent Composition Testers. These testers execute unit tests (respectively integra-
tion tests) on the affected components (respectively component compositions) as
soon as reconfiguration actions occur. An illustrative example describing inter-
actions between the proposed testers when two reconfiguration scenarios happen
is given.

1 Introduction
Distributed real-time systems become increasingly important in a wide range of applica-

tion fields, e.g. in the system automation, aerospace, robotics and so on. A real-time system
is defined in Schutz (1993) as a system which has to adhere not only to functional require-
ments but also to temporal requirements, often called “timing constraints” or “deadlines”. If a
computation is activated by a stimulus from the environment, it must be completed before the
specified deadline. Therefore, the system correctness depends not only on the logical results
of a computation but also on the time at which the results are produced.

Currently, real-time systems are being implemented as distributed systems. This issue is
manifested by an execution environment composed of multiple nodes distributed among the
network. This need is due to the increasing complexity of modern applications that require
more computational resources.

To guarantee their high availability at runtime, these systems are becoming highly adaptive
and reactive. They need to change their configuration dynamically in order to achieve new
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FIG. 1 – Main objectives of our study.

requirements and avoid failures without service interrupting. Therefore, they evolve continu-
ously by integrating new components, deleting faulty or unneeded ones and substituting old
components by new versions at runtime. Several approaches have been proposed for devel-
oping dynamically distributed real-time systems such as Schneider et al. (2004); Rasche and
Poize (2005). They focus essentially on how to adapt these systems at runtime without paying
attention to the system safety and consistency during and after runtime reconfiguration.

To cope with this challenging issue, a validation technique, such as testing, has to be ap-
plied in order to check functional and non-functional requirements after each dynamic recon-
figuration. Nevertheless, traditional testing techniques cannot be done for these highly evolv-
able systems since they are applied during the development phase. For this reason, runtime
testing is emerging as a new solution for the validation of the above systems. Runtime testing
is defined in Brenner et al. (2007) as any testing method that has to be carried out in the final
execution environment of a system while it is performing its normal work.

Various research efforts have addressed the runtime testing of evolvable systems such as
ubiquitous systems Merdes et al. (2006), publish/subscribe systems Piel et al. (2010), CBA 1

Piel and González-Sanchez (2009); Gonzalez et al. (2008a); Niebuhr and Rausch (2009) or
SOA 2 applications Bai et al. (2007) and autonomic systems King et al. (2011). Each of them
proposes a runtime testing method adequate to the adopted domain that checks especially func-
tional aspects. Non functional properties such as temporal constraints are ignored. In addition,
they did not concentrate on proposing an explicit test architecture that evolves when the system
under test evolves too. Also, they did not propose ways to minimize the number of testers to
be deployed and the number of test cases to be re-executed after runtime reconfiguration.

We have found a lot of contributions in the area of distributed test architectures for test-
ing distributed real-time systems. We discuss some selected research in this matter such as
Tarhini and Fouchal (2005); Khoumsi (2001a); Siddiquee and En-Nouaary (2006). They pro-
pose either centralized or distributed test architecture to master testing challenges of this kind
of systems. Despite the advantages of these methods, we notice that they are not suitable

1. Component Based Architecture
2. Service Oriented Architecture
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for adaptable systems as they are applied only at development time. Also, the proposed test
architectures are static and do not evolve when system configuration changes.

Consequently, we notice that runtime testing of Adaptable Distributed Real-Time (ADRT)
systems is still one of the open issues in software engineering. The biggest testing challenge
for these systems is how to check whether the system still behaves as intended during and
after dynamic reconfiguration and how to guarantee that undesirable behaviors or delays have
not been introduced due to runtime testing. Therefore, we propose a novel approach that is
illustrated in Figure 1 with the purpose of resolving these challenges. Our work consists in
associating to the SUT, a model (M) to describe its behavior, a set of test cases (TC) to execute
using a specific test architecture (TA) in order to validate SUT consistency. When the SUT
evolves, the behavioral model, the test cases and the test architecture have to evolve too. The
main questions to be tackled in this study are the following:

– How to build a test system that facilitates the test management of dynamically evolvable
systems? Since the classical test architectures, presented in Tarhini and Fouchal (2005);
Khoumsi (2001a); Siddiquee and En-Nouaary (2006), have not been suitable to our con-
text, we have to propose a test system that follows dynamic reconfiguration scenarios by
adding or removing testers dynamically. In addition, we have to minimize the number
of testers to be deployed and the number of test cases to be re-executed with the aim of
reducing testing costs and system overheads.

– Which mechanisms are required to propagate automatically SUT changes to its behav-
ioral model? Behavioral reconfigurations such as changing old versions by new ones
can affect the behavior of the system. Therefore, we may propagate these changes to the
system behavioral model automatically in order to preserve the conformance between
the running system and its formal specification.

– How to obtain the adequate test cases to execute when the system evolves? We identify
two challenging issues in this context. We have to generate new test cases from the
evolved behavioral model if new functionalities are added to the running system. Also,
we might select test cases from the existing ones or update them in the case of structural
changes occurrence.

– How to apply efficiently runtime testing without affecting the behavior of the running
system or its performance? We have to use a test isolation mechanism in order to ensure
that the testing processes, which are executed in parallel with the business processes,
will not disturb the running system.

In this study, we mainly address the first concern by defining an evolvable distributed test
architecture with the purpose of runtime testing management. The remaining of this paper
is structured as follows. Section 2 presents some basic concepts such as the architecture of
distributed real-time systems, the definition of dynamic reconfiguration and its different kinds
and also the definition of runtime testing techniques. Finding dependencies in the system under
test and computing its affected parts by the runtime reconfiguration is illustrated in section 3.
Section 4 presents the distributed runtime testing architecture and its constituents. In section
5, an illustrative example is given to show the cooperation and the communication between
the proposed testers. A brief description of related work is addressed in the section 6. Finally,
section 7 concludes the paper and draws some future work.
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2 Background
In this section, we investigate some basic concepts. First of all, we give an overview of

the main characteristics of a distributed real-time system. Subsequent, we define the notion
of dynamic reconfiguration and we introduce its different kinds. Next, we present the testing
technique applied for validating functional and non-functional requirements of highly dynamic
systems, called runtime testing. Finally, we introduce some techniques used to isolate runtime
testing processes from the running SUT.

2.1 Overview of Distributed Real-Time systems
In this section, we focus on describing the software architecture of Distributed Real-Time

(DRT) systems at a high level of abstraction. As explained in Wall (2000); Rastofer and Bel-
losa (2001), the real-time system architecture consists of software components and their inter-
connections. Each software component contains a number of input and output ports. It can
be either simple or composed of subcomponents. It communicates with other components by
sending events or messages through its output ports and receives from them events or messages
on its input ports. We should mention that there is no restriction on how many input ports may
be connected to an output port and vice-versa.

To handle reuse and distribution issues, we suppose that components can be reused in dif-
ferent parts of the system and can be distributed among nodes. We follow here UML notation
by using the concept of node to represent physical devices such as processors. In Figure 2,
the structure of a system consisting of four components is displayed. The arrows between the
components represent function calls through component input and output ports.

Behavioral Specifications of such systems can be obtained using different formalisms either
formal (e.g. timed automaton, Petri net) or semiformal (e.g. UML). We have to mention that
modeling DRT systems behaviors is out the scope of this paper. We have only concentrated on
formalizing system architecture and its components dependencies.

In our context, the adopted architecture and its behavioral model may evolve during run-
time in order to achieve new requirements and to provide the greatest flexibility to the dis-
tributed real-time system. This runtime evolution which is also called dynamic reconfiguration
has to take place without stopping the system. This issue is discussed with further details in
the subsection below.
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FIG. 3 – The basic reconfiguration actions.

2.2 Possible reconfiguration scenarios

Dynamic software reconfiguration is a useful tool to adapt and maintain software systems.
It is defined in Kramer and Magee (1985) as the ability to modify and extend a system while
it is running. Several modifications could be made, such as adding, removing or replacing
components, or changing connectors, without stopping the system in order to meet the evolving
human needs and the technology as well as the environment changes.

In the context of DRT systems, dynamic reconfiguration can be a mean to achieve flexible
and dependable systems. In fact, adapting them allows avoiding system degradation, ensuring
temporal correctness and achieving fault tolerance requirements. Depending on the motivation
leading to the change, we can generally distinguish four categories of changes as defined by
Ketfi et al. (2002):

Corrective reconfiguration : removes the faulty behavior of a running component by
replacing it with a new version that provides exactly the same functionality. For instance, if
a component missed its specified deadlines, it must be replaced with a correct one able to
continue the task currently done by the faulty component.

Extending reconfiguration : extends the system by adding new components or new func-
tionalities in their implementation to satisfy new emerging requirements.

Perfective reconfiguration : aims to improve the system performance even if it runs cor-
rectly. For example, we may replace a component with a new one that has more optimized
implementation.

Adaptive reconfiguration : allows adapting the working system to a new running envi-
ronment.

Some possible reconfiguration actions that are adopted in this work are depicted in Figure
3. These actions may be classified into two categories:

Actions on components:
– Add_Component: affects the structure of the system by adding a new component in a

target node at runtime.
– Delete_Component: affects the structure of the system by removing components from

the system at runtime.
– Move_Component: it allows component migration from an execution node to another.

Hence, communications between the moved component and other components should
be adapted according to the new location.
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– Replace_Component: replaces a component version by another in order to enhance the
system performance.

Actions on connections:
– Add_Connection: affects the structure of the system by establishing local or remote

connections between two components at runtime.
– Delete_Connection: affects the structure of the system by removing local or remote

connections from two components at runtime.
By reconfiguring dynamically DRT systems, problems may arise such as incompatibilities

between components, undesirable behaviors, missing deadlines, performance degradation, etc.
In these situations, it is crucial to investigate ways to dynamically validate these systems with
the aim of avoiding the high costs of system failures. Therefore, we adopt runtime testing as a
novel validation technique in order to detect as soon as possible the above mentioned problems.

2.3 Runtime Testing Of ADRT Systems

Currently, runtime testing is emerging as a novel solution for the validation of adaptable
systems. It is defined in Brenner et al. (2007) as any testing method that is carried out on the
final execution environment of a system. As shown in Figure 4, it can be performed first at
deployment-time and second at service-time. The deployment-time testing serves to validate
and verify the assembled system in its runtime environment while it is deployed for the first
time. For systems whose architecture remains constant after initial installation, there is obvi-
ously no need to retest the system when it has been placed in-service. On the contrary, if the
execution environment or the system behavior otherwise its architecture has changed, service-
time testing will be a necessity to verify and validate the new system in the new situation.

As previously mentioned in the definition of runtime testing, any test method can be applied
at runtime such unit testing, integration testing, regression testing, etc.

Unit testing is used to validate that the component behavior still conforms to its specifica-
tion while it is running in isolation in the execution environment.

Integration testing is used at runtime to validate that the affected component compositions
by the reconfiguration action still behave as intended.

Regression testing as defined in Harrold (2000) “attempts to validate modified software
and ensure that no new errors are introduced into previously tested code ”. This technique guar-
antees that the modified program is still working according to its specification and it is main-
taining its level of reliability. When the program code is modified (e.g. behavioral changes),
the regression testing is called code-based regression testing (code-based RT). We have also
identified another kind of regression testing called software architecture based regression test-
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ing (SA-based RT) as illustrated in Muccini et al. (2006). It consists on reiterating the testing
process in a cost effective manner whenever the software architecture of a system is modified
over time (e.g. architectural changes).

In our work, we aim to apply unit and integration tests only on the affected parts of the
ADRT system in order to minimize the number of testers to be deployed and the number of
test cases to be re-executed. Consequently, the testing effort, cost and time will be reduced.
However, other challenges still persist such as test processes interference with the business
processes of the running system due to their parallel execution. The next subsection introduces
some mechanisms resolving this problem.

2.4 Test Isolation Mechanisms

While testing at runtime the SUT, business and test processes are running in parallel. Con-
sequently, Test cases could interfere with its business functionalities and affect its other clients
or sub-systems. The best way to resolve the interference problem between test processes and
business processes of the SUT is the application of test isolation mechanisms widely discussed
in Piel et al. (2010); Gonzalez et al. (2008b) and listed below :

– Duplicating the SUT is a technique which consists in replicating the SUT for testing
the new configuration while the previous one is running Suliman et al. (2006); King
et al. (2011). Such technique is very resource consuming and can be used in virtual
environments such as cloud or grid where computational resources are available for the
test system.

– Blocking the SUT during the hole testing process. As a result, business requests received
from other components are either rejected or delayed until the end of the testing process
Suliman et al. (2006); King et al. (2011).

– Tagging test data technique consists in adding a special flag to the testing data in order
to be able to differentiate it from the business data Piel et al. (2010).

– Built-in Test technique is mainly used for equipping components with special interfaces
in order to facilitate the testing activity before or during runtime Suliman et al. (2006);
Brenner et al. (2007).

3 Finding System Under Test Dependencies

As mentioned in the section above, the system under test (SUT) is modeled as a set of
communicating components that collaborate together to fulfill some specified behaviors. We
assume that components dependencies have been explicitly defined without having knowledge
of the internal implementation of each component. Dependencies between components is de-
fined in Alhazbi and Jantan (2007) as “the reliance of a component on other(s) to support
a specific functionality”. It is also considered as binary relation between two components:
antecedent and dependent as illustrated in Figure 5.

– Antecedent is the independent component that has an impact on the dependent one if it
is deleted or altered.

– Dependent is the component that is related to its antecedents where dynamic changes in
them might lead to dependent component failures.
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Formally, the relation → called “Depend on” is defined in Larsson and Crnkovic (2001)
where Ci → Cj means that component Ci depends on the component Cj . The set of all
dependencies in a component-based system is defined as:

D = {(Ci, Cj) : Ci, Cj ∈ S ∧ Ci → Ci} where S is the set of components in the system.
Accordingly, the current system configuration is a set of components and its dependencies
Con = (S,D).

In the rest of this section, we present the model used to capture direct and indirect depen-
dencies, on the one hand. On the other hand, we illustrate how to apply dependencies analysis
when different reconfiguration scenarios occur.

3.1 Dependency representation
In order to analyze dependencies efficiently, we have to use a good formalism representing

dependencies between components. Usually, dependency graph and adjacency matrix are used
in many research activities such as Alhazbi and Jantan (2007); Li (2003) with the purpose of
generating a minimal set of affected system parts by a reconfiguration action.
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FIG. 6 – Component Direct Dependency Graph and its Adjacency Matrix representing direct
dependencies.

In our study, we adopt the same representation model of dependencies called Component
Direct Dependency Graph (CDDG). In fact, a CDDG is a directed graph denoted by G =
(S,D) where :

– S is a finite nonempty set of vertices representing system’s components and
– D is a set of edges between two vertices. For instance, (a, b) ∈ D means a → b and
D ⊆ (S × S).

The Figure 6 shows an example of a CDDG and its corresponding adjacency matrix. In
such matrix, called AMn×n, each component is represented by a column and a row. If a
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component Ci depends on a component Cj then AM [i, j] = 1. Initially, AM represents
only direct dependencies. In order to derive all indirect dependencies in the SUT, we have to
calculate the transitive closure of the graph.

Several transitive closure algorithms have been widely studied in the literature such as
Roy-Warshall algorithm and its modification proposed by Warren Ioannidis and Rantakrishnan
(1988). In the worst case, both algorithms compute the transitive closure on θ(n3) times where
n is the number of vertices of the graph. This complexity has been enhanced in Jaumard and
Minoux (1986) by proposing an algorithm computing the transitive closure only for cycle-free
graphs on better than θ(mn) times wherem is the number of edges of the graph. In our context,
we adopt Roy-Warshall algorithm because it is sufficient for computing transitive closure of
any graph and has an acceptable complexity. Figure7 depicts the obtained adjacency matrix
that represents direct and indirect component dependencies.
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For i=1    to n    do

For j=1   to n   do

If M[i][j]=1 then

For k=1 to n do

If k<>j then 

AM[j][k]:=M[j][k] or M[i][k]

FIG. 7 – Adjacency Matrix representing direct and indirect dependencies produced by the
Roy-Warshall’algorithm.

3.2 Dependency analysis

Analyzing components dependencies and computing the affected parts of the SUT after
each dynamic change is handled in this subsection. We focus especially on three kinds of
reconfiguration actions as depicted in Figure 3: adding a new component and its connections,
deleting an existing component and its connections and replacing a component by another
version.

3.2.1 Adding a new component and its connections

Dynamically adding a new component to the SUT architecture might affect not only its
direct dependents but also indirect ones. The adjacency matrix will be modified by adding
new rows and columns representing direct dependencies between the new component and
the old ones. Indirect dependencies are obtained as mentioned before transitively by apply-
ing the Roy-Warshall’s algorithm in order to generate an adjacency matrix defining direct
and indirect dependencies. The current system configuration will be modified New_Con =
(New_S,New_D) with:

– New_S=S ∪ Cnew and
– New_D=D ∪ {(Cnew, C) : Cnew → C} ∪ {(C,Cnew) : C → Cnew}
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Procedure 1 AffectedComponentsIdentification_By_AddAction
Input: A new component Cnew,

The new configuration New_Con = (New_S,New_D),
The new adjacency matrix AM .

Output: The array AffectC that contains the affected components by the add action.

1: var:
2: Col : The column index in AM that represents the component Cnew to add;
3: lig : The column index in AM that represents the component Cnew to add;
4: i, j, k : integer;
5: BEGIN
6: for i = 0 to New_Con.New_S.size− 1 do
7: if (New_Con.New_S[i]= Cnew) then
8: Col=lig=i
9: end if

10: end for
11: k = 0
12: for j = 0 to New_Con.New_S.size− 1 do
13: {Find components that depend on Cnew}
14: if (AM [j][col] = 1) then
15: AffectC[k] = New_Con.New_S[j]
16: k = k + 1
17: end if
18: {Find components that Cnew depends on}
19: if (AM [lig][j] = 1) then
20: AffectC[k] = New_Con.New_S[j]
21: k = k + 1
22: end if
23: end for
24: END
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The Procedure 1 defines how to obtain all the affected components by the add action.
It has as inputs the component to add, the new configuration and the new adjacency matrix
describing direct and indirect dependencies. All the components that depend on Cnew and
Cnew depends on are affected by this action. To calculate them, we have to search first in
the adjacency matrix for the non-zero elements in the column corresponding to Cnew. The
non-zero elements indicate that the corresponding components depend on Cnew. Second, we
seek for the non-zero elements in the line corresponding to Cnew. These elements indicate that
Cnew depends on the corresponding components.

3.2.2 Deleting an existing component and its connections

Procedure 2 AffectedComponentsIdentification_By_DelAction
Input: A component Cremoved,

The old configuration Con = (S,D),
The old adjacency matrix AM .

Output: The array AffectC that contains the affected components by the delete action.

1: var:
2: Col : The column index in AM that represents the component Cremoved to delete;
3: i, j, k : integer;
4: BEGIN
5: for i = 0 to Con.S.size− 1 do
6: if (Con.S[i]= Cremoved) then
7: Col=i
8: end if
9: end for

10: k=0
11: for j = 0 to Con.S.size− 1 do
12: if (AM [j][col] = 1) then
13: AffectC[k] = Con.S[j]
14: k = k + 1
15: end if
16: end for
17: END

Deleting a component from the SUT architecture at runtime might affect its direct and
indirects dependents which must be tested and validated. The current system configuration
will be modified New_Con = (New_S,New_D) with:

– New_S=S \ Cremoved and
– New_D=D \ {(C,Cremoved) : C → Cremoved}

The Procedure 2 has as inputs the component to delete, the old configuration and the old adja-
cency matrix describing direct and indirect dependencies. As output, it computes the affected
components set by this delete action. To find them, we use the adjacency matrix AM by
searching the non-zero elements in the column corresponding to Cremoved. These non-zero
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elements indicate direct or indirect dependent components on Cremoved. Consequently, those
components will be affected when removing Cremoved.

3.2.3 Replacing a component by another version

Replace action can be seen as a set of adding and removing components. In fact, replace
an old component Ci by a new component C ′i is done by calling:

– The delete action that deletes the old component C
i

and all its dependencies and

– The add action that adds the new component C ′
i

and all its dependencies.

Therefore, we use the two procedures defined above as illustrated in the Procedure 3. This
procedure is called only when the new version has different interfaces comparing to the old
one.

Procedure 3 AffectedComponentsIdentification_By_ReplaceAction
Input: The old component Cold,

The new component Cnew,
The system configuration Con = (S,D).

Output: The affected components set by the replace_Component action AffectC.

1: BEGIN
2: AffectC=AffectedComponentsIdentification_By_DelAction(Cold, Con,AM)∪
AffectedComponentsIdentification_By_AddAction(Cnew, Con,AM)

3: END

In this section, we have concentrated on studying the dependencies between components
and on proposing some procedures that facilitate the generation of affected components. We
have to mention here that the generation of affected component compositions by a reconfigu-
ration action is out of the scope of this work.

4 Distributed Runtime Testing Architecture for ADRT Sys-
tems

We propose a distributed runtime testing architecture to handle the validation of ADRT
systems after dynamic reconfiguration. It consists of two kinds of testers: Single Component
Tester and Component Composition Tester, coordinating together and communicating with the
SUT. The overall test process is managed via a Test System Coordinator as shown in Figure 8.

As described in Krichen (2010), the tester is an entity that interacts with the SUT with the
purpose of executing the available test cases and then observing the response of the SUT due
to this excitation. In general, test cases are generated automatically from formal specifications.
Usually, they are composed of two kinds of interactions:

– The outputs: modeling the observation and the sending of a message from the system.
– The inputs: modeling the sending of a message to the system.
We have to note that test cases generation from the SUT formal specification is out the

scope of this current work. In the following, we describe briefly the role of each entity in the
proposed test architecture:
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FIG. 8 – A generic overview of distributed test architecture.

Single Component Tester (SCT) : is dedicated to test the behavior of a single component
which has been newly added to the running configuration by executing unit tests. Each SCT
produces a local verdict: PASS if all the traces correspond to the test case, INCONCLUSIVE
if the tester cannot execute the test case and FAIL otherwise.
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SCT1

SCT3

Single Component Testers

SCT2

TSC

Test System 

Coordinator

SCT4

Component Composition Testers

CCT1 CCT2

SUT

FIG. 9 – Detailed overview of the distributed test architecture

Composite Component Tester (CCT) : is introduced to test component composition af-
fected by the dynamic reconfiguration. Each one executes a set of integration tests with the
aim of verifying functional and timing properties. CCTs may exchange coordination messages
in order to check remote connections. They may also coordinate with SCTs to produce a par-
tial verdict. The latter depends on the local verdicts of the SCTs and the results of test cases
execution that validate the affected component composition.

Test System Coordinator (TSC) : is responsible for starting the test process. It instantiates
the two kinds of testers in their host computers. It can also remove them when no longer
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FIG. 10 – Simple real-time application.
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FIG. 11 – The CDDG of the new SUT architec-
ture after replacing a component by another.

required. It may assign test cases for test execution and provides the global verdict. The latter
is deduced from verdicts given by single component testers or component composition testers.

While the running system evolves during runtime, dependency analysis step has to be done
with the purpose of computing affected components and composition by this evolution. At this
time, our test architecture has to be designed in order to check the new configuration of the
system. The number of single component testers as well as component composition testers to
be deployed have to be fixed accordingly to the affected parts of the SUT.

We illustrate in Figure 9 the interaction between testers and SUT with further details. The
solid arrows between Test System Coordinator (TSC) and testers correspond to the manage-
ment actions that TSC can execute in order to master the test architecture. The solid arrows
between single component testers (SCT) (respectively component composition testers (CCT))
and components under test (respectively component assemblies under test) show sending input
data and receiving output results. Finally, the dashed arrows between testers illustrate their
synchronization and coordination to test efficiently the SUT.

5 Illustrative example
We might mention that runtime testing can be performed by SCT or CCT testers locally (in

the same host computer with SUT) or remotely (in other host computer). This depends on the
available resources. By doing this, we can get confidence in ADRT systems by saving time,
energy and cost required for testing. In addition, this technique can be used before or after
the execution of reconfiguration actions. If test cases are executed by the related testers before
the occurrence of dynamic reconfiguration, test results can be helpful to the reconfiguration
manager to decide the proceeding of the reconfiguration or not. Applying runtime testing
technique after reconfiguration allows detecting inconsistencies and missed deadlines. In the
sequel, we depict with further details the communication between the different entities in the
distributed test architecture via an illustrative example.

To illustrate tester interactions, we handle an example inspired from Rasche and Poize
(2005). Figure 10 shows the initial configuration of the real-time system. One component C1
processes data of an external sensor and transmits results to a second component C2. The latter
has to generate outputs signals each 20ms. In the following subsections, we study two recon-
figuration scenarios: the substitution of a component by another version and the insertion of
new component. For each scenario, we describe the corresponding distributed test architecture.
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5.1 Substitution scenario

We suppose that the component C2 in the SUT will be replaced by another version C2’ with
the aim of increasing SUT performance, for instance, the generation of output signals each 15
ms. To verify that the new version C2’ is conform to its formal specification (for example,
timed automaton) and the new requirements will be satisfied, runtime testing is performed. To
do this, we suppose that test cases are available to validate the new version C2’ and an oracle
is also given. Also, dependency analysis has been performed as depicted in Figure 11. In this
case, the whole system is affected by this action due to the simplicity of the example.

As shown in Figure 12, interactions between testers are described in the following steps:
– The TSC instantiates a single component tester SCT1 and a component composition

tester CCT1 with the purpose of testing respectively the new version C2’ in isolation
and the component composition affected by this reconfiguration action.

– TSC assigns the adequate test cases to the related tester. These test cases can be selected
from existing ones or newly generated.

– The SCT1 can test the new version in isolation, without taking any communication input
from other components. Also, testing the new version that is plugged into the system
with the old version still working is possible. The local verdict of SCT1 is sent to CCT1.

– If the local verdict of SCT1 is PASS, CCT1 proceeds testing the component composition
and notifies the TSC with its partial verdict. Otherwise, T1 sends the local verdict to TSC
without executing its own test cases.

– TSC has to produce its global verdict with the respect to the verdicts of component
composition testers.

SCT1

TSC

Test

System

C1 C2’
At least 

every 15ms

CCT1

SUT

SCT1

TSC

Test

System
CCT1

C2C1 C3

At least 

every 20ms

Log data

SUT

FIG. 12 – Distributed test architecture after replacing a component by another version.

5.2 Insertion scenario

Figure 13 shows that a new component is added to the system architecture at runtime. This
component generates logging data for debugging purposes.

We have to check in this case that the new component behaves correctly to its specification.
We must also verify that the overall system is not influenced by this reconfiguration and meets
its deadline. For example, component C2 must generate its output signals each 20 ms. Figure
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C2C1 C3

At least 

every 20ms

While (true){

Read_sensor();

Calculate();

Transmit();

WaitNextPeriod();

}

While (true){

Receive():

Calculate();

Set_Output();

}

SUT

Log data

FIG. 13 – Added debug component.

C2

C1

C2’

C1

C3

C2

FIG. 14 – The CDDG of the new SUT archi-
tecture after adding new component.

14 illustrates the new component direct dependency graph after adding the new component C3
and its dependencies.

The test architecture suitable to verify the system in the case of this scenario is presented
in Figure 15. We have to use a single component tester to check the behavior of the new com-
ponent. As the three components in this example are affected by this runtime reconfiguration,
a component composition tester has to be instantiated as well to test the overall system.

SCT1

TSC

Test

System

C1 C2’
At least 

every 15ms

CCT1

SUT

SCT1

TSC

Test

System
CCT1

C2C1 C3

At least 

every 20ms

Log data

SUT

FIG. 15 – Distributed test architecture after adding new debug component.

6 Related Work
Recent researches have been proposed to deal with runtime testing in dynamic environ-

ment. They aim to ensure the correctness of the running system after reconfiguration. In fact,
we distinguish approaches dealing with ubiquitous software systems Merdes et al. (2006),
CBA systems Piel and González-Sanchez (2009); Niebuhr and Rausch (2009); Gonzalez et al.
(2008a), SOA systems Bai et al. (2007), publish/subscribe systems Piel et al. (2010) and au-
tonomic systems King et al. (2011). The majority are based on the well-known Built-In Test
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(BIT) paradigm described in Wang et al. (1999). In BIT approach, tests are integrated into the
component and accessible via a test interface. It is mainly designed for stable topologies and
further developed by Merdes et al. (2006); Bai et al. (2007); Gonzalez et al. (2008a); Piel and
González-Sanchez (2009); Piel et al. (2010) to improve the testability of dynamic applications
at runtime. This paradigm facilitates the component testing by itself or by others components.
However, the proposed test system will be tightly coupled with the SUT. Thus, the SUT de-
velopers will have a considerable development burden. In addition, the BIT approach is not
often adequate for real-time systems especially if they are limited in computational and stor-
age resources. Built-in test code may occupy a lot of space in the component and lead to the
increase of component size and its complexity. This may affect the performance of the whole
system and also violate runtime requirements in particular in terms of timing. Moreover, these
approaches did not concentrate on proposing an explicit test architecture that evolves when the
system under test evolves too. To the best of our knowledge, there is only one approach that
incorporates dynamicity in the proposed test system Bai et al. (2007). It proposes an explicit
test architecture that follows the dynamic changes on the services under test but with testing
the whole system. It did not propose ways to minimize the number of testers to be deployed
and the number of test cases to be re-executed after runtime reconfiguration.

Unlike these approaches, our work aims at defining distributed test architecture that con-
serves the current resources by instantiating testers if needed and by testing only the affected
parts of the system. This has an important impact on reducing testing time and costs as well as
avoiding overheads and burdens.

Proposing test architectures for managing DRT systems is carried out in several research
work. They offer either centralized Khoumsi (2001b); Siddiquee and En-Nouaary (2006) or
distributed Tarhini and Fouchal (2005); Khoumsi (2001a); Siddiquee and En-Nouaary (2006)
test architecture for stable environments. The centralized architecture presented in Khoumsi
(2001b) consists of a single tester that communicates with the different ports of the system
under test. It considers that the SUT is distributed among several sites and contains a port
in each of its sites. This architecture is enhanced in Khoumsi (2001a) by associating to each
port a local tester and a local clock. Following the same principles, Siddiquee and En-Nouaary
(2006) proposes two testing architectures. The centralized one is made of a synchronizer which
embeds internal small testers and one global clock. The role of synchronizer is to execute test
suites on the SUT and return a verdict about its conformance to its specification. The issue
of conformance testing was considered in Tarhini and Fouchal (2005). This work proposes a
distributed test architecture consisting of a set of Timed Input-Output Automata each of which
represents the specification of each SUT component and a distributed tester that contains a set
of coordinating testers. Each tester is dedicated to test a single SUT component.

In spite of the advantages of these methods, they may not be suitable for adaptable sys-
tems. The proposed test architectures dealt with development-time testing not runtime testing.
In addition, they are not flexible and evolvable to ensure new testing requirements. If a dy-
namic reconfiguration action happens, it affects a part of the system not its totality. Therefore,
following these approaches by associating testers to each component in the SUT will be un-
necessary and will burden its performance. Testers must be added and removed to the test
architecture dynamically and accordingly to the occurred reconfiguration action in order to
reduce testing costs and overheads as proposed in our work.
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7 Conclusion

In this article, we have dealt with runtime testing of ADRT systems. We have focused
on this research area with the intention of increasing the dependability of such systems. Ob-
taining dependable distributed real-time systems even after dynamic reconfiguration is a very
challenging issue. In this work, we aim to use runtime testing to detect system inconsistencies
when reconfiguration actions happen.

To do this efficiently, we have planned to minimize the set of components to be validated
after the occurrence of reconfiguration actions. For this reason, we have revealed how to
analyze components dependencies in the SUT and how to compute the affected components
sets by some given procedures.

In addition, we have proposed a distributed runtime testing architecture with the purpose
of validating the affected subsystem. The latter contains testers that can be added or removed
dynamically by following the dynamic reconfiguration applied on the system under test. The
proposed architecture can be a first step for managing test cost and time with efficient manner.
Communications between testers have been illustrated via a simple real-time system.

As future work, we intend to enhance the dependency analysis step by procedures that
compute the affected composition by a reconfiguration action. In addition, we aim to study
test isolation mechanisms that resolve some challenges due to the parallel execution of run-
time testing with the SUT behavior such as interference problem between test processes and
components business processes. Thus, we have to choose the best way to apply this valida-
tion technique with reducing such risk. Also, we investigate effort to distribute testers in the
adequate nodes with respecting resource constraints. Moreover, we plan to implement the pro-
posed test architecture using the standard TTCN-3 (Testing and Test Control Notation 3). The
latter will be adopted as a test notation used for writing test cases and as an execution platform
used for facilitating runtime testers deployment and management. Finally, we aim to deal with
test cases generation and selection while behavioral reconfigurations occur.
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Résumé
Ce travail se concentre sur le test des systèmes temps-réels distribués dans le cas où leur

configuration évolue dynamiquement, appelés aussi systèmes adaptables. Dans ce contexte, le
test durant l’exécution est émergé comme une nouvelle solution pour valider un tel système.
Afin de réduire l’effort, le coût et le temps de test, nous appliquons la technique d’analyse de
dépendances ayant pour rôle d’identifier les parties du système affectées par la reconfiguration
dynamique. De plus, nous proposons une architecture de test distribuée évolutive et flexible
formée de deux types de testeurs : testeurs niveau composant et testeurs niveau composition
de composants. Ces testeurs exécutent des tests unitaires (respectivement d’intégration) sur
les composants (respectivement les compositions de composants) affectés par les actions de
reconfiguration. Un exemple illustratif décrivant les interactions entre ces testeurs quand deux
scénarios de reconfiguration auront lieu est présenté.


