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Abstract. In this paper, we tackle the problem of detecting academic plagia-
rism, which is considered as a severe problem owing to the convenience of on-
line publishing. Typical information retrieval methods, stopword-based methods
and �ngerprinting methods, are commonly used to detect plagiarism by using
the sequence of words as they appear in the article. As such, they fail to detect
plagiarism when an author reconstructs a source article by re-ordering and re-
combining phrases. Because graph structure �ts for representing relationships
between entities, we propose a novel plagiarism detection method, in which we
use graphs to represent documents by modeling grammatical relationships be-
tween words. Experimental results show that our proposed method outperforms
two n-gram methods and increases recall values by 10 to 20%.

1 Introduction
Online publishing provides a platform for researchers to share their research results while

it also brings a severe side effect, the academic plagiarism problem. That is, students or re-
searchers copy all the content or a part of passages from others' papers without appropriate
citation (Howard, 1995). It is dif�cult for editors of proceedings and journals to discover all
the plagiarism behaviors due to the time limitation and the quantity of publications. An auto-
matic detection method can be used to help editors' jobs and to mitigate the problem.

Existing methods of plagiarism detection evaluate document similarities by using content
words (Gustafson et al., 2008; Hoad and Zobel, 2003), stopwords (Stamatatos, 2011) or docu-
ment �ngerprints (Seo and Croft, 2008; Schleimer, 2003). As common in information retrieval
(IR), methods (Grman and Ravas, 2011; Gustafson et al., 2008; Hoad and Zobel, 2003) dis-
card stopwords, e.g., �the�, �is�, and regard the remaining content words as meaningful words.
This kind of methods use sequences of the content words to represent a document. Stamatatos
(2011) considers that a plagiarist may replace content words to avoid detection, and proposed
to represent documents by removing content words but retaining stopwords. Seo and Croft
(2008); Schleimer (2003) use hashes of �xed-length chunks as document �ngerprints.

Both directly copying and paraphrasing passages without citation are considered as aca-
demic plagiarism (Howard, 1995; Rosamond, 2002). Here, we aim to detect plagiarized doc-
uments where one paraphrases text from other documents by re-ordering phrases or altering
modi�ers. Most of the existing approaches use sequences of words as they appear in the doc-
ument to represent the document so they fail to detect this kind of plagiarism.
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To detect this kind of plagiarism, we consider representing a document by modeling rela-
tionships between pairs of words in the document. By capturing relationships among words,
we are still able to detect plagiarism even if a plagiarist largely alters the order of phrases. In
this paper, we propose a novel plagiarism detection method by representing documents with
graphs. In our method, each document is transformed to graph structure according to syntac-
tical relationships between words. We detect a plagiarism if the two graphs contain similar
subgraphs. Experimental results show that our method is more effective than existing methods
in detecting paraphrasing plagiarism.

2 Motivation and Problem De�nition
2.1 Motivation

Consider an example shown in Table 1, where text A is an excerpt from (Shi and Malik,
2000) and text B is a text that we re-wrote from Text A by re-ordering the phrases in A and
adding/removing words without altering its content. Texts A and B depict the same concept
but have different expressions in their sentences and constructions. We regard texts A and B as
a source document and a plagiarized document, respectively.

TAB. 1 � Example of a source and plagiarized documents.
(a) Text A (Source)

We propose a novel approach for solv-
ing the perceptual grouping problem in
vision. Our approach aims at extract-
ing the global impression of an image.
We treat image segmentation as a graph
partitioning problem and propose a novel
global criterion, the normalized cut, for
segmenting the graph.

(b) Text B (Plagiarism)

In this paper, we treat image segmenta-
tion, i.e., the perceptual grouping prob-
lem in vision, as a graph partitioning
problem and aim to extract the global im-
pression of an image. We propose a novel
global criterion for segmenting the graph,
called the normalized cut.

We categorize the existing methods into typical IR methods (Grman and Ravas, 2011;
Gustafson et al., 2008; Hoad and Zobel, 2003), �ngerprinting methods (Schleimer, 2003; Seo
and Croft, 2008) and a stopword-based method (Stamatatos, 2011). The typical IR methods
often evaluate the similarity of two documents by splitting text into sequences of words of a
speci�ed length and comparing the number of common words. Since the order of phrases in
text B in Table 1 is largely changed, which decreases the number of common words between
word sequences, the typical IR methods fail to detect such a kind of plagiarism.

The existing �ngerprinting methods (Schleimer, 2003; Seo and Croft, 2008) represent a
document by using hashes of �xed length chunks. Both characters and words can be used for
chunks but most of them (Schleimer, 2003; Seo and Croft, 2008) consider word n-grams. Thus,
adding or removing a small number of words alters the hashing result, making �ngerprinting
methods less effective in detecting plagiarism where a plagiarist largely modi�es the order of
words or phrasing (Seo and Croft, 2008). Stamatatos (2011) discards all the content words in a
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document and proposed the stopword n-grams method (SWNG). Since the order of stopwords
is changed as well in text B in Table 1, SWNG is also not effective in detecting the plagiarism.

From the example, we are motivated to invent a plagiarism detection method, where the
representation of a document is based on relationships among words instead of their occurrence
positions. Precisely speaking, we use graphs to model grammatical relationships between pairs
of words. Our method represents syntactical structures of documents such that our method is
able to detect the plagiarism even if words in a document are re-arranged. As shown in Figure
1, texts in Table 1 are different but their graph structures are similar in our transformation.
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FIG. 1 � An example of modeling documents in graphs.

2.2 De�nition of Plagiarism Detection
Here we formalize the problem. We consider monolingual plagiarism detection in this

work. The input is a set Dsrc of source documents and a set Dsusp of suspicious documents,
the minimum number k of common nodes in a candidate subgraph, and the maximum length
δ of a path, which we will discuss in the following section. Given a source and a suspicious
document, our task is to decide whether there exist any plagiarized passages in the suspicious
document, and discover their corresponding source passages if plagiarized passages exist.

We adopt the de�nition in (Potthast et al., 2010). Let a plagiarism s = 〈splg, dplg, ssrc, dsrc〉
as a 4-tuple that contains a passage splg in a document dplg that is the plagiarized version of
a certain source passage ssrc in document dsrc. Given dplg, the task of a plagiarism detector
is to detect s by reporting a plagiarism detection r = 〈rplg, dplg, rsrc, d

′
src〉 that consists of an

allegedly plagiarized passage rplg in document dplg and its source rsrc in d′src. A detection r is
de�ned as: r detects s ⇐⇒ splg ∩ rplg 6= ∅, ssrc ∩ rsrc 6= ∅, and dsrc = d′src.

3 Proposed Approach
3.1 Overview

We transform each document to a graph, in which syntactical relationships among words
are preserved. After the transformation, similar texts are expected to have similar structures so
we propose a similarity measure and a graph matching algorithm.

Our approach includes four procedures in each run of detection: the pre-processing, trans-
formation, matching and post-processing steps. In the pre-processing step, we obtain lemmas,
offsets and lengths of words and resolve coreference relations of pronouns by the Stanford
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Algorithm 1: Transforming a document to a graph
Input : A document d, which contains s1, s2, . . . , sn sentences
Output: A graph G = 〈V,E〉

1 G← ∅;
2 for i← 1 to n do
3 Γ← all the dependency relations in si;
4 foreach r ∈ Γ do
5 switch r.ψ do
6 case nsubj nsubj(r,Γ, G); break;
7 case xsubj xsubj(r,Γ, G); break;
8 case iobj iobj(r,Γ, G); break;
9 case agent agent(r,Γ, G); break;

10 case prep prep(r,Γ, G); break;
11 case prepc prepc(r,Γ, G); break;
12 case partmod parmod(r,Γ, G); break;

13 MergeNodes(G);
14 return G;

CoreNLP (Klein and Manning, 2003; Raghunathan et al., 2010). We will discuss the transfor-
mation and matching steps in sections 3.2 and 3.3, respectively. In the post-processing step, we
transform the discovered pairs of similar subgraphs to their corresponding passages. We ob-
tain a plagiarized passage by including words located in the range of the minimal and maximal
offsets of words among nodes in the subgraph.

We use the case of one suspicious document and one source document to simplify discus-
sions. We can obtain results of Dsusp and Dsrc by performing nsuspnsrc runs, where nsusp

and nsrc represent the numbers of documents in Dsusp and Dsrc, respectively. Let a suspicious
document and a source document be dsusp and dsrc, respectively. Let graphs generated from
dsusp and dsrc in the transformation step be G and H , respectively. Both G and H are directed
graphs, and nodes and edges have labels representing words. V (G) and E(G) denote the set
of nodes and the set of edges in G, respectively. LG(v) and LG(x, y) denote labels of node v
and edge (x, y) in G, respectively. LG(v) is abbreviated to L(v) when there is no ambiguity.

3.2 Transformation to Graphs

We think that nouns are essential elements in a sentence and verbs or prepositions are
usually related to nouns. Thus, we intuitively regard nouns as nodes and verbs or prepositions
as edges in the transformation. Intuitively speaking, if we are able to �nd a verb or a preposition
�relating� two nouns, we create a directed link between them. Instead of deriving directly
from word positions, we derive the graph representation of text by modeling grammatical
relationships between words. Algorithm 1 shows an overview of transforming sentences in
document d to graph G. We invent procedures in lines to 6 to 12 to generate nodes and edges
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Function prep(r,Γ, G)
Input : A prep relation r = 〈ψ,wgov, wdep〉, where ψ denotes a string of combining

�prep� with a preposition by an underscore (e.g., �prep_into�), the set Γ of
relations of the sentence that r belongs to, and graph G = 〈V,E〉

Output: Updated graph G
1 if r.wgov is a verb then
2 R← rFindDobj(r, r.wgov,Γ);
3 R← R∪ rFindNsubj(r, r.wgov,Γ);
4 R← R∪ rFindNsubjpass(r, r.wgov,Γ);
5 while R 6= ∅ do
6 L(v)← pop(R).wdep; L(u)← r.wdep;
7 e← (v, u); L(e)← r.wgov;
8 Insert v, u and e to G ; /* When inserting a node, v, we check if

there exists L(v) among existing node labels in G */

9 else if r.wgov is a noun then
10 L(v)← r.wgov; L(u)← r.wdep;
11 e← (v, u); L(e)← the preposition after the underscore in ψ;
12 Insert v, u and e to G;

based on the grammatical relationships, i.e., dependency relations (explained later). After a
graph is generated, we further merge nodes according to their coreference relationships.1

To identify grammatical relations between nouns, we use the Stanford parser (version 2.0.1)
(Klein and Manning, 2003), which provides the Stanford typed dependency relations (de Marn-
effe and Manning, 2008). A dependency relation is a simple description of the grammatical
relationship between words in the format of triples, 〈ψ,wgov, wdep〉, which represents a gram-
matical relation ψ between a governor word wgov and a dependent word wdep. A sentence is
composed of an ordered set of dependency relations. For instance, given sentence �Community
detection is the problem of clustering nodes in a graph into communities�, one of the obtained
relations, relation 〈dobj, clustering, nodes〉 indicates that word nodes is a direct object of
word clustering. Relation 〈prep_into, clustering, communities〉 indicates that word com-
munities accompanied with into is a prepositional modi�er of verb clustering.

Because dependency relations do not necessarily contain just one pair of nouns and a
verb/preposition representing the relationship between the nouns, we refer to multiple rela-
tions to obtain related nouns and their corresponding verb/preposition in most cases. The
intuition behind the heuristic rules is that we wish to capture as many nouns as possible from
subjects, objects or complements of sentences. Speci�cally speaking, we �nd pairs of nodes,
where each pair is associated with a verb/preposition, by searching for relations nsubj, nsubj-
pass, or dobj. We consider that dependency relations involved in the part of the subject, object
and complement of a sentence include relations nsubj, xsubj, iobj, agent, prep, prepc, and

1Suppose v is merged to its counterpart u. We copy all adjacent edges of v to u and then we neglect v in the graph.
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partmod.2 Each of the relations has a corresponding searching rule as shown in Algorithm 1.
Function prep shows how we �nd related words when given a relation where ψ is prep

(prepositional modi�er). In function prep, r.wgov denotes governor word wgov of relation r.
rFindDobj(r, r.wgov,Γ) returns all the dobj relations located in front of r in Γ each of whose
wgov is r.wgov.3 Similarly, we can de�ne rFindSubj(·) and rFindNsubjpass(·). pop(R) pops
out a relation from the set R of relations. With function prep, we generate a subgraph of
the sentence, node into−−→ community, when given relations 〈dobj, clustering, nodes〉 and
〈prep_into, clustering, communities〉. The rest of heuristic rules are shown in Figure 3.

3.3 Graph Matching
If two texts are similar, their transformed graph structures are expected to be similar. Thus,

we interpret a plagiarism detection as the discovery of a pair of similar subgraphs in this paper.
Below we will de�ne the similarity of two subgraphs and propose a discovery algorithm.

3.3.1 Similarity De�nition

Due to the diversity in natural language expressions, a de�nition of exact match limits its
ability of discovering similar subgraphs in a real application. To detect similar texts that have
different graphs, we consider inexact matching in our de�nition of similar subgraphs.

Consider sentences, �TextRunner is an OIE system which extracts relational tuples�
and �TextRunner extracts relational tuples�. We notice that even if there exist additional
words (e.g., OIE and system) in the �rst sentence, the two sentences still have the same
meaning because the additional words are between common words (e.g., TextRunner, tuples)
such that the additional words function as modi�ers. In the graph level, we call common words
as common nodes and additional words as uncommon nodes. We de�ne similar subgraphs by
allowing uncommon nodes to exist in the path between common nodes.

Let a subgraph of G and a subgraph H be g and h, respectively. Consider the case of two
common nodes for the time being. Subgraphs g and h are similar subgraphs if they satisfy:

1. (Node Similarity) Lg(α) = Lh(a) ∧ Lg(β) = Lh(b) 4

2. (Path Similarity) Path(α, β) is similar to Path(a, b),
where a and b are common nodes in g, and α and β are common nodes in h. The four nodes
are common nodes. Path(x, y) represents the shortest path between x and y. Since there exist
uncommon nodes, we consider the similarity of paths instead of edges.
De�nition. (Path Similarity) Let path Path(v1, vn) be the shortest path from node v1 to vn in
G, and path Path(u1, um) be the shortest path from node u1 to um inH .5 If |Path(v1, vn)| ≤
δ, |Path(u1, um)| ≤ δ, and L(vn−1, vn) = L(um−1, um), we say that paths Path(v1, vn)
and Path(u1, um) are similar.

2nsubj, nsubjpass, dobj, xsubj, iobj, prepc and partmod represent nominal subject, passive nominal subject,
direct object, controlling subject, indirect object, prepositional clausal modi�er, and participial modi�er, respectively.

3FindDobj(r, r.wgov,Γ) returns all the dobj relations located in back of r, used in other rules.
4To simplify the explanation, we ignore the problem of synonyms here. In fact, we consider synonyms of words in

our approach by checking the synonym set of a word with WordNet (Miller, 1995). In other words, L(x) = L(y) if
x is a synonym of y and so are labels of edges.

5If there are two shortest paths, we check the two.
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Algorithm 2: Overview of our discovery algorithm
Input : A suspicious graph G, a source graph H , k, δ
Output: Pairs (g, h) of similar subgraphs between G and H

1 (Vs, Us)← {v ∈ V (G), u ∈ V (H) |
v and u are common nodes; there is a 1-to-1 mapping relationship between v and u};

2 while PopSeeds(Vs, Us) 6= ∅ do
3 (vs, us)← PopSeeds(Vs, Us);
4 if vs and us are not included in any pair of (g, h) then
5 (g, h)← match(G,H, vs, vu, δ);
6 if SimNodesNum(g, h) ≥ k then
7 output(g, h); g ← ∅; h← ∅;

Let path p1 denotes α → x1 → · · · → xn → β, where α and β are common nodes while
each xi represents an uncommon node. Similarly, we de�ne path p2 as a → y1 → · · · →
ym → b. To de�ne the similarity between p1 and p2, we need to consider: the maximum
number of uncommon nodes that we allow in the paths (i.e., the maximum length of paths), and
labels of edges. The more the uncommon nodes are allowed, the less dissimilar the subgraphs
are. Therefore, we set a threshold, δ, to determine the length of a path between common nodes.

We de�ne L(vn−1, vn) = L(um−1, um) due to two reasons. The numbers of edges from
v1 to vn and those from u1 to um may be different so comparing each pair of them is dif�cult.
Furthermore, as shown in the sentences, consider that a plagiarist breaks a sentence apart by
inserting modi�er phrases or clauses. The last verb or preposition in the inserted phrases is the
edge connecting a common node so we believe that it is more important than others.

3.3.2 Discovery Algorithm

Our goal is to discover pairs (g, h) of maximal similar subgraphs between a suspicious
graph G and a source graph H in our algorithm. With the de�nitions in the previous section,
we can determine whether g with two common nodes α and β is similar to h with two common
nodes a and b. If g and h are similar, we can further use α and β, and a and b as seeds and
search in their proximity to enlarge g and h by concatenating newly found subgraphs g′ and
h′, which also have two common nodes, with g and h, respectively.

Algorithm 2 shows an overview of our discovery algorithm. We �rst �nd all the pairs of
common nodes. We do not match v to other nodes if v is matched to node u so each pair
of nodes has a one-to-one mapping relationship. Given a pair of common nodes, we search
for their maximal similar subgraphs in match(·). Since we compare common words from
the beginning to the end of texts, PopSeeds(·) returns common nodes in their order. If a
returned subgraph has few common nodes, i.e., fewer than threshold k, we consider it as a
trivial discovery so we discard it, checked in function SimNodesNum. SimNodesNum(·)
returns the number of common nodes between a pair of subgraphs.

Function match shows how we search for a pair of maximal similar subgraphs. Our strat-
egy is to check whether we can expand a subgraph of one common node to a subgraph of
two common nodes and so on, until no more common nodes can be included in the graph.
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Function match(G,H, vs, us, δ)

Input : G,H , seed nodes vs and us, length of a path δ
Output: Nodes V (g), V (h) of subgraphs g, h
/* We estimate the passage of a candidate subgraph from nodes,

which have information of character offsets and lengths so we
only generate nodes in g and h in our implementation. */

1 g ← ∅; h← ∅; S1 ← ∅; S2 ← ∅;
2 V (g)← V (g) ∪ {vs}; V (h)← V (h) ∪ {us}; S1 ← S1 ∪ {vs}; S2 ← S2 ∪ {us};
3 repeat
4 v ← pop(S1); u← pop(S2); (V,U)← FindCandiNodes(G,H, v, u, δ);
5 foreach (x, y) ∈ (V,U) do
6 if there exists a path between v and x && there exists a path between u and y

then
7 if x and y are not included in any pair of (g, h) && PathSim(v, x, u, y)

then
8 V (g)← V (g) ∪ {x}; V (h)← V (h) ∪ {y};
9 S1 ← S1 ∪ {x}; S2 ← S2 ∪ {y};

10 until S1 = ∅, S2 = ∅;
11 return V (g), V (h);

FindCandiNodes(G,H, v, u, δ) �nds common nodes that are near within length δ of v or u
in the underlying graphs obtained by replacing all directed edges with undirected edges. For
example, FindCandiNodes(·) returns adjacent nodes of node v that are common nodes in the
undirected version of G when δ = 1. In PathSim(v, x, u, y), we check both similarity σ1

between Path(v, x) and Path(u, y) and similarity σ2 between Path(x, v) and Path(y, u).
PathSim(v, x, u, y) returns true when either σ1 or σ2 is true and returns false, otherwise.

4 Experiments

We compare our method with a naive n-grams method, which uses content words as the
representation of a document, and a state-of-the-art method called SWNG (stopword n-grams
method) (Stamatatos, 2011). In SWNG, θ, which is an upper threshold of gap-length allowed
in a passage, is set to be 100 as the author suggests. We examine many values of n used in
both the naive n-grams method and SWNG in our experiments and we show the results when
n = 5, 6 that we consider their best performances. In our method, k, which is a threshold
deciding the minimal number of common nodes required in an output subgraph, is set to be 3.
A large value for δ implies that many uncommon words are allowed to be included in pairs of
similar subgraphs. To avoid discovery of dissimilar passages, we set δ to a small value, δ = 2.
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4.1 Data Sets and Evaluation Metrics
We use the DBLP-citation network data set (Tang et al., 2008) in our experiments, where

each record, i.e., an article, is generally assigned information of authors, venue, abstract, ref-
erences, and publication year.From the citation network data set, we prepare two data sets,
DBLP1 and DBLP2, used to examine performances of methods when the whole content of a
document is plagiarized and only a part of content of a document is plagiarized, respectively.

In DBLP1 data set, we select a set of papers D, which are published in the proceedings
of top conferences such as KDD, and use their abstracts Dsrc as test documents in the experi-
ments. For each document d in D, we prepare a corresponding plagiarized document dplg by
splitting sentences, re-organizing and re-ordering phrases without altering the content, adding
minor words and randomly replacing nouns and verbs with words from their synonym sets by
WordNet (Miller, 1995). We also use abstracts Dref of the papers cited in papers of D for
obfuscation. To sum up, suspicious documents Dsusp include all the plagiarized documents
Dplg and Dref . |Dsrc| = 20. |Dsusp| = 89, where |Dref | = 69, which are non-plagiarized
documents, and |Dplg| = 20, which are plagiarized documents.

In DBLP2 data set, source documents are the same as in DBLP1. There are 100 suspicious
documents, among which 31 and 69 documents are partially plagiarized and non-plagiarized
documents, respectively. Half sentences in each of the partially plagiarized documents are
extracted from a document in Dplg and half from one of the corresponding document in Dref .

We use the measures of precision, recall, granularity and an overall metric combining pre-
cision, recall and granularity, PlagDet, which are proposed for plagiarism detection (Potthast
et al., 2010), to evaluate experimental results. Let S denote the set of plagiarisms in the suspi-
cious documents of a corpus, and let R denote the set of plagiarism detections that a detector
reports. To simplify the notation, a plagiarism s, s ∈ S, is represented as a set s of references
to the characters of dplg and dsrc that form the passages splg and ssrc. Similarly, a plagiarism
detection r, r ∈ R, is represented as r.

prec(S,R) = 1
|R|
∑
r∈R

|Ss∈S(sur)|
|r| rec(S,R) = 1

|S|
∑
s∈S

|Sr∈R(sur)|
|s|

where sur = s∩r if r detects s, and sur = ∅ otherwise. A high score of precision represents
that many of the detected passages are plagiarized passages. A high score of recall represents
that the detector identi�es many plagiarized passages.

Because plagiarism detectors may report overlapping or multiple detections for a single
plagiarism, we use the granularity measure besides precision and recall. The granularity (Pot-
thast et al., 2010) is de�ned as, gran(S,R) = 1

|SR|
∑
s∈SR |Rs|, where SR ⊆ S are cases

detected by detections in R, and Rs ⊆ R are detections of s. A high score of granularity
represents that many segments are reported as detections of the same plagiarized passage.

Combining precision, recall and granularity, PlagDet is de�ned as PlagDet(S,R) =
F1

log2(1+gran(S,R)) , where F1 = 2 · prec(S,R)·rec(S,R)
prec(S,R)+rec(S,R) . Values of precision, recall and PlagDet

except granularity range from 0 to 1. The minimum and ideal value for granularity is 1.

4.2 Experimental Results
Figures 2(a) and 2(b) show experimental results on the DBLP1 and DBLP2 data sets, re-

spectively. From the �gures, we see that our method outperforms SWNG and the naive n-
grams method in the experiments of detecting both wholly and partially plagiarized passages.
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FIG. 2 � Experimental results on the DBLP1 and DBLP2 data sets.

Although our method has a larger tendency to obtain overlapping results than SWNG, which
is observed from the values of granularity, our method achieves higher scores on precision,
recall and PlagDet than SWNG. That is, our method shows its competitiveness in detecting
plagiarized passages, which are largely modi�ed by re-ordering words and phrases.

By comparing the two �gures, we observe that all the methods obtain more favorable re-
sults in the DBLP1 experiments than in the DBLP2 experiments. This is because the problem
of detecting documents that have partially plagiarized contents is intuitively more challenging
than the problem of detecting documents that all of their contents are plagiarized from other
documents. Despite of the dif�culty of the problem, results of our method are still superior to
those of SWNG and the n-grams method.

We examine the graphs that we transform from text. A generated graph is occasionally not a
connected graph due to the diversity in natural language expressions. Since our method detects
plagiarized passages by searching for common nodes along paths in the graph, disconnected
graphs may cause unsuccessful detections of plagiarized passages. This is probably why our
method does not achieve higher scores on recall than 0.6. However, our method is still effective
in detecting plagiarism of re-ordered or re-constructed text compared to the existing methods,
showing the advantage of modeling relationships between words with graph structure.

5 Conclusions and Future Work
We proposed a method of detecting plagiarism by representing documents with graphs.

We transform documents to graphs according to grammatical relationships between words,
and discover pairs of similar subgraphs, each of which is a detection of plagiarism. Experi-
mental results show that our method largely improves the recall values and is more effective in
detecting paraphrasing plagiarism than the existing methods. In our future work, we consider
comparing our method with other graph-based methods used to detect software plagiarism such
as GPLAG (Liu et al., 2006) and analyzing how our proposal scales with respect to the number
and size of documents. We also consider the extension of our method to patent infringement.
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Function agent(r,Γ, G)
1 R← rFindNsubjpass(r, r.wgov,Γ);
2 whileR 6= ∅ do
3 L(v)← pop(R).wdep;
4 L(u)← r.wdep;
5 e← (v, u); L(e)← r.wgov ;
6 Insert v, u and e toG;

Function partmod(r,Γ, G)
1 R← all relations in back of r each of whosewgov is r.wdep ;
2 whileR 6= ∅ do
3 L(v)← r.wgov;
4 L(u)← pop(R).wdep;
5 e← (v, u); L(e)← r.wdep;
6 Insert v, u and e toG;

Function nsubj(r,Γ, G)
1 if r.wgov is a verb then
2 R← FindDobj(r, r.wgov,Γ);
3 whileR 6= ∅ do
4 γ ← pop(R);
5 L(v)← r.wdep; L(u)← γ.wdep;

e← (v, u); L(e)← r.wgov;
6 V ← V ∪ {v}; V ← V ∪ {u};

E ← E ∪ {e};

7 else if r.wgov is a noun then
8 L(v)← r.wdep; L(u)← r.wgov;
9 e← (v, u); L(e)← �be�;

10 V ← V ∪ {v}; V ← V ∪ {u};
E ← E ∪ {e};

Function xsubj(r,Γ, G)
1 R1 ← FindPrep(r, r.wgov,Γ);
2 whileR1 6= ∅ do
3 L(v)← r.wdep;
4 L(u)← pop(R1).wdep;
5 e← (v, u); L(e)← pop(R1).wgov;
6 Insert v, u and e toG;
7 R2 ← FindDobj(r, r.wgov,Γ);
8 whileR2 6= ∅ do
9 L(v)← r.wdep;

10 L(u)← pop(R2).wdep;
11 e← (v, u); L(e)← r.wgov ;
12 Insert v, u and e toG;

Function iobj(r,Γ, G)
1 R← rFindNsubj(r, r.wgov,Γ);
2 whileR 6= ∅ do
3 L(v)← pop(R).wdep;
4 L(u)← r.wdep;
5 e← (v, u); L(e)← r.wgov ;
6 Insert v, u and e toG;

Function prepc(r,Γ, G)
1 if r.wgov is a verb then
2 R← rFindDobj(r, r.wgov,Γ);
3 R← R∪ rFindNsubj(r, r.wgov,Γ);
4 R← R∪

rFindNsubjpass(r, r.wgov,Γ);
5 R′ ← FindDobj(r, r.wdep,Γ);
6 whileR 6= ∅ do
7 γ1 ← pop(R);
8 whileR′ 6= ∅ do
9 γ2 ← pop(R′) ;

10 L(v)← γ1.wdep;
11 L(u)← γ2.wdep;
12 e← (v, u); L(e)← r.wdep;
13 Insert v, u and e toG;

14 else if r.wgov is a noun then
15 R← FindDobj(r, r.wdep,Γ);
16 whileR 6= ∅ do
17 L(v)← r.wgov ;
18 L(u)← pop(R).wdep;
19 e← (v, u); L(e)← r.wdep;

FIG. 3 � Rules for functions agent, partmod, nsubj, iobj, xsubj, prepc
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Résumé
Dans cet article, nous nous intéressons au probléme de la détection des plagiats dans le

monde académique, qui est un véritable �éau notamment en raison de la facilité d'accès aux
publications sur Internet. Les méthodes classiques de recherche d'information couramment
utilisées en détection de plagiat se basent sur les mots vides et l'identi�cation de signatures,
et utilisent les séquences des mots tels qu'ils se présentent dans les articles. Ces approches
ne détectent par conséquent pas les situations de plagiat lorsqu'un auteur reconstruit un ar-
ticle en réordonnant et réorganisant les phrases. Dans ce contexte, une structure de graphe est
plus adaptée pour représenter les relations entre les entités. Nous proposons ainsi une nouvelle
méthode de détection de plagiat dans laquelle nous utilisons des graphes pour représenter des
documents en modélisant les relations grammaticales entre les mots. Les résultats expérimen-
taux montrent que la méthode que nous proposons dépasse deux méthodes de n-grammes et
augmente le rappel par des valeurs allant de 10 à 20%.


