
A Passive Interoperability Testing Approach Applied to the
Constrained Application Protocol (CoAP)

Nanxing Chen, César Viho

IRISA/University of Rennes 1
Campus de Beaulieu, 263 avenue du Général Leclerc

35042, Rennes, France
{nanxing.chen, cesar.viho}@irisa.fr,

http://www.irisa.fr/

Abstract. Constrained Application Protocol (CoAP) is an application protocol
designed for the Internet of Things, where smart devices cooperate to provide
machine-to-machine Web services. In this context, a high level of interoperabil-
ity is crucial. This paper addresses the interoperability testing of CoAP applica-
tions. It proposes a methodology based on passive testing, which is a technique
to test a running system by only observing its behavior without introducing any
test input. The methodology (the proposed method and a corresponding test-
ing tool) was put into operation during the CoAP interoperability testing event
(Plugtest) organized by ETSI in Paris in March 2012, where a number of CoAP
applications were successfully tested, showing the validity and efficiency of this
approach.

1 Introduction
Internet of Things (IoT) is an integrated part of future Internet and could be defined as

a dynamic global network infrastructure with self configuring capabilities based on standard
and interoperable communication protocols where physical and virtual things use intelligent
interfaces, and are seamlessly integrated into the information networks. One of the objectives
of the IoT is using the captured information by smart objects (e.g. automation systems, mobile
personal gadgets, building-automation devices, cellular terminals, the smart grid, etc.) to im-
prove peoples life in a large range of fields: healthcare, environment monitoring, smart energy
control, industrial automation and manufacturing, logistics, etc. Promoted by IoT, more and
more devices are becoming connected and benefit from interacting with each other to achieve
cooperative services. Over the next decade, this could grow to trillions of embedded devices
and will greatly increase the Internet’s size and scope. On the other hand, the evolution of tech-
nologies also brings challenges: devices behind Machine-to-Machine (M2M) applications are
generally have limited resources. Typically, they are battery-powered and frequently asleep,
limiting them to an average consumption on the order of micro-watts. Power limitations also
lead to constraints on available networking. Most devices connect wirelessly as stringing wires
are prohibitively expensive and sometimes not applicable. In consequence, packet losses might
occur during data transfer.

- 1 -

Passive Interoperability Testing of CoAP Protocol

To deal with these challenging issues, the IETF Constrained RESTful Environments (CoRE)
working group 1 has worked out the Constrained Application Protocol (CoAP), an application
layer protocol to provide resource constrained devices with low overhead and low power con-
sumption Web service functionalities. Different from traditional Web services protocol, CoAP
protocol involves new performance engineering methods, tools, and benchmarking needs. Es-
pecially, the ubiquitous nature of CoAP requires interoperability to ensure that smart objects
using CoAP work well together in low-power and lossy environment without human interven-
tion, while guaranteeing the services described in the specifications. Testing interoperability of
CoAP protocol in this context is challenging as:

– We have to deal with a huge number of different kinds of components; In the context of
the IoT, billions of objects will communicate using this CoAP protocol.

– We may not have possibility or the capability to perturb the normal behavior of the
components to be tested composing the SUT (System Under Test). As a consequence,
the classical active interoperability testing (where stimuli are sent to the SUT) may not
be applicable.

– Contrary to usual case of interoperability testing where we make the hypothesis that the
communication environment is reliable, the constrained environment of CoAP requires
to consider packet losses.

In this paper, an interoperability testing method based on the technique of passive testing
is proposed. It involves defining a set of test cases and verifying their validity on the observed
behavior (traces) of the CoAP implementations (Clients and Servers) without injecting any test
message. In addition, a trace verification algorithm is implemented in a test tool to automate
trace analysis, including identifying the occurrence of test cases and assigning appropriate
verdicts. The proposed method and the associated trace validation tool were put into operation
in CoAP Plugtest - the first formal CoAP interoperability event held in Paris, March 2012,
during which a large number of tests were successfully performed.

This paper addresses the interoperability testing of CoAP protocol applications. It is orga-
nized as follows: section 2 presents the generality of CoAP as well as the needs of CoAP inter-
operability testing. Section 3 gives an overview of the proposed method for CoAP interoper-
ability testing. In section 4, the methodology is elaborated. The application of the methodology
and the experimental results are presented in section 5. Finally, section 6 gives the conclusions
and the perspectives.

2 Background and Motivation

2.1 CoAP Protocol Overview
Most Internet applications today depend on the Web architecture, using HTTP 2 to access

information and perform updates. HTTP is based on Representational State Transfer (REST)
(Fielding, 2000). It is an architectural style that makes information available as resources are
identified by URIs (Uniform Resource Identifier): applications communicate by exchanging
representations of these resources by using a limited set of methods. This paradigm is quickly
becoming popular, even spreading to Internet of Things (IoT) applications, aiming at extending

1. http://datatracker.ietf.org/wg/core/charter/
2. http://www.w3.org/Protocols/

- 2 -

N.Chen and C.Viho

the Web to constrained nodes and networks. In this context, the IETF Constrained Application
Protocol (CoAP) has been designed, which is an application-layer protocol on keeping in mind
the various issues of constrained environment to realize interoperations with constrained net-
works and nodes. CoAP adopts some HTTP patterns such as resource abstraction, URIs, REST-
ful interaction and extensible header options, but with a lower cost in terms of bandwidth and
implementation complexity. Unlike HTTP over TCP, CoAP operates over UDP, with reliable
unicast and multicast support (cf. FIG 1). Two layers compose CoAP that have to be considered
as a whole when dealing with CoAP interoperability testing:

– the CoAP transaction layer is used to deal with UDP and the asynchronous nature of
the interactions. Within UDP packets, CoAP uses a four-byte binary header, followed by
a sequence of options. Four types of messages are defined, which provide CoAP with
a reliability mechanism. Confirmable messages (CON) require acknowledgment while
Non-Confirmable messages (NON) do not require acknowledgment. Acknowledgment
messages (ACK) are acknowledgments to a CON message and Reset messages (RST)
indicate that a CON message was received, but some context is missing to properly
process it; Eg. the node has rebooted.

– On top of CoAP’s transaction layer, CoAP Request/Response layer is responsible for
the transmission of requests and responses for resource manipulation and interoperation.
The familiar HTTP request methods are supported: GET retrieves the resource identified
by the request URI. POST requests the server to update/create a new resource under
the requested URI. PUT requests that the resource identified by the request URI to be
updated with the enclosed message body. DELETE requests that the resource identified
by the requested URI to be deleted.

FIG. 1 – Protocol stacks of HTTP and CoAP.

CoAP supports built-in resource discovery that allows discovering and advertising the re-
sources offered by a device. A subscription option is provided for client to request a notifica-
tion whenever a resource changes. This is then accomplished by the device with the resource
of interest by sending the response messages with the latest change to the subscribers. CoAP
supports block wise transfer. Basic CoAP messages work well for the small payloads such as
data from temperature sensors, light switches, etc. Occasionally, applications need to transfer
larger payloads – for instance, for firmware updates. Instead of relying on IP fragmentation,
CoAP is equipped with Block options to support the transmission of large data by splitting the
data into blocks. Besides, CoAP also have other features like best-effort multicast, cachability,
HTTP mapping, etc. These characteristics of CoAP provide a flexible and versatile applica-
tion framework. Although CoAP is still a work in progress, many famous embedded operating
systems, e.g. Tiny OS 3 and Contiki 4, have already released their CoAP implementations. It

3. http://www.tinyos.net/
4. http://www.sics.se/contiki/

- 3 -

Passive Interoperability Testing of CoAP Protocol

is slated to become one of the most important ubiquitous application protocols for the future
Internet of Things. Thus, providing efficient testing methods with associated tools are required
to ensure interoperability of billions of objects (implementing CoAP) that will be widely de-
ployed.

2.2 The Needs of CoAP Interoperability Testing

To ensure that protocol applications interoperate correctly and provide expected services,
several testing methods such as conformance testing (Rayner, 1987) and interoperability test-
ing (Lee et al., 1997), (Zaidi et al., 2009), (Viho et al., 2001) etc. have been developed. Con-
formance testing checks whether an implementation is correct with respect to its relevant spec-
ifications. It allows protocol designers to focus on the fundamental problems of their prod-
ucts and it is considered as an important step to assure interoperability. However, it is widely
agreed that conformance testing has limitations in ensuring interoperability. In fact, even fol-
lowing the same standard, two different devices might not be interoperable. A variety of rea-
sons account for non-interoperability (see FIG 2): (i) In the standards: frequently, standards
provide choices to implementers, and different choices can be incompatible so that they fail
in interoperation. Moreover, unintentional ambiguities may exist in standards leading also to
non-interoperability. (ii) During implementations: One may observe programming errors and
different interpretations of the standard or different choices of options allowed by the standard.
Also, sometimes a new service will enter the market before any standard exists for it, and the
protocols involved may become informal. (iii) Incompleteness of conformance testing: confor-
mance test suites may not be complete so that they do not guarantee conformance to protocol
standards. (iv) Besides technical reasons, there are also business reasons that can account for
non-interoperability. e.g., businesses sometimes view features that defeat interoperation as a
competitive advantage. Nevertheless, on one hand, customer needs are growing and manufac-

FIG. 2 – Non interoperability issues.

turers permanently develop new equipments with improved quality of service. On the other
hand, with the rapid widespread commercial adoption of complex and diverse IoT technolo-
gies, interoperability is essential for M2M applications to provide cooperative services. To
deal with these issues, interoperability testing is holding a strategic position in the design of
new technologies. Its role is to determine whether several interconnected products from dif-
ferent product lines interoperate correctly and provide the expected services. In this context,

- 4 -

N.Chen and C.Viho

and among other means to achieve interoperability, the standardization bodies and industry
forums arrange regular workshops and interoperability testing events (e.g. CoAP Plugtest 5,
IPSO Interoperability events 6, Tahi IPv6 Interoperability event 7, etc.), where vendors can test
the interoperability of their equipments with other fellow industry equipments and several test
suites provided by different testing experts.

As one of the most important protocol for the future Internet of Things, the number of
smart objects using CoAP is expected to grow substantially, concerning M2M applications
that deal with manipulation of various resources on constrained networks. For CoAP applica-
tions to be widely adopted by the industry, interoperability testing is required to ensure that
CoAP implementations from different vendors work well together. Therefore, in this paper
we propose a methodology for CoAP interoperability testing, including testing method and an
associated testing tool, which were successfully used during the CoAP Plugtest. The contribu-
tions and originality of this work are three-fold: (i) Contrary to the active testing method used
in conventional interoperability testing events, which is done by actively stimulating the im-
plementations and verifying the outputs, we apply passive testing. It is a technique based only
on observation. Its non-intrusive nature makes it appropriate for interoperability testing, espe-
cially in the context of IoT. (ii) As IoT implies providing services in lossy networks, we also
take into account fundamental CoAP implementations interoperability testing in lossy con-
text. (iii) Contrary to manual verification used in conventional interoperability testing events,
the verification procedure has been automatized by a test validation tool, which increases the
efficiency, reduces time and costs.

3 CoAP Passive Interoperability Testing Method Overview

This section gives a general overview of CoAP interoperability testing methodology (cf.
FIG 3). Based on the specifications of CoAP (Shelby et al. (2011); Shelby (2011); Hartke
(2012); Bormann and Z.Shelby (2012)), a set of interoperability test purposes are selected.
Each test purpose represents a critical property of CoAP to be verified. Once the test purposes
are defined, a test case is derived for each test purpose, which describes in detail the expected
behavior of the CoAP implementations to be observed. These test cases are then used to process
the observed behavior of CoAP applications and help to draw a conclusion of interoperability.
In this work, we use the formal model Input-Output Labeled Transition System (Verhaard et al.,
1992) (IOLTS for short in the sequel) to model the test purposes, test cases, etc. This model is
also used to explain the algorithm of trace verification

3.1 Formal Model

Specification languages for reactive systems can often be described in terms of labeled
transition systems. In this paper, we use the IOLTS model, which allows differentiating input,
output and internal events while indicating the interfaces specified for each message.

5. http://www.etsi.org/plugtests/coap/coap.htm
6. http://www.ipso-alliance.org/category/events
7. http://www.tahi.org/inop/6thinterop.html

- 5 -

Passive Interoperability Testing of CoAP Protocol

Definition 1 An IOLTS is a tuple M = (QM ,ΣM ,∆M , qM0) where QM is the set of states
of the system M with qM0 its initial state. ΣM is the set of observable events at the interfaces
of M . In IOLTS model, input and output actions are differentiated: We note p?a (resp. p!a) for
an input (resp. output) a at interface p. Γ(q) =def {α ∈ ΣM |∃q′, (q, α, q′) ∈ ∆M} is the set
of all possible events at the state q. ∆M ⊆ QM × (ΣM ∪ τ) × QM is the transition relation,
where τ /∈ ΣM stands for an internal action. A transition in M is noted by (q, α, q′) ∈ ∆M .

3.2 Testing Method Overview
The outlines of CoAP interoperability testing methodology are illustrated in FIG 3, which

consists in the following steps:

1. Regarding the specifications of CoAP (Shelby et al. (2011)), a set of interoperability test
purposes (ITP) is selected. Each test purpose represents a critical property that needs
to be verified and must be validated to guarantee its correctness (Schulz et al., 2007).
Formally, an ITP can be represented by a deterministic and complete IOLTS equipped
with trap states used to select targeted behavior. ITP = (QITP ,ΣITP , 4ITP , qITP

0) where:
– ΣITP is the set of observable events related to the test purpose.
– QITP is the set of states. An ITP has a set of trap states AcceptITP , indicating the

targeted behavior. States in AcceptITP imply that the test purpose has been reached
and are only directly reachable by the observation of outputs produced by the IUTs.

– ITP is complete, which means that each state allows all actions. This is done by in-
serting “∗” label at each state q of the ITP, where “∗ ” is an abbreviation for the
complement set of all other events leaving q . By using “∗” label, ITP is able to
describe a property without taking into account the complete sequence of detailed
specifications interaction.

2. For each ITP, an iop test case (ITC) is generated. An ITC is the detailed set of instruc-
tions that need to be taken in order to perform the test. Specifically in passive testing,
an ITC describes in detail the behavior of IUTs to be observed, which are related to
the given ITP. Formally, an iop test case ITC is represented by an extended version of
IOLTS called T-IOLTS for Testing-IOLTS. A T-IOLTS ITC can be defined by: ITC =
(QITC ,ΣITC ,∆ITC , qITC0), where qITC0 is the initial state. {Pass, Fail, Inconclusive}
∈ QITC are the trap states representing interoperability verdicts. Respectively, verdict
Pass means the ITP is satisfied (AcceptITP is reached) without any fault detected. Fail
means at least one fault is detected, while Inconclusive means the behavior of IUTs is not
faulty, however can not satisfy the ITP. ΣITC denotes the observation of the messages
from the interfaces. ∆ITC is the transition function. In the sequel, any ITC is supposed
to be deterministic. The set of test cases is called a test suite. An example of ITP and
ITC can be found in FIG. 6.

3. Analyze the observed behavior of the IUTs. In this work, we apply the technique of pas-
sive testing for the following arguments: First, passive testing does not disturb the normal
operation of the protocol implementations, thus is suitable for interoperability testing in
operational environment. Also, passive testing does not introduce extra overhead into the
networks, hence is appropriate in the context of IoT. During the test, packets exchanged
between CoAP implementations (CoAP client and CoAP server) are captured and by a
packet sniffer. Captured traces are then filtered to keep only the useful information and

- 6 -

N.Chen and C.Viho

analyzed against the test cases by using a passive testing tool. And a verdict Pass, Fail,
or Inconclusive is issued. Respectively, verdict Pass means the test purpose is verified
without any fault detected, Fail means at least one fault is detected, while Inconclusive
means the behavior of implementations is not forbidden by the specifications, however
does not correspond to the test purpose.

FIG. 3 – CoAP interoperability testing method.

4 Passive Interoperability Testing for CoAP Applications
This section describes in detail the testing procedure, including the testing architectures,

each testing step and an associated validation tool.

4.1 Testing Architectures
Two test architectures have been defined for different purposes. The basic test architec-

ture is illustrated in FIG. 4-(a). It involves a Test System (TS) and a system under test (SUT)
composed of two CoAP implementations under test (IUT), namely a CoAP client and a CoAP
server. Since we apply the technique of passive testing, a packet sniffer is used to capture the
packets (traces) exchanged between the IUTs. Moreover, as CoAP is designed for constrained
networks, which imply possibility of packet losses, we also need to consider testing the inter-
operability of CoAP applications in lossy environment. The corresponding architecture is as
FIG. 4-(b): A UDP gateway is used in-between the client and server to emulate a lossy medium
(c.f. more details in Section 5)

4.2 Selection of CoAP Interoperability Test Purposes
In order to realize interoperability testing for CoAP protocol, first a set of CoAP interop-

erability test purposes (ITP) is defined to focus on the most important properties of CoAP.
To ensure that the ITPs are correct w.r.t the specification. In our work, the ITPs were cho-
sen and cross validated by experts from ETSI 8, IRISA 9 and Beijing University of Post and

8. http://www.etsi.org/WebSite/homepage.aspx
9. http://www.irisa.fr/

- 7 -

Passive Interoperability Testing of CoAP Protocol

FIG. 4 – CoAP interoperability testing architectures.

Telecommunication 10, and reviewed by IPSO Alliance to guarantee the correctness. From the
specifications, a total of 27 test purposes were chosen, which cover four most important aspects
of the protocol: RESTful methods, Link Format for resource discovery, Blockwise transfer for
large resources, and resource observation.

Basic CoAP CoRE Protocol Methods This group of tests contains 16 test purposes, among
them 15 tests aim at testing the basic transaction of the CoAP request/response model with or
without options, in both reliable and lossy environment.

The fundamental RESTful Methods interoperability tests involve verifying that both client
and server interact correctly according to (Shelby et al., 2011) by using any of the RESTful
methods GET, POST, PUT, and DELETE. Specifically, it requires to verify that each time the
client sends a request, it contains the correct method code and correct message type code (CON
or NON). Upon the reception of a request sent by CoAP client, the server sends piggybacked
reply accordingly: (i) if the request is confirmable, the server must send an acknowledgment
ACK. (ii) If the request is non-confirmable, the server also sends a non-confirmable reply. An
example of CoAP RESTful transaction is illustrated in FIG. 5-(a). The client sends a con-
firmable request, asking for humidity. Upon the reception, the server acknowledges the mes-
sage, transferring the payload while echoing the Message ID(0x7af2) generated by the client.
Sometimes however, a server cannot obtain immediately the resource requested. In this case,
it will first send an acknowledgment with an empty payload, which effectively is a promise
that the request will be acted. When the server finally has obtained the resource representation,
it sends the response in a confirmable mode to ensure that this message not be lost (cf. FIG.
5-(b)). This asynchronous interaction avoids that the client repeatedly retransmits the request.
Based on basic transactions, three important options were also chosen to be verified. Moreover,
as CoAP protocol is designed for constrained networks, where packet losses may occur, there-
fore an important aspect is to show that CoAP application should still interoperate correctly
even in lossy context. Especially, they must correctly retransmit the request and response if
they are lost.

The CoRE Link Format Resource discovery is important for M2M applications. For CoAP,
Shelby (2011) standardizes a resource discovery format to discover the list of resources offered
by a device, or for a device to advertise or post its resources to a directory service. In Shelby

10. http://www.bupt.edu.cn/

- 8 -

N.Chen and C.Viho

(2011), path prefix for resource discovery is defined as /.well-known/core. This description
is then accessed with a GET request on that URI. The interoperability of resource discovery
testing of this property involves 2 tests, aiming at verifying that: when the client requests
/.well-known/core resource, the server sends a response containing the payload indicating all
the available links. Also, if the client is interested in specific resources, it can filter the request
using a query string. For example GET /.well-known/core?rt=Temperature 11 would request
only resources with the name Temperature.

Block-wise Transfer CoAP is based on datagram transports, which limits the maximum size
of resource representations that can be transferred. In order to handle large payloads, Bormann
and Z.Shelby (2012) defines a mechanism Block-wise transfer. It supports the transmission
of large data by splitting the data into blocks for sending and manages the reassembly on
the application layer upon receipt in order to avoid fragmentation on the lower layers. This
group of test purposes contains 4 tests that check the main functionalities of CoAP block-wise
transfer. FIG. 5-(c) illustrates a block-wise transfer of a large payload humidity requested by
the client. Upon the reception, the server divides the response into four blocks and transfer
them separately to the client.

CoAP Observe As the representation of a resource on a server may change from time to
time, Hartke (2012) defines a mechanism CoAP Observe, which is an asynchronous approach
to support pushing information from servers to interested clients over a period of time. The
interoperability testing of this property contains 5 tests to check the main functionalities of
resource observation: If a client is interested in the current state of specific resource, it can
register its interest in this resource by issuing a GET request with an Observe option to the re-
source. The server then keeps track of the client and sends a notification whenever the observed
resource changes. If the client rejects a notification with a RST message or when it performs
a GET request without an Observe option for a currently observed resource, the server will
remove the client from the list of observers for this resource. And the client will no longer
receive any updated information about the resource. If a client wants to receive notifications
later, it needs to register again. An example of observation registration and cancellation can be
found in FIG. 5-(d).

4.3 Test Case Derivation
For each test purpose, a test case is derived. In passive testing, each test case contains the

events to be observed with respect to the given test purpose. It specifies the events that can lead
to different verdicts: (i) the expected events to be observed that allow reaching the test purpose
and consequently lead to Pass verdict. (ii) Unexpected events that can lead to Fail verdict.
(iii) Other behavior allowed by the specifications but not allows to satisfy the test purpose,
thus leads to Inconclusive verdict. The assignment of different verdicts is done by studying
carefully the specifications, and validated by ETSI, IRISA, BUPT and IPSO Alliance.

An example of test case is given in FIG. 6. The test purpose (FIG. 6-(a)) focuses on the
GET method in confirmable transaction mode. i.e., when the client sends a GET request (as
explained in the test specification FIG. 6-(c)), the request contains parameters: a Message ID,

11. rt: Resource type attribute. It is a noun describing the resource.

- 9 -

Passive Interoperability Testing of CoAP Protocol

FIG. 5 – CoAP Transaction Examples.

Type=0 for confirmable transaction mode, Code=1 for GET method), the server’s response
contains an acknowledgment, echoing the same Message ID, as well as the resource presen-
tation (Code=69(2.05 Content)). The corresponding test case is illustrated in FIG. 6-(b) The
bold part of the test case represents the expected behavior that leads to Pass verdict. Behavior
that is not forbidden by the specifications leads to Inconclusive verdict (for example, response
contains code other than 69. These events are noted by m in the figure). However other behav-
ior leads to Fail verdict (for example non-match of Message ID. These events are labeled by
otherwise).

FIG. 6 – CoAP test case example.

- 10 -

N.Chen and C.Viho

4.4 Trace Verification
Trace Verification Algorithm Derived test cases are used to analyze the behavior of CoAP
applications. Specifically in passive testing, The packets exchanged between the CoAP client
and server are captured and stored in a file. They are are key to conclude whether CoAP devices
interoperate (cf. FIG. 3).

In passive testing, one issue is that the test system has no knowledge of the global state
where the system under test SUT can be in w.r.t a test case at the beginning of the trace. In order
to realize the trace analysis, a straight way is trace mapping (Lee et al., 1997). This approach
compares each event in the trace produced by the SUT strictly with that in the specification.
SUT specification is modeled as a Finite State Machine (FSM). Recorded trace is mapped into
the FSM by backtracking. Initially, all states in the specification are the possible states that the
SUT can be in. Then, the events in the trace are studied one after the other: the states which can
be led to other states in the FSM by the currently checked event are replaced by their destination
states of the corresponding transitions. Other states are redundant states and removed. After a
number of iterations, if the set of possible states becomes empty, SUT is determined faulty.
i.e., it contains a behavior which contradicts its specification as trace mapping procedure fails.
This approach however, has some limitations. First, to model a complex network by a single
FSM maybe complex. Moreover, this approach does not suit interoperability testing: as the
SUT concerned in interoperability testing involves several IUTs, therefore to calculate their
global behavior encounters state explosion.

In (Zaidi et al., 2009), another method called invariant approach was introduced. Each
invariant represents an important property of the SUT extracted from the specification. It is
composed of a preamble and a test part, which are cause-effect events respectively w.r.t the
property. The invariant is then used to process the trace: The correct behavior of the SUT
requires that the trace exhibit the whole invariant.

In this paper, we propose another solution to perform passive trace verification. The idea
is to make use of the special interaction model of CoAP: As the interoperability testing of
CoAP essentially involves verifying the correct transactions between the client and the server,
therefore each test case consists of the dialogues (requests and responses) made between them,
and generally starts with a request from the client. A strategy is as follows: (i) the recorded trace
is filtered to keep only the messages that belong to CoAP protocol. In this way, the trace only
contains the conversations made between the client and the server. (ii) Each event in the filtered
trace will be checked one after another according to the following rules, which correspond to
the algorithm of trace verification (c.f. Algorithm 1). This algorithm aims at mapping the test
cases into the trace. i.e., to match a test case with the corresponding conversation(s) in the
trace. Recall that in our work, each test case specify the events that lead to verdicts Pass, Fail
or Inconclusive assigned on its trap states. Therefore, if a test case is identified on the trace,
we can check whether it is respected by comparing each message of the test case with that in
its corresponding conversation(s), and emitting a verdict once an associated verdict is reached.

1. If the currently checked message is a request sent by the client, we verify whether it
corresponds to the first message of (at least one of) the test cases (noted TCi) in the
test suite TS. If it is the case, we keep track of these test cases TCi, as the matching of
messages implies that TCi might be exhibited on the trace. We call these TCi candidate
test cases. The set of candidate test cases is noted TC. Specifically, the currently checked
state in each candidate test case is kept in memory (noted Currenti).

- 11 -

Passive Interoperability Testing of CoAP Protocol

2. If the currently checked message is a response sent by the server, we check if this re-
sponse corresponds to an event of each candidate test cases TCi at its currently checked
state (memorized by Currenti). If it is the case, we further check if this response leads
to a verdict Pass, Fail or Inconclusive. If it is the case, the corresponding verdict is emit-
ted to the related test case. Otherwise we move to the next state of the currently checked
state of TCi, which can be reached by the transition label - the currently checked mes-
sage. Then we take another message in the trace and restart from the beginning. On the
contrary, if the response does not correspond to any event at the currently checked state
in a candidate test case TCi, we remove this TCi from the set of the candidate test cases.

3. Besides, we need a counter for each test case. This is because in passive testing, a test
case can be met several times during the interactions between the client and the server
due to the non-controllable nature of passive testing. The counter Counteri for each
test case TCi is initially set to zero. Each time a verdict is emitted for TCi, the counter
increments by 1. Also, a verdict emitted for a candidate test case TCi each time when
it is met is recorded, noted verdict.TCi.Counteri. For example, verdict.TC1.1=Pass
represents a sub-verdict attributed to test case TC1 when it is encountered the first time
in the trace. All the obtained sub-verdicts are recorded in a set verdict.TCi. It helps
further assign a global verdict for this test case.

4. The global verdict for each test case is emitted by taking into account all its sub-verdicts
recorded in verdict.TCi. Finally, a global verdict for TCi is Pass if all its sub-verdicts
are Pass Inconclusive if at least one sub-verdict is Inconclusive, but no sub-verdict is
Fail. Fail, if at least one sub-verdict is Fail.

The complexity of the algorithm is O(M × N), where M is the size of the trace, N the
number of candidate test cases. The trace verification procedure aims at looking for the possi-
ble test cases that might be exhibited in the trace by checking each event taken in order from
the trace. Regarding the transaction mode of CoAP, each filtered traces are composed of a set of
conversations. The objective of the algorithm is to match the test cases with the conversations,
so that the occurrence of the test cases in the trace is identified. By comparing each message of
the test case with that of its corresponding conversation(s), we can determine whether IUTs in-
teractions are as described in the test cases. Moreover, the possibility that a test case can appear
several times in the trace is also taken into account. Therefore the global verdict for a given test
case is based on the set of subverdicts, increasing the reliability of interoperability testing. Not
only we can verify whether the test purposes are reached, but also non-interoperable behavior
can be detected due to the difference between obtained subverdicts.

Trace Validation Tool To realize trace verification, we have developed a tool, which aims to
automate the process of verifying the captured traces.

The tool is implemented in language Python3 12 mainly for its advantages: easy to under-
stand, rapid prototyping and extensive library. The tool is influenced by TTCN-3 13, it imple-
ments basic TTCN-3 snapshots, behavior trees, ports, timers, messages types, templates, etc.
However it provides several improvements, for example object-oriented message types defini-
tions, automatic computation of message values, interfaces for supporting multiple input and

12. http://www.python.org/getit/releases/3.0/
13. http://www.ttcn-3.org/

- 12 -

N.Chen and C.Viho

Algorithm 1: Trace Verification Algorithm.
Input: filtered trace σ, test suite TS
Output: verdict.TCi

Initialization: TC = ∅, Counteri = 0, Currenti = q
TCi
0 , verdict.TCi = ∅ ;

while σ 6= ∅ do
σ=α.σ′ ;
if α is a request then

for TCi ∈ TS do
if α ∈ Γ(Currenti) then

TC = TC ∪ TCi /*Candidate test cases are added into the candidate test case set*/;
Currenti=Nexti where (Currenti, α,Nexti) ∈ ∆TCi

end
end

end
else

for TCi ∈ TC do
if α ∈ Γ(Currenti) then

Currenti=Nexti where (Currenti, α,Nexti) ∈ ∆TCi ;
ifNexti ∈ {Pass, Fail, Inconclusive} then

Counteri=Counteri+1 ;
verdict.TCi.Counteri=Nexti /* Emit the corresponding verdict to the test case*/;
verdict.TCi= verdict.TCi ∪ verdict.TCi.Counteri

end
end
else

TC=TC \ TCi

end
end

end
end
return verdict.TCi

presentation format, implementing generic codecs to support a wide range of protocols, etc.
These features makes the tool flexible, allowing to realize passive testing.

As illustrated in FIG. 7-(a), a web interface (HTTP frontend) was developed. Traces pro-
duced by a client and a server implementation of a request-response protocol, captured by the
packet sniffer are submitted via the interface. Specifically in our work, the traces should be
submitted in pcap format 14 by using tool Wireshark 15. Each time a trace is submitted, it is
then dealt by a prepossesor to filter only the messages relevant to the tested request-response
protocol. In this way, the trace contains only the conversations between the client and server.

The next step is trace verification, which is carried out by taking into two files as input: the
set of test cases (also programmed in Python, c.f. an example in FIG. 7-(b)) and the filtered
trace. The trace is analyzed according to Algorithm 1, where test cases are verified on the trace
to check their occurrence and validity. Finally, unrelated test cases are filtered out, while other
test cases are associated with a verdict Pass, Fail or Inconclusive. The results are then reported
from the HTTP frontend: Not only the verdict is reported, also the reasons in case of Fail or
Inconclusive verdicts are explicitly given, so that users can understand the blocking issues of
interoperability (cf. a use case in Section 5.2).

14. http://www.tcpdump.org/
15. http://www.wireshark.org/

- 13 -

Passive Interoperability Testing of CoAP Protocol

FIG. 7 – Trace Validation Tool.

5 Experimentation

5.1 CoAP Plugtest
The proposed passive interoperability testing method as well as the tool were put into oper-

ation in CoAP Plugtest – the first formal CoAP interoperability test organized by the European
project Probe-IT 16, IPSO Alliance, together with ETSI, held in Paris, France in March 2012.
The objectives of this event are to get-together industry people to share their experiences, test
their equipments in order to verify the interoperability, identify the issues and improve the ap-
plications. It also provides useful feedback to enhance the ongoing ETSI and IETF standardiza-
tion. 15 developers and vendors of CoAP implementations, such as Sensinode 17, Watteco 18,
Actility 19, etc. participated in the event.

During the test event, CoAP implementations from different manufactures are intercon-
nected in pair-wise combinations. Test sessions are scheduled by ETSI so that each participant
can test their products with all the other partners (1 hour per session). The following figure FIG.
8 shows the test bed architecture provided by ETSI for this event. Each company was given
with a switch to connect their implementations in the test bed. Communication were routed
using layer 2 and layer 3 routers.

5.2 CoAP Passive Interoperability Testing
The test suite is composed of 27 test cases (cf. Section 4.2), concerning the basic REST-

ful methods, Link format, Observation and Blockwise transfer of CoAP were served as test
reference. Interoperability testing in lossy context was also realized by implementing a UDP
gateway between client and server to emulate a lossy medium (c.f. FIG 4-(b)). The gateway

16. http://www.probe-it.eu/
17. http://www.sensinode.com/
18. http://www.watteco.com/
19. http://www.actility.com/

- 14 -

N.Chen and C.Viho

FIG. 8 – CoAP Plugtest Test Bed.

does not implement the CoAP protocol itself (It is not a CoAP proxy). It plays the following
roles: (i) It performs NAT-style UDP port redirection towards the server (thus the client con-
tacts the gateway and is transparently redirected towards the server). (ii) It randomly drops
packets that are forwarded between the client and the server. In Plugtest, the gateway drops the
packet randomly between Client and the server which goes more than 50% packet loss, which
corresponds to the unreliable environment of the Internet of Things.

During the test, the tool Wireshark 20 was used to capture the packets changed by the CoAP
applications. It produces pcaps file which contain the traces. Participants then submit the traces
to the trace validation tool. Once a pcap file is submitted, a CoAP filtering is made using source
IP address and destination IP address to filter only the conversations made between the client
and the server. When the conversations are isolated, then trace verification is executed.

FIG. 9 shows the web interface where pcap files should be uploaded, as well as the test
results found after uploading the pcap files and information on the results obtained. The results
for each test case are shown at the top right corner in the summary table. In this table, the
number of occurrence of each test case in the trace is counted, as well as a verdict Pass, Fail or
Inconc(lusive) is given (or a test case which does not appear in the trace, it is marked as “none”
and will not be verified on the trace). In this example, test case TD_COAP_CORE_1 (GET
method in CON mode) is met 7 times in the trace. The verdict is Inconclusive, as explained
by the tool: CoAP.code ValueMismatch (cf. the bottom of FIG. 9). In fact, according to the test
case, after that the client sends a request (with Type value 0 and Code value 1 for a confirmable
GET message), the server should send a response containing Code value 69(2.05 Content).
However in the obtained trace, the server’s response contains Code value 80(2.16), indicating
that the request is successfully received without further information. This response is allowed
in the specification, however does not satisfy the test case. In fact, the same situation exists in
all the other conversations that correspond to this test case. The global verdict is Inconclusive.

20. http://www.wireshark.org/

- 15 -

Passive Interoperability Testing of CoAP Protocol

FIG. 9 – An example of trace validation tool use case.

5.3 Results
A total of 3081 tests were executed during this two days event within 234 test sessions.

The feedback from participants on the testing method and passive validation tool is positive,
due to the following results:

– To our knowledge, it is the first time that an interoperability event is conducted by pas-
sive testing. Conventional interoperability events rely on active testing, which is done by
actively stimulating the implementations and verifying the corresponding outputs. How-
ever, most of stimulation of these IUTs is manual, which need the intervention of experts
for installation, synchronization, etc., Besides, according to our experience (Sabiguero
et al., 2007), active testing cause many false negative verdicts: most of Fail verdicts are
in fact due to the inappropriate network configuration, synchronization and inappropriate
IUTs configuration. Also, the non-intrusive property of passive testing allows discover
interoperability issues in operational environment, where the normal operations of the
IUTs are not disturbed.

– The automation of trace verification increases the efficiency. According to ETSI, most
of the time (about 60%) of interoperability testing is spent on trace validation, includ-
ing verifying the results and looking at the problems of unsuccessful tests with the help
of experts. Passive automated trace analysis allows to considerably reduce the time. In
consequence, within the same time interval, the number of executed tests are drastically
increased. During the CoAP plugtest, 3081 tests were executed within two days. Com-
pared with past conventional plugtest event, e.g. IMS InterOp Plugtest 21, 900 tests in
3 days, the number of test execution and validation benefited a drastic increase. The
re-usability of the test cases implemented by the tool also, will contribute to increasing
efficiency for future CoAP interoperability tests.

– The passive testing tool is easy to use. In fact, the participants only need to submit their
traces via a web interface. Complicated test configuration is avoided. The test reports
provided by the validation tool makes the reason of non-interoperable behavior be clear.
Besides, another advantage of the validation tool is that it can be used outside of an in-

21. http://www.etsi.org/plugtests/ims2/About_IMS2.htm

- 16 -

N.Chen and C.Viho

teroperability event. (It is hosted at http://senslab2.irisa.fr/coap/). In fact, the participants
started trying the tool one week before the event by submitting more than 200 traces via
Internet. This allows the participants to prepare in advance the test event and to revise,
if necessary, their implementations.

– Moreover, the passive testing tool shows its capability of non-interoperability detec-
tion (cf. TAB. 1): 5.9% show non-interoperability detected w.r.t basic RESTful methods;
7.8% for Link Format, 13.4% for Block transfer and 4.3% for Observe. The results help
the vendors in uncovering the blocking issues and achieving higher quality.

Executed Tests Non-interoperable
RESTful Methods 2798 166 (5.9%)

Link Format 77 6 (7.8%)
Block transfer 112 15 (13.4%)

Observe 94 4 (4.3%)
Total 3081 191 (6.2%)

TAB. 1 – CoAP Plugtest Results.

6 Conclusions and Future Work

In this paper, we have introduced an approach for the interoperability testing of CoAP
protocol, including the methodology, test architecture, tool implementation as well as experi-
mental results. The most important properties of CoAP protocols were defined as test purposes,
and verified by using the technique of passive testing. Trace verification was automated by im-
plementing a trace validation tool. The method and tool were put into operation during the
ETSI CoAP Plugtest event of March 2012 in Paris, where an amount of tests were successfully
performed.

Future work will consider how to improve the test method in two main directions: (i)
Due to the uncontrollable nature of passive testing, Inconclusive verdicts are emitted leading
to rerunning the test or a post-analysis. Solutions to reduce Inconclusive verdicts are to be
studied. (ii) In this work, we have chosen to use offline trace verification, i.e., traces are at first
recorded and then processed. Future work will consider online trace verification.

References

Bormann, c. and Z.Shelby (2012). Blockwise transfers in coap. draft-ietf-core-block-05.
Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architec-

tures. Phd thesis, University of California.
Hartke, K. (2012). Observing resources in coap. draft-ietf-core-observe-04.
Lee, D., A.N.Netravali, K.K.Sabnani, B.Sugla, and A.John (1997). Passive testing and appli-

cations to network management. International conferences on network protocols, ICNP’97,
113–122.

- 17 -

Passive Interoperability Testing of CoAP Protocol

Rayner, D. (1987). Osi conformance testing. Computer Networks and ISDN Systems - Special
Issue: Protocol Specification and Testing archive 14, 79–98.

Sabiguero, A., A. Baire, A. Boutet, and C.Viho (2007). Network protocol interoperability test-
ing based on contextual signatures. 18th IFIP/IEEE International Workshop on Distributed
Systems: Oprations and Management, DSOM 01.

Schulz, S., A.Wiles, and S.Randall (2007). Tplan-a notation for expressing test purposes. ETSI,
TestCom/FATES LNCS 4581, 292–304.

Shelby, Z. (2011). Core link format. draft-ietf-core-linkformat-09.
Shelby, Z., K.Hartke, and B.Frank (2011). Constrained application protocol (coap). draft-ietf-

core-coap-08.
Verhaard, L., J.Tretmans, P. Kars, and E. Brinksma (1992). On asynchronous testing. Protocol

Test Systems of IFIP Transactions, 55–66.
Viho, C., S. Barbin, and L. Tanguy (2001). Towards a formal framework for interoperability

testing. In Proceedings of the IFIP TC6/WG6.1 - 21st International Conference on Formal
Techniques for Networked and Distributed Systems, FORTE ’01, pp. 53–68.

Zaidi, F., A. Cavalli, and E. Bayse (2009). Network protocol interoperability testing based
on contextual signatures. SAC ’09 Proceedings of the 2009 ACM symposium on Applied
Computing, 2–7.

Résumé
Le protocole CoAP (Constrained Application Protocol) est un protocole applicatif défini

pour l’Internet des objets (IdO). Dans ce contexte de l’IdO, l’interaction entre les objets com-
municants est de type machine-to-machine sans intervention humaine. Cela accroit les exi-
gences d’interopérabilité et oblige à définir des méthodes non intrusives pour les tester. Nous
proposons une méthode de test passif basé uniquement sur les observations des interactions
entre les composants à tester. Cette méthode et l’outil correspondant ont été utilisés lors de
l’événément du test d’interopérabilité (Plugtest) du protocole CoAP organisé par l’ETSI à Pa-
ris en Mars 2012. Cela a permis de tester avec succès un grand nombre d’implémentations
CoAP. Dans cet article, la méthode de test passif ainsi que l’outil associé sont présentés ainsi
que les résultats lors de leur utilisation au cours du Plugtest, montrant la validité et la pertinence
de notre approche.

- 18 -

