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Abstract. The centers method (Cazes et al., 1997, Chouakria, 1998) was the
first principal component analysis for interval-valued data (where it is implic-
itly assumed that values within an interval are uniformly distributed across that
interval). Many other methods have since been proposed. All fail in various
ways to capture fully all the information contained in the data. Here, we set
these in context against a new method which calculates the covariance matrix
exactly. This new method also includes a new visualization of the projection of
the observations onto the principal component space.

1 Introduction
There have been a number of methods proposed in the literature for obtaining principal

components for interval-valued data. More recently, Le-Rademacher and Billard (2012) has
developed a so-called symbolic covariance principal component analysis for such data, based
on the exact calculation of the covariance matrix which matrix is fundamental to any principal
component methodology. A brief description of the standard principal component methodol-
ogy is provided in Section 2.1. After describing the calculation of this exact covariance matrix
in Section 2.2, we review in Section 2.3 the various methods that currently exist against the
backdrop of that exact covariance matrix. Then, in Section 3, we illustrate the new symbolic
covariance principal component analysis method on the familiar oils data (Ichino, 1988). A
new visualization of the resulting projections of the observations onto the principal component
space based on polytopes is also shown. One consequence of the polytope projections is that
the separation of the observations is better than when the traditional maximal covering area
rectangles are used. Finally, in Section 4, we provide a symbolic-valued output of the princi-
pal components which better explains the output more accurately than that obtained using the
maximal covering area rectangles.

2 Background

2.1 Standard Principal Component Analysis
Let Y = (Y1, . . . , Yp) be random variables taking values in Rp. The basic idea behind

a principal component analysis is to transform the p-dimensional observations into a set of s-
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dimensional functions, with s ≤ p. Specifically, these functions, called principal components
PCν , are

PCν = eν1Y1 + · · ·+ eνpYp, ν = 1, . . . , p, (1)

where λν and eν = (eν1 , . . . , eνp) are the νth eigenvalue and νth eigenvector, respectively, of
the covariance matrix Σ, with

∑
j e

2
νj = 1, and where Var(PCν) = λν , and Cov(PCν , PCν′)

= 0, ν 6= ν′. Typically, rather than using the covariances directly, the data can be normalized,
so that the covariance matrix Σ becomes the correlation matrix Σ with elements calculated
from Σjk = Cov(Yj , Yk)/[Cov(Yj , Yj)Cov(Yk, Yk)]1/2, j, k = 1, . . . , p.

There are two key steps in this method. The first is the calculation of the p × p covari-
ance matrix Σ whose elements are Cov(Yj , Yk) (or equivalently, the correlation matrix with
elements Σjk), j, k = 1, . . . , p. The second is the projection of the observation Y through
(1) onto the s-dimensional principal component space Rs. Typically, s = 3 or 4, for most
applications. For complete details of this methodology, see any of the numerous texts on the
subject, e.g., Anderson (1984), Jolliffe (1986), and Johnson and Wichern (2002).

2.2 Symbolic Covariance Function
Suppose we have a set of random variables Y = (Y1, . . . , Yp) with realizations Yu, u =

1, . . . ,m, where each Yju takes values in the interval [aju, bju], j = 1, . . . , p, u = 1, . . . ,m.
Bertrand and Goupil (2000) derived the sample variance of Yj , S2

j , as

S2
j =

1

3m

m∑
u=1

[a2ju + ajubju + b2ju]− 1

4m2
[

m∑
u=1

(aju + bju)]2. (2)

An implicit assumption of this derivation is that values within an interval are uniformly dis-
tributed across that interval. A theoretical justification underlying this result is provided in
Le-Rademacher and Billard (2011). Except where so stated, in the sequel, this assumption will
be assumed.

Later, Billard (2008) showed (2) could be re-written, in terms of sum of squares (SS), as

Total SS = Between SS + Within SS (3)

where Total SS = mS2
j from (2) and

Between SS =

m∑
u=1

[(aju + bju)/2− Ȳj ]2, (4)

Within SS =

m∑
u=1

[(aju − Ȳju)2 + (aju − Ȳju)(bju − Ȳju) + (bju − Ȳju)2]/3 (5)

with

Ȳj =

m∑
u=1

(aju + bju)/(2m), j = 1, . . . , p, (6)

Ȳju = (aju + bju)/2, j = 1, . . . , p, u = 1, . . . ,m. (7)
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Note that the Within SS can also be written as

Within SS =

m∑
u=1

(bju − aju)2/12. (8)

Likewise, when considering two variables, Yj and Yk, the sum of products (SP) can be
shown to satisfy

Total SP = Between SP + Within SP (9)

where, for j, k = 1, . . . , p,

Between SP =

m∑
u=1

[(aju + bju)/2− Ȳj ][(aku + bku)/2− Ȳk], (10)

Within SP =

m∑
u=1

(bju − aju)(bku − aku)/12. (11)

Hence, the sample covariance Cov(Yj , Yk) = S2
jk = Total SP/m is given by

Cov(Yj , Yk) =
1

6m

m∑
u=1

[2(aju − Ȳj)(aku − Ȳk) + (aju − Ȳj)(bku − Ȳk)

+ (bju − Ȳj)(aku − Ȳk) + 2(bju − Ȳj)(bku − Ȳk)]. (12)

When j = k, the sample covariance function in (12) simplifies to the sample variance
function in (2). Also, in the special case that the data are classical points in Rp, we can write
the observation Y = a as Y = [a, a]. It is easily verified that the formulas for S2

j and S2
jk in

(2) and (12), respectively, reduce to their classical counterparts.
Clearly, the sample covariance functions calculated from (12) give the exact covariance

values for interval-valued data. As such, when applying the standard theory of Section 2.1,
exact eigenvalues and exact eigenvectors emerge. Hence, exact principal components from
(1) are obtained for each of the hypercubes governing each particular observation Hu, u =
1, . . . ,m, in Rp. This gives so-called symbolic covariance principal components. See Le-
Rademacher and Billard (2012).

2.3 Literature Review
The first method introduced for interval-valued data was the "centers" method, by Cazes

et al. (1997) and Chouakria (1998). Here, the interval-values [aju, bju] were replaced by
the interval centers or midpoints Xc

ju = (aju + bju)/2, for each j = 1, . . . , p and u =
1, . . . ,m. The covariance matrix was calculated from these Xc values and hence the principal
components from (1). By referring to (3) and (9), it is clear that the covariances are based on
the Between variations only and that the Within variations are not used. That is, there is a loss
of information.

Cazes et al. (1997) and Chouakria (1998) also introduced a "vertices" method. In this
case, the interval-values were replaced by two classical values, viz., the two interval end-
points, Y (1)

ju = aju and Y (2)
ju = bju. The elements of the covariance matrix now corresponded
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to the (Between SS/SP + Error SS/SP) where their Between SS/SP are as given in (4) and
(10), respectively. However, their Error SS/SP 6= Within SS/SP. Thus, while more of the
variation in the data is included compared with the centers method, some information is still
lost. Douzal-Chouakria et al. (2011) developed some refinements to the vertices method and
compared the results with several classical surrogates; but they did not address the loss of
information issue.

Later, a symbolic-object method, developed by Lauro and Palumbo (2000), uses the ver-
tices (Y

(1)
ju , Y

(2)
ju ) of the vertices method to calculate their covariance matrix based on the

centers Y cju. As for each of the vertices and centers methods, this symbolic object method also
does not use all the variation information contained in the data. Lauro and Palumbo (2000) also
developed a range-tranformation approach, and then combined this with their symbolic-object
method to give a "mixed" strategy.

Palumbo and Lauro (2003) converts the intervals [aju, bju] into two classical values, the
midpoint Y cju of the centers method and the range Y rju = (bju − aju) (or equivalently, Y rju/2),
j = 1, . . . , p, u = 1, . . . ,m, to give a midpoints-range method. It is easy to show that
Range SS/SP 6= Within SS/SP. Two covariance matrices are calculated, one based on the
midpoints and one on the ranges.

A number of other approaches has been introduced, e.g., Gioia and Lauro (2006) and Lauro
et al. (2008) have tried interval arithmetic ideas. However, this approach only works when the
intervals are short.

Unfortunately, all these methods in the literature fail in some way to use all the variations
inherent in the data; therefore, there is a loss of information. There are also some further
considerations.

First, there are implicit independence assumptions between the endpoints Y (1)
ju and Y (2)

ju

(in the vertices and related methods), and between the midpoints Y cju and the ranges Y rju (in
the range and related methods). Clearly, these independence assumptions are not sustainable.

Furthermore, suppose the data fit the special case that all intervals have the same midpoints;
e.g., [9, 11], [1, 19], [2, 18], . . . . In this case, the eigenvalues of the corresponding midpoint co-
variance matrix are zero. Hence, any of the methods which use the centers Y cju will not work,
i.e., the centers, symbolic-object, mixed, and range-transformation methods fail. Likewise,
when the data have intervals with common ranges, e.g., [0, 10], [20, 30], [120, 130], . . . , the
eigenvalues of the range covariance matrix are zero. Hence, methods which use the range
values will not work, e.g., the center-range and range-transformation methods fail. Notice
however that intervals with common midpoints, or intervals with common ranges, are still
differing observations with inherent variations; so any viable method has to be able to accom-
modate these special cases. The vertices method and the symbolic-covariance method work on
these special cases, as well as for classical data.

3 Illustration - Oils Data

3.1 Symbolic Principal Components

The symbolic covariance method is illustrated on the oils data of Ichino (1988). There are
p = 4 random variables, Y1 = specific gravity, Y2 = freezing point, Y3 = iodine value, and Y4 =
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Variable Eigenvector νk
Yj ν1 ν2 ν3 ν4
Y1 0.5395 0.4173 -0.0256 0.7308
Y2 -0.5280 -0.3203 0.5192 0.5908
Y3 0.5105 -0.0902 0.8018 -0.2973
Y4 -0.4117 0.8457 0.2948 -0.1686

TAB. 1 – Eigenvectors for oils data

saponification. Measurements were taken on each of m = 8 oils, specifically, linseed, perilla,
cotton, sesame, camellia, olive, beef, and hog.

The symbolic correlation matrix Σ, calculated from (2) and (12), for these data is

Σ =


1.0000 −0.9126 0.7714 −0.4338
−0.9126 1.0000 −0.6431 0.5126

0.7714 −0.6431 1.0000 −0.5874
−0.4338 0.5126 −0.5874 1.0000

 . (13)

The eigenvalues of Σ are

λ1 = 0.7385, λ2 = 0.1636, λ3 = 0.0857, λ4 = 0.0121;

and the eigenvectors corresponding to the νth principal component are as shown in Table
1. Hence, by application of (1), the principal component space for each observation can be
obtained.

3.2 Visualization
In a standard analysis, each observation Yu in Rp produces a corresponding principal

component PCνu from (1). If the observations are classical points, then the projection of
the point observation Yu is a point in the principal component space. However, when the
observation is a hypercube in Rp, then the projection of that observation is a polytope on the
principal component space. This is seen in Fig.1, where the shaded area refers to the projection
of one such observation H onto the PC1 × PC2 space. Previous methods, including those
reviewed in Section 2.3, have adopted the maximal covering area rectangle (MCAR) approach.
This rectangle is obtained according to PCνu = [PCaνu, PC

b
νu] with, for each u = 1, . . . ,m,

PCaνu = min
Yu∈Hu

(PCνu), PCbνu = max
Yu∈Hu

(PCνu)

where PCνu is calculated from (1) for each Yu ∈ Hu. Thus, the MCAR is the rectangle
covering the hypercube of Fig. 1.

Notice however that the MCAR principal component for an observation includes regions
(the unshaded parts of Fig. 1) that are projections of points not in the observed hypercube Y.
A first step in removing these unshaded parts was given by Irpino et al. (2003) in their parallel
edges connected shape (PECS) projection. Later, Le-Rademacher and Billard (2012) provide
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FIG. 1 – Maximum covering area rectangle (MCAR).

an algorithm based on polytope theory that allows for a projection into the principal component
space that matches the shaded region (of Fig.1). A comparison of these three projections
is shown in Fig. 2 (from Le-Rademacher and Billard, 2012, Figure 2). A consequence of
the MCAR representation is that observations may appear to overlap when they do not. The
polytope representation minimizes any overlapping to real/valid overlappping, and so produces
less cluttered plots.

The projections of the interval-valued data, or hypercubes, for the oils data onto the PC1×
PC2 space, obtained by the polytope approach, are shown in Fig. 3. From this Fig. 3, it is
clear that the linseed and perilla oils form one group, beef and hog oils form another group,
and cotton, sesame, camellia and olive oils form a third group. Visualization of the variables
will be covered elsewhere.

3.3 Symbolic Representation of Output Principal Components

Let us return to the projection of an observation onto the principal component space as
illustrated by the shaded region of Fig.1. Consider the 1st principal component, PC1, axis. As
specific values for PC1 change along this axis, the portion of the shaded region at those values
also changes. That is, the distribution of the output principal component, here PC1, is not
uniform (as is implicitly presumed when using the MCARs which also includes the unshaded
regions in the output principal component). Tab. 2 gives the output histogram for PC1 for the
oils data when PC1 is divided into 7 histogram sub-intervals. The details of this calculation
can be found in Le-Rademacher (2008).

4 Conclusion
For more complete details of this methodology as it applies to interval-valued data, includ-

ing more extensive illustrative comparisons with previous methods, see Le-Rademacher and
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FIG. 2 – Comparison of MCAR, PECS and polytope projection.

Billard (2012). Extensions to histogram-valued data are developed in Le-Rademacher (2008).
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Oil Histogram Output for PC1: {[ak, bk], pk; k = 1 . . . , 7}
linseed {[-4.290, -4.190], 0.003; [-4.190,-3.634], 0.105; [-3.634, -3.304], 0.126; [-3.304, -2.082], 0.534;

[-2.082,-1.752], 0.126; [-1.752, -1.196], 0.105; [-1.196, -1.096], 0.003}
perilla {[-1.744 -1.603], 0.127; [-1.603, -1.574], 0.058; [-1.574, -1.489], 0.214; [-1.489, -1.419], 0.203;

[-1.419, -1.334], 0.214; [-1.334, -1.305], 0.058; [-1.305, -1.164], 0.127}
cotton {[-0.441, -0.401], 0.011; [-0.401, -0.255], 0.210; [-0.255, -0.187], 0.180; [-0.187, -0.119], 0.199;

[-0.119,-0.051], 0.180; [-0.051, 0.096], 0.210; [0.096,0.136], 0.011}
sesame {[-0.688, -0.567], 0.145; [-0.567, -0.518], 0.142; [-0.518, -0.509], 0.031; [-0.509, -0.401], 0.364;

[-0.401, -0.392], 0.031; [-0.392, -0.343], 0.142; [-0.343, -0.222], 0.145}
camellia {[-0.559, -0.539], 0.008; [-0.539, -0.446], 0.251; [-0.446, -0.427], 0.090; [-0.427, -0.364], 0.300;

[-0.364, -0.344], 0.090; [-0.344, -0.251], 0.251; [-0.251, -0.231], 0.008}
olive {[-0.119, -0.019], 0.053; [-0.019, 0.136], 0.280; [0.136, 0.157], 0.055; [0.157, 0.242], 0.225;

[0.242, 0.263], 0.055; [0.263, 0.418], 0.280; [0.418, 0.518], 0.053}
beef {[2.235, 2.435], 0.151; [2.435, 2.489], 0.092; [2.489, 2.567], 0.153; [2.567, 2.670], 0.210;

[2.670, 2.747], 0.153; [ 2.747, 2.801], 0.092; [2.801, 3.002], 0.151}
hog {[1.840, 1.960], 0.033; [1.960, 2.179], 0.225; [2.179, 2.253], 0.114; [2.253, 2.412], 0.255;

[2.412, 2.486], 0.114; [2.486, 2.705], 0.225; [2.705, 2.825], 0.033}

TAB. 2 – Output histogram for PC1 for oils data


