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Abstract. Clustering is one of the most common operation in data analysis
while constrained is not so common. We present here a clustering method in the
framework of Symbolic Data Analysis (S.D.A) which allows to cluster Symbolic
Data. Such data can be constrained relations between the variables, expressed by
rules which express the domain knowledge. But such rules can induce a combi-
natorial increase of the computation time according to the number of rules. We
present in this paper a way to cluster such data in a quadratic time. This method
is based first on the decomposition of the data according to the rules, then we
can apply to the data a clustering algorithm based on dissimilarities.

1 Introduction.

The aim of cluster analysis is to organize a set of items into clusters such that items within
a given cluster have a high degree of similarity, whereas items belonging to different clus-
ters have a high degree of dissimilarity. Cluster analysis can be divided into hierarchical and
partitioning methods (Gordon (1999), Everitt (2001)). While hierarchical methods build hier-
archies, i.e., a nested sequence of partitions of the input data, partitioning methods try to obtain
a partition of the input data into a fixed number of clusters, usually by optimizing a function.

This paper addresses the partitioning of constrained symbolic data into a predefined number
of clusters. Symbolic data allows to manage some domain knowledge, provided by relations
between the variables. These relations are expressed by rules expressing knowledge among the
data. A good description of symbolic data can be found in Bock and Diday (2000).

Symbolic data are expressed by symbolic variables which are defined according to the type
of their domain. In this paper we will focus on set-valued variables which take their values
in a set of nominal categories and a list-valued variable which take as values list of ordered
categories.

Table 1 displays an example of two symbolic descriptions called d1 and d2, which are
described by three set-valued variables and one list-valued variable (Thorax size). These data
can be constrained by the dependencies rules r1, r2.
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Wings Wings_color Thorax_color Thorax_size
d1 {absent,present} {red,blue} {blue,yellow} {small,big}
d2 {absent,present} {red,green} {blue,red} {small}

TAB. 1 – Example of Symbolic Description

Wings ∈ {absent} =⇒Wings_color = N.A. (r1)
Wings_color ∈ {red} =⇒ Thorax_color ∈ {blue} (r2)

Symbolic Data Analysis (SDA) has provided different clustering tools that differ according
to the type of data and the type of clustering considered. We just give references:

Concerning Hierarchical Clustering:
Ichino and Yaguchi (1994) define generalized Minkowski metrics for mixed feature vari-

ables and present dendrograms obtained from the application of standard linkage methods for
data sets containing numeric and symbolic feature values. Gowda and Ravi (1995b) and Gowda
and Ravi (1995a) have presented, respectively, divisive and agglomerative algorithms for sym-
bolic data based on the combined use of similarity and dissimilarity measures. These proximity
(similarity or dissimilarity) measures are defined on the basis of the position, span and content
of symbolic objects.

Chavent (1998) has proposed a divisive clustering method for symbolic data which pro-
vides simultaneously a hierarchy of the data and a monothetic characterization of each cluster.

Concerning partitioning algorithms:
Ralambondrainy (1995) extended the classical k-means clustering method and comple-

mented this method with a characterization algorithm which provides a conceptual interpreta-
tion of the clusters.

Bock (2002) proposed several clustering algorithms for symbolic data described by inter-
val variables, and presented a sequential clustering and updating strategy for constructing a
Self-Organizing Map (SOM) to visualize interval data. De Carvalho et al. (2006) proposed a
dynamic clustering algorithm using an adequacy criterion based on adaptive Hausdorff dis-
tances. De Carvalho et al. (2006) introduced a dynamic clustering algorithm using a L2 dis-
tance emphasizing the standardization problem and presenting tools for cluster and partition
interpretation.

None of these methods is able to take constraints into account, because it leads usually to a
combinatorial growth of the computational time according to the number of rules (see § 4.2.2).

The main contribution of this paper is to present an approach which allows to cluster con-
strained symbolic data according to the following steps:

– Decompose the data according to the rules following the Normal Symbolic form.
– Compute a dissimilarity between the data to build a dissimilarity matrix.
– Apply a dynamic clustering algorithm on the dissimilarity data matrix.
We use a method, inspired by the third normal form (Codd (1971)) used in database, called

Normal Symbolic Form due to Csernel and de Carvalho (1999) to compute a dissimilarity
in presence of constraints in a quadratic time, whatever big the number of rules is. Using a
dissimilarity function allows to cluster any kind of items provided that a dissimilarity table can
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be built upon them. In this paper we propose to cluster the data by applying a dynamic cluster
algorithm (see section 3) directly to a dissimilarity table (Lechevallier (1974)).

2 Constrained Symbolic Data
A number of different definitions of symbolic descriptions is available in the literature.

Here, we refer for the main part to those given by Bock and Diday (2000): symbolic descrip-
tions can be represented by a vector of feature values s = (X1, . . . , Xj , . . . , Xp), where a
feature value Xj (j = 1, . . . , p), is a subset of the domain Dj of a variable yj .

Given a set of symbolic variables {y1, . . . , yp}, a symbolic description is a conjunction
of events pertaining to a particular object: s = [y1 ∈ X1] ∧ . . . ∧ [yp ∈ Xp]. For example,
s = [color ∈ {green, red}] ∧ [height ∈ [160, 190]] is a symbolic description having the
following properties:

a) color is either green or red.
b) height ranges between 160 and 190.

An individual description can be represented by a vector of feature values z = (z1, . . . , zp)
where a feature value zj (j = 1, . . . , p) can be a single nominal categorical value, or a single
categorical values or a single quantitative value. Given a set of individual descriptions E =
{z1, . . . , zn}, where zi = (z11 , . . . , z

p
i ), the extension of the symbolic description s is defined

as ext(s) = {zi ∈ E : zji ∈ Xj , i = 1, . . . , n , j = 1, . . . , p}. The virtual extension
of the symbolic description s is defined as vext(s) = {z = (z1, . . . , zp) : (z1, . . . , zp) ∈
X1 × . . .×Xp}. Of course, the following relation holds: ext(s) ⊆ vext(s).

Example: With the following individual descriptions

color size
Beatle1 Blue small
Beatle2 Red medium

and the following symbolic description.

color size
specie1 {Blue,Red} {small,medium}
specie2 {Yellow,Green} {medium,big}

The extension of specie1 is ext(specie1) = {Beatle1, Beatle2}, its virtual extension con-
tains four different elements: {Blue,small},{Blue,medium},{Red,small}, {Red,medium}.

2.1 Constraints on Symbolic Descriptions
Symbolic descriptions can be constrained by dependencies between couples of variables

expressed by rules. Such rules can be considered as constraints among the description space,
they produce some “holes” in it because they forbid some individual descriptions to be consid-
ered as a part of the virtual extension of a symbolic description. Each dependence is represented
by a rule. We will call premise variable and conclusion variable the variables associated, re-
spectively, with the premise and the conclusion of each rule. We take into account two kinds
of dependencies: hierarchical and logical.
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Let C be a set of categories. In the following P∗(C) will denote the power set of C with-
out the empty set. Let y1 and y2 be two categorical set-valued variables whose domains are
respectively C1 and C2.

A hierarchical dependence between the variables y1 and y2 is expressed by the following
kind of rule called hierarchical rule:

if [y1 ∈ P∗(C1)] =⇒ [y2 = N.A.]

where the term N.A. means not applicable hence the value of variable does not exist. With
this kind of dependence, we sometimes speak of mother-daughter variables. Few works have
considered the N.A. semantic, but we can mention the paper of Lerat and Lipski (1986) which
is mostly in the field of databases. In this paper, we will deal mostly with hierarchical rules.
The rule r1 described hereafter shows an example of such a rule:

if [Wings ∈ {absent}] =⇒ [Wings_color = N.A.] (r1).

A logical dependence between the variables y1 and y2 is expressed by the following kind
of rule:

if [y1 ∈ P∗(C1)] =⇒ [y2 ∈ P∗(C2)].

The rule r2 described hereafter shows an example of such a rule:

if [Wings_color ∈ {red}] =⇒ [Thorax_color ∈ {blue}] (r2)

Both of these rules reduce the number of individual descriptions belonging to the exten-
sion of a symbolic description, but the first kind of rule reduces the number of dimensions
of a symbolic description, whereas the second does not. It has been shown in De Carvalho
(1998) that computation using rules leads to exponential computation time depending on the
number of rules. To avoid this combinatorial explosion of computation time we introduced the
Normal Symbolic Form (N.S.F.) (Csernel and de Carvalho (1999), Csernel and de Carvalho
(2002), Csernel and de Carvalho (1998)).

2.2 The dependence graph induced by the rules
The different constraints allow us to build a directed graph where the nodes are the vari-

ables and the edges are representing the rules. Each edge goes from the premise variable to
the conclusion variable. This graph can be not connected. Because NFS induces a decomposi-
tion of the description space leaded by the premise variables, we can not deal generally with
variables which are conclusion of two different premise variables. Then, it results it is required
that the graph induced by the rules forms a tree or a set of trees.

Example: If we consider the three following rules:

– if [Hand ∈ {Absent}] =⇒ [ Hand_size = N.A.]
– if [Hand ∈ {Absent}] =⇒ [Finger = N.A.]
– if [Finger ∈ {Absent}] =⇒ [Finger_Size = N.A.]

they induce the following dependence tree between the variables (see Figure 1).
Remark: if two different rules are related to the same variables, they will produce one edge

only in the dependence graph.
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FIG. 1 – The dependence tree between the variables

2.3 The mutual interaction of the rules

The different rules in a knowledge base can interact mutually. Hereafter we will focus on
one type of interaction due to the kind of inheritance induced by hierarchical dependencies,
which leads to the following consequence: if we have the two following rules:

if [Hand ∈ {Absent}] =⇒ [Finger = N.A.]
if [Finger ∈ {Absent}] =⇒ [Finger_size = N.A.]

then, it’s an evidence that:
if Hand [∈ {Absent}] =⇒ [Finger_Size = N.A.]

This constitutes the Not Applicable propagation: if a variable is N.A., all its descendant within
the dependence graph will also be N.A.

2.4 The notion of Coherence

The combinatorial explosion of computation time induced by the presence of domain
knowledge is closely linked to the notion of coherence. Provided a domain knowledge ex-
pressed by a set of rules we say that

– An individual description is coherent if it respects the rules;
– A symbolic description is not coherent or incoherent if all the individuals belonging to

its virtual extension are not coherent;
– The coherent part of a symbolic description is its (non empty) virtual extension calcu-

lated when taking into account the rules;
– A symbolic description is fully coherent if its virtual extension calculated taking the

rules into account is equal to its virtual extension calculated without taking the rules into
account .

– We say that a symbolic description is coherent, if it is neither incoherent nor fully coher-
ent;

For example, if we have the following rule:

if [Wings ∈ {Absent}] =⇒ [Wings_color = N.A.] (r1)

and the following symbolic descriptions:
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description Wings Wings_color
d1 {Absent} {Blue, Red, Yellow}
d2 {Absent, Present} {Blue, Red, Yellow}
d3 {Present} {Blue, Red, Yellow}
d4 {Absent} {N.A.}

– d1 is not coherent : when Wing = Absent =⇒ Wings_color should be N.A., ac-
cording to r1 and this not the case. The virtual extension of d1 without taking the rule
into account is: vext(d1) = {(absent, blue), (absent, red), (absent, yellow)}. None
of these individual descriptions belonging to vext(d1) are coherent;

– d2 is coherent because Wings = {Absent, Present} and Wings_color has a set-
value. According to the rule, this set-value is meaningful only whenWings = Present,
but not when Wings = Absent. The virtual extension of d2 without taking the rule into
account is

vext(d2) = {(absent, blue), (absent, red), (absent, yellow),

(present, blue), (present, red), (present, yellow)}

whereas the virtual extension of d2 taking the rule into account is

vext(d2) = {(absent), (present, blue), (present, red), (present, yellow)}

As a consequence, d2 is neither incoherent nor fully coherent: it is coherent.
– d3 is fully coherent Wing = {Present} and Wing_color has a set-value, the rule

does not apply. As a consequence, its virtual extension taking into account the rule is
equal to its virtual extension without taking into account the rule:

{(present, blue), (present, red), (present, yellow)}.
– d4 is fully coherent Wing = {Absent} and Wing_color has no set-value, (N.A.) the

rule applies. As a consequence, its virtual extension taking into account the rule is equal
to its virtual extension without taking into account the rule {(absent)}.

It is because computations done on constrained symbolic objects need to be done only on
the coherent part of a description that the combinatorial explosion of the computation time
occurs:

– The different algorithms need to know precisely which part of the symbolic description
is coherent in order to make their computations only with this coherent part.

– The idea underlying the N.S.F. is to represent only the fully coherent part of a symbolic
description, in order to avoid the previously mentioned calculation.

If we can reach such a goal at a reasonable cost, then all the computation can be done using
background knowledge with a reasonable time (as if no background knowledge was used).

3 Dynamic Clustering Algorithms
Partitioning dynamical cluster algorithms (Diday (1973)) are iterative two-step relocation

algorithms involving the construction of clusters at each iteration and the identification of a
suitable representation or prototype (means, axes, probability laws, groups of elements, etc.)
for each cluster by locally optimizing an adequacy criterion between the clusters and their
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corresponding representatives (Diday and Simon (1976)). An allocation step is first performed
to assign individuals to clusters according to their proximity to the prototypes. This is followed
by a representation step where the prototypes are updated according to the assignment of the
individuals in the allocation step, until the convergence of the algorithm, when the adequacy
criterion reaches a stationary value.

Let Ω be a set of n items indexed by i and described by p variables indexed by j. Each item
i is represented by a vector of feature values xi = (x1i , . . . , x

p
i ). Throughout this paper, we

consider the problem of clustering Ω into K disjoint clusters C1, ..., CK such that the resulting
partition P = (C1, ..., CK) is optimum with respect to a given clustering criteria.

By adopting the framework of dynamic clustering (Diday and Simon (1976)), we represent
each cluster Ck ∈ P by a prototype yk, which is also a vector of feature values. Note that
yk could be not a member of Ω. We measure the quality of this cluster by the sum of the
dissimilarities d(xi, yk) between items i ∈ Ck and the prototype yk. This measure of quality∑

i∈Ck
d(xi, yk) is called the adequacy criterion of the cluster Ck. The classification problem

is to find a partition P and a set L of K prototypes that minimize the following clustering
criterion:

∆(P,L) =

K∑
i=1

∑
i∈CK

d(xi, yk) (1)

over all partitions P = (C1, ..., CK) of Ω and all choices of set L = (y1, ...yK) of cluster
prototypes.

In this context, the dynamic clustering algorithm performs iteratively both a representation
step and an allocation step:

a) Representation step (the partition P is fixed).

Find L that minimises ∆(P, •) is equivalent to find for k ∈ {1, ..,K}, the prototype yk
that minimises the adequacy criterion

∑
i∈Ck

d(xi, yk).

b) Allocation step (the set of prototypes L is fixed).

Finding P that minimises ∆(•, L) is equivalent to find for k ∈ {1, ..,K}, the cluster
Ck = {i ∈ Ω | d(xi, yk) ≤ d(xi, ym) ,∀m ∈ {1, ..,K}}

Once these two steps properly defined, the partitioning criterion (1) decreases at each itera-
tion and the algorithm converges to a stationary value of this criterion under the two following
conditions:

i) Unicity of the "cluster affectation" choice for each item of Ω.
ii) Unicity of the prototype yk choice that minimizes the adequacy criterion:∑

i∈Ck
d(xi, yk).

The dynamic clustering algorithm can also be performed using a distances between the
items, instead of using the items themselves. This introduces two major changes:

– The prototype is no more a "virtual" item, it must be a real one.
– We don’t use any more the data matrix, but a dissimilarity matrix.

3.1 Clustering algorithm on dissimilarity tables
We use a clustering criterion which is based on the sum of dissimilarities between the

individuals belonging to the same cluster, and try to minimise this clustering criterion by a
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suitable choice of the classes. The aim of the clustering process is to be able to group the objects
of a set Ω into k homogeneous clusters on the basis of a dissimilarity table. The proposed
approach is an application of the dynamical clustering method to the case of a dissimilarity
table (Lechevallier, 1974). The algorithm follows the main principles of the method.

The Algorithm:
– Initialisation:

Let Lo= {y(o)
1 , . . . , y(o)K } be the initial prototypes, defined as randomly chosen objects of

the set Ω = {x1, . . . , xK}
– Allocation step t:

An object xi ∈ Ω is assign to the classC(t)
k (k = 1, . . . ,K), if d(xi, y

(t−1)
k ) is minimum.

– Representation step t:
For k = 1, . . . ,K, find a prototype y(t)k ∈ Ω representing class C(t)

k ∈ P (t) which
minimises

∑
x∈C(t)

k

d(y(t)k , x).
– Stopping rule or stability:

If P (t+1) = P (t) then STOP else GO TO allocation step

4 A Dissimilarity to compare constrained symbolic data

Many proximity indices for symbolic data have been introduced in the literature, we will
describe here some of them. Gowda and Diday (1992) introduced, similarity functions with
position, span and content components. Ichino and Yaguchi (1994) presented the generalised
Minkowski metrics for mixed feature variables. Similarity and dissimilarity measures between
symbolic data constrained by dependency rules between feature values can be found in De Car-
valho (1994a). Chavent and Lechevallier (2002) proposed a dynamic clustering algorithm for
symbolic interval data where the class representatives are defined by a criterion based on a
modified Hausdorff distance. De Carvalho et al. (2006) presented a dynamic clustering algo-
rithm for interval data based on suitable Euclidean distances.

We can see in the literature that the usual way to compute dissimilarities between symbolic
descriptions is done comparing the values of each description, variable after variable. The
results of these comparisons are then agglomerated according to two different models:

– According to a multiplicative model: Then the rules are naturally taken into account,
because all variables are considered together.

– According to an additive model: In this case we can only take the rules into account
according to a ponderation which can be related to the rules and to the value of the
description on a specific variable.

To define a dissimilarity, we need a measure for each symbolic description: the description
potential, we also need some operations on symbolic description in order to combine them in
a proper way.

4.0.1 Usual operations with symbolic objects

We will recall here two different operations that we can use for dissimilarity computation
dealing with symbolic description. For the dissimilarity formula (2) described hereafter, we
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only need the join operator (note that the join operator here is quite different from the one used
in data base technology).

Let a =
∧p

i=1 [yi ∈ Ai] and b =
∧p

i=1 [yi ∈ Bi] two symbolic descriptions.
– The conjunction is defined as

a ∧ b =

p∧
i=1

[yi ∈ Ai ∩Bi]

– The join due to Ichino and Yaguchi (1994) between these two symbolic descriptions is
defined as

a⊕ b =

p∧
i=1

[yi ∈ Ai ⊕Bi]

where:
i) if yi is a symbolic set-valued variable (i.e. Ai and Bi are set of nominal categories);

Ai ⊕Bi = Ai ∪Bi

ii) if yi is a symbolic list-valued variable (i.e. Ai = [low(Ai), up(Ai)] and Bi =
[low(Bi), up(Bi)] are lists of ordered categories )

Ai ⊕Bi = [min(low(Ai), low(Bi)),max(up(Ai), up(Bi))]

iii) if yi is an interval-valued variable:
(i.e. Ai = [low(Ai), up(Ai)] and Bi = [low(Bi), up(Bi)] are intervals of <)

Ai ⊕Bi = [min(low(Ai), low(Bi)),max(up(Ai), up(Bi))]

The figure 2 illustrates these operations for symbolic interval-valued variables.

FIG. 2 – Some operations between symbolic descriptions

4.1 The proximity function
For our proximity function, we will need the join operator previously defined. We will also

use a measure called description potential.
If d = ∧pi=1C

1
i is a symbolic description, we will denote π(d) the description potential of

d. When no rules are envolved, the description potential is a measure defined on the Cartesian
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product C1 × . . .×Cp, where Ci ⊆ Di, Di being the domain of the symbolic variable yi. We
will describe this measure more in details in the next section. The dissimilarity function we
will use:

δ(a, b) =
1

2
[π(a⊕ b)− π(a) + π(a⊕ b)− π(b)] (2)

is inspired from Ichino and Yaguchi (1994) and has been introduced in De Carvalho (1998) .
Examining more precisely formula (2) we see that this distance consists of two parts, the

first part corresponds to the description of a opposed to the description of a ⊕ b, the second
part to the description of b opposed to the description of a⊕ b.

We can see on the Figure 3 a diagram corresponding to formula (2). The dissimilarity value
corresponds to the doted part of the figure.

FIG. 3 – The diagram corresponding to the distance function

4.2 Computation of Description Potential

The Description Potential (De Carvalho (1998)) is a frequently used measure when dealing
with symbolic descriptions, specially in the case of dissimilarity computation.

Formal definition: Let d = ∧pi=1[yi ∈ Ci] be a symbolic description where Ci is a subset
of the domain (Di) of the variable yi. We denote as π(d) the description potential of d. It is
a measure defined on the coherent part of d (i.e., the virtual extension of d calculated taking
into account the rules). In the following we will describe more precisely how to compute the
description potential.

4.2.1 Computation of Description Potential without rules

If d is a symbolic description

π (d) =

p∏
i=1

µ (Ci) (3)

where
– if yi is a symbolic set-valued variable (i.e. Ci is a set of nominal categories), µ (Ci) is

the cardinal of Ci;
– if yi is a symbolic list-valued variable (i.e. Ci = (low(Ci), up(Ci)) is a list of ordered

categories ), µ (Ci) = (rank(up(Ci))− rank(low(Ci))) + 1 where rank is a function
which gives the ranking of an ordered category in Ci;
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– if yi is an interval-valued variable (i.e. Ci = [low(Ci), up(Ci)] is an interval of <),
µ (Ci) is the value of the difference between the upper bound and the lower bound of
the interval Ci.

The computation is purely quadratic, and for each symbolic description the computation
time is clearly linearly dependent from the number of variables.

4.2.2 Computation of Description Potential with rules

As the “holes” generated by the rules in the description space can intersect, the computation
becomes quickly combinatorial according to the number of holes which can intersect, i.e. the
number of rules. The “holes” induced by the different rules must be dropped out of the volume,
but their intersection two by two must be put back.

Let d = ∧pi=1[yi ∈ Ci] be a symbolic description constrained by a set of rules {r1, . . . , rt},
each rule expressing a dependency among the variables, then π(d | {r1, . . . , rt}) expresses the
value of the potential of d in presence of the set of rules {r1, . . . , rt}. It can be proven that:

π(d | {r1, . . . , rt}) =

p∏
i=1

µ(Ci)−
t∑

j=1

π(d ∧ ¬rj) +
∑
j<k

π((d ∧ ¬rj) ∧ ¬rk) + · · ·

+(−1)t+1π((d ∧ ¬r1) ∧ ¬r2) ∧ · · · ∧ ¬rt) (4)

The complexity of the formula (4) due to De Carvalho (1994b) is exponential according to
the number of rules, and linear according to the number of variables. One can remark that this
formula is very similar to Poincarre’s formula.
Example: Let

d = [y1 = {a1, a2}] ∧ [y2 = {b1, b2}] ∧ [y3 = {c1, c2}] ∧ [y4 = {d1, d2}]
be a symbolic description where all the symbolic variables are set-valued. Without rules the
computation of the description potential is quite straightforward:

π(d) = 2× 2× 2× 2 = 16

However, if we have the two following rules:

if [y1 ∈ {a1}] =⇒ [y2 ∈ {b1}] (r4)
if [y3 ∈ {c1}] =⇒ [y4 ∈ {d1}] (r5)

Then we must consider all the individuals belonging to the virtual extension of d to verify if
they fit the rules.

Table 2 shows the virtual extension of d. In this table, each line belonging to one half of
the array represents an individual description which is numbered. The “coherence" column
contains a Y or a N according to the fact that the individual is coherent or not. If the individual
is not coherent, the number of the rules by which the incoherence occurs is indicated within
parenthesis.

All lines with an N contribute to the first term of the formula (4): (−
t∑

j=1

π(d ∧ ¬rj)).

Line 6 which has N(r3, r4) in the coherence column is also corresponding to the second
term of the formula (4): (+

∑
j<k

π((d ∧ ¬rj) ∧ ¬rk)).
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No description (individual) coherence No description (individual) coherence
1 (a1, b1, c1, d1) Y 9 (a2, b1, c1, d1) Y
2 (a1, b1, c1, d2) N(r4) 10 (a2, b1, c1, d2) N(r4)
3 (a1, b1, c2, d1) Y 11 (a2, b1, c2, d1) Y
4 (a1, b1, c2, d2) Y 12 (a2, b1, c2, d2) Y
5 (a1, b2, c1, d1) N (r3) 13 (a2, b2, c1, d1) Y
6 (a1, b2, c1, d2) N(r3,r4) 14 (a2, b2, c1, d2) N(r4)
7 (a1, b2, c2, d2) N(r3) 15 (a2, b2, c2, d1) Y
8 (a1, b2, c2, d2) N (r3) 16 (a2, b2, c2, d2) Y

TAB. 2 – Virtual extension of d

The value of the potential considering the rules correspond to the number of lines marked
by a Y. The value of the potential is 9 instead of 16 without rule.

As, in this example, we get only two rules, we need to consider the two first terms of the
formula (4) only. As there is no additivity among the different elements, we must drop out the
volume according to each rule. Then put back the volume corresponding to their intersection.

It’s to avoid this kind of problem when we are dealing with a dissimilarity computation,
that we were induce to introduce the Normal Symbolic Form. The main idea is to split the
description space in such a way that we represent only the fully coherent part of the symbolic
description. As in the fully coherent description we do not have to check any more if the rules
apply or not, the computation is rather quicker and easier.

5 Normal Symbolic Form
In order to provide a better explanation on what the Normal Symbolic Form (N.S.F.) is, we

will start our explanation by the following example:

Wings Wings_color Thorax_color Thorax_size
d1 {absent,present} {red,blue} {blue,yellow} {big,small}
d2 {absent,present} {red,green} {blue,red} {small}

TAB. 3 – Original table.

In the symbolic data table presented above there are two symbolic descriptions d1, d2, and
three categorical set-valued variables. The values are constrained by two rules previously seen:
a hierarchical one denoted r1 and a logical one denoted r2 :

[Wings ∈ {absent}] =⇒ [Wings_color = N.A.] (r1)
[Wings_color ∈ {red}] =⇒ [Thorax_color ∈ {blue}] (r2)

The result of the N.S.F. transformation can be seen in the tables of the figure 4. In these
tables the upper left corner contains the table name. A new kind of column appears where each
values is a number referring to the corresponding line in the table having the same name as the
column, they correspond to reference variables.

The first table (with no name) is called the Main Table, it refers to the original table (here
Table (3)). The other tables are called secondary tables, each of them has a name corresponding
to the premise variable of the rule which induced it.



M. Csernel, F.A.T. de Carvalho

In each secondary table, a double line separates the lines where the first variable verifies the
premise, from the lines where the first variable does not verify it. The lines in bold characters
correspond to the description of d1, the table names are in italic.

Each line of a secondary table represents a subset of the coherent part of a symbolic descrip-
tion in the original table. Furthermore, each symbolic description is associated with a subset of
lines which constitutes a partition of the coherent part of the symbolic description. Then, only
the coherent part of a description is represented under N.S.F.. For example in Color_T table,
the number lines 1,2,4, forms a partition of the coherent part of d1.

Wings_T Thorax_size
d1 { 1, 3} {big,small}
d2 {2,4} {small}

Wings_T Wings Color_T
1 absent 4
2 absent 5
3 present { 1, 2 }
4 present { 1, 3 }

Main Table Wing_T Table

Color_T Wings_color Thorax_color
1 { red } {blue }
2 { blue } { blue, yellow }
3 { green } {blue, red }
4 N.A. { blue, yellow }
5 N.A. { blue, red }

Color_T Table

FIG. 4 – Decomposition of table 3 according to N.S.F.

We have now three tables instead of a single one, but only the valid parts of the descriptions
are represented: now, the tables include the rules r1 and r2.

We can remark a growth of the space needed to describe this symbolic descriptions. In
the Color_T Table we need 5 lines to describe 2 items. In the original table only two lines
where needed. In fact, when there are more items, instead of a memory growth we obtain
a memory reduction due to factorization. A complete discussion about this problem can be
found in Csernel and de Carvalho (2002).

5.1 Formal Definition
We shall give in this section a more formal definition of the N.S.F. We say that a symbolic

data table is under N.S.F. if it fulfills the following conditions.
– First N.S.F. Condition: No dependencies exist between variables belonging to the same

table, but between the first variable and the others.
– Second N.S.F. Condition: For one symbolic description, all the values of a premise

variable must lead to the same conclusion.
Most of the time, in order to fulfill the N.S.F. conditions a symbolic array needs to be de-

composed, as a relation needs to be decomposed to fulfill Codd’s normal forms (Codd (1971)).
Concerning the first N.S.F. condition, one can remark that:
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– The reference to the first variable is only for convenience, any other place should have
fit, as long as this place is constant.

– The first condition implies that N.S.F. is fully efficient only when the dependences be-
tween the variables induced by the rules form a tree or a set of trees.

– We have to decompose the data into different tables.
– Because of the table decomposition due to this condition, we have to introduce new

variables called reference variables.
The second N.S.F. condition has one main consequence:
– We have to decompose each individual within a table in two parts:

1) One part where the premise is verified. In this case all the conclusions appearing in
the rules apply.

2) One part where the premise is not verified. The values corresponding to the conclu-
sion variables stay unchanged.

The different tables will form a unique tree according to the dependencies. Each of the
dependence between the variables forms a branch of the table tree. The root of the tables tree
is the Main Table. To refer from one table to another one, we introduce the reference variables,
these new variables introduce a small space overhead.

All the tables, but the Main Table, are composed in the following way:
– The first variable is a premise variable, all other variables are conclusion variables;
– In each line the premise variable can lead to an unique conclusion for all conclusion

variables;
– If we want to represent different conclusions within a table, we need to represent for

each object as much lines as we have conclusions.
The main advantage of the N.S.F. is that after this transformation we do not have to worry

about the rules any more, we are quadratic (O(N2) in case of dissimilarity computation) as if
there were no rule to consider.

For example, if we got the following rule:

if Wings_color ∈ {red} =⇒ Thorax_color ∈ {blue}

N0 Wings_color Thorax_color
1 { red,blue } {blue,yellow }

becomes
N0 Wings_color Thorax_color
1 { red } {blue}
2 { blue } { blue, yellow}

One can notice that the union of these two lines gives the initial line.

6 Computation of dissimilarities under N.S.F.
Compute the potential of a symbolic description under N.S.F. is straightforward, because

under N.S.F. only the valid parts of the objects are represented. So once under N.S.F. the
potential computation is quadratic.

We proceed in a recursive way. Each line of a secondary table describes a coherent sym-
bolic description, and all the lines contributing to the representation of the same object describe
symbolic descriptions which do not intersect (by construction). So one has to sum up the po-
tential described by each line of a secondary table.
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Wings_T Thorax_size pot
d1 {1,3} {big,small} 10
d2 {2,4} {small} 5

Wings_T Wings Color_T pot
1 absent 4 2
2 absent 5 2
3 present {1,2} 3
4 present {1,3} 3

Main Table Wing_T table

Color_T Wings_color Thorax_color pot
1 red {blue } 1
2 blue { blue, yellow } 2
3 green {blue, red } 2
4 N.A. { blue, yellow } 2
5 N.A. { blue, red } 2

Color_T table

FIG. 5 – Computation of the description potential using N.S.F.

On the example described in the figure 5, the potential of each line of the secondary table
2 (Color_T table) has to be computed first, then the lines of the secondary table 1 (Wing_T
table), and at last the potential of each object described in the main table. For example line 3
of the secondary table 1, refers to the lines 1 and 2 of the secondary table 2. The potential is
the sum of the potential described by these two lines: 1+ 2 = 3. The description potential of d1
is obtained by multiplying the sum of the potentials of lines 1 and 3 of the secondary table 1 (2
+ 3) by the potential due to the variable Thorax_size (2) giving the result 10. In the same way,
the description potential of d2 is obtained giving the result 5.

Note that without rules the results would be π(d1) = 2 × 2 × 2 × 2 = 16 and π(d2) =
2× 2× 2× 1 = 8 (see figure 3 for the original data).

The computation of the description potential is done recursively, following the tables tree.
To compute a dissimilarity between symbolic descriptions, such as the dissimilarity described
in formula (2), we will need not only to compute the potential of one symbolic description, but
also to compute the potential resulting from the join operation. The results of such operation
have been studied by Csernel and de Carvalho (1999), and they demonstrated that the N.S.F. is
stable for this operation, i.e. the result of a join operation between two symbolic descriptions
under N.S.F. is still under N.S.F. However, this operation, which can create new symbolic
descriptions, needs the application of some of the original rules to be achieved correctly. The
complexity will remain identical; it has been demonstrated in Csernel and de Carvalho (1998)
that the computational time is always linear according to the number of variables.

Figure 6 illustrates why, in some cases, the application of a rule on the result of the opera-
tion could be needed again.

The description space is divided in two parts, which on the schema are separated by a black
line: in the upper part a rule R applies, and in the lower part the rule does not applies. We have
denotes RA the part of the description space where the rule applies and RN the part where
the rule does not apply. In the part where the rule applies the forbidden zone appears in black.
When the join operation is performed between two descriptions d1 and d2, if both descriptions
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FIG. 6 – Rule influence on a dissimilarity computation

have a part in RA (such as in the left part of the schema) no problem occurs, but we have some
problem if one of the description is belongs only to RA and the other only in RN (as in the
right part of the schema), then the new symbolic description created by the join operation (in
pointed grey on the schema) can cover the forbidden area (which represents the rule). To avoid
this coverage, the rule must be applied once again, i.e we must compute the coherent part of
the description which is a linear in N the number of objects because in each secondary table
only one rule is associated. If the description corresponds to the right part of the schema the
result is always coherent and no further operation is needed.

If we compute the similarity function using formula 2 (page 10) we must compute the
expression d1 ⊕ d2. We start with the Main Table, and for each secondary table, as much as
possible, we compute apart the potential coming form R and the one coming from Rn and we
sum them up. We will denote πw the potential related to Wing_T table and πc the potential
related to the Color_T table. For each line the first term (2 for the first line) correspond to
the value of the description potential computed directly from local variables, the other term
correspond to the description potential obtained trough the other secondary tables.

– π(d1 ⊕ d2) = 2 ∗ (πw(1⊕ 2) + πw(3⊕ 4));
– πw(1⊕ 2) = 1 ∗ (πc(4⊕ 5)) = 1 ∗ 3 = 3;
– πw(3⊕ 4) = 1 ∗ (πc(1) + πc(2⊕ 3)) = 1 + 1 ∗ (2 ∗ 3) = 7;
– π(d1 ⊕ d2) = 2 ∗ (3 + 7) = 20.
Note that without the rules the result would be π(d1 ⊕ d2) = 2× 3× 3× 2 = 36.
Finally, the dissimilarity between d1 and d2, according equation (2) is

δ(d1, d2) =
1

2
((20− 10) + (20− 5)) = 12.5

Note that without the rules the result would be

δ(d1, d2) =
1

2
((36− 16) + (36− 8)) = 24.0

Considerations about complexity
At first, we consider the complexity of the N.S.F. transformation. This complexity con-

cerns only the secondary matrices and is in O(N2), N being the number of objects. Due to
factorization,the number Ns of line of a secondary table is generally a lot smaller than N , so
the complexity is a lot smaller (see Csernel (1998) for more details).

Concerning space complexity (the size of the secondary table induced by the N.S.F. de-
composition), it have been demonstrated in Csernel and de Carvalho (2002) that if N is the
number of objects then the number of lines of a secondary table is at most N + 1 if it has been



M. Csernel, F.A.T. de Carvalho

induced by hierarchical rules, and at most 2N if it has been induced by logical rules, but that
it is generally smaller because of the factorization (as noted previously), and we observed on
real examples secondary tables five or ten times smaller than the main tables.

The only drawback induced by computation under N.S.F. is due to the use of the reference
variables and the possible additions induced by them.

The complexity of the computation of one distance between two objects is O(p), where p
is the number of variables. The complexity of the computation of the dissimilarity matrix is
O(N2). The complexity of the dynamic clustering algorithm, based on dissimilarity table, once
the dissimilarity table has been computed, is in the worst case the complexity of a sort (O(N ∗
Log(N)), and, in the best case in 0(N); it is really smaller than the distance computation, we
can repeat the trials without changing the global complexity of the process.

The global complexity for the entire process is therefore in O(N2). It is mainly due to the
distance computation and it behaves as if they were no rule to consider.

7 Experimental Results

To validate the proposed approach, we have conducted several experiments on the follow-
ing biological symbolic data sets: species of podostemaceae and sub-species of Phlebotominae
(genus Lutzomyia) of French Guyana. These experiments have been detailed in De Carvalho
et al. (2009), and have two main issues: the execution time was quadratic, and the presence of
the rules greatly improve the classification as expressed in the tables 4 and 7.

To compare the clustering results furnished by the clustering algorithm, and the a priori
we will use the corrected Rand index (CR), as well as error rate of classification (OERC)

The corrected Rand (CR) index (Hubert and Arabie (1985)) measures the similarity be-
tween an a priori partition and a partition furnished by a clustering algorithm. It takes its
values within the interval [-1,1] where 1 indicate a perfect agreement between partitions, and
values near 0 (or negative values) correspond to cluster agreement found by chance.

The Podostemaceae
The Podostemaceae is a family in the order Malpighiales. It comprises about 50 generae

and 250 species of more or less thalloid aquatic herbs. The Podostemaceae data set consists
of 12 species of aquatic herbs described by 14 symbolic set-valued variables, 13 symbolic
list-valued variables and one nominal variable (Vignes (1991)). There are 9 hierarchical rules.
These rules are represented by 6 different connected graphs involving 15 symbolic variables.
All the symbolic set-valued and list-valued variables were considered for dissimilarity compu-
tation purpose taking or not into account the 9 hierarichical rules, the nominal variable Genus
(Dalzellia, Ind otristicha, Malaccotristicha, Tristicha and Weddellina) was used as an a priori
classification.

The dynamic clustering algorithm was applied to the dissimilarity table which was build
according to the dissimilarity function (formula 2 page 10) taking or not taking into account the
9 hierarchical rules. The 5-clusters partition obtained with this method applied to dissimilarity
tables build with or without taking into account the nine hierarchical rules were compared with
the 5-clusters partition known a priori. The algorithm best result according to the adequacy
criterion was selected. CR and OERC indices were calculated for the best result.

The a priori classification is the following:



Normalizing Constrained Symbolic Data for Clustering

A-Tristicha(T): 1-Trifaria pulchella 2-Trifaria tlatlayana 3-Australis 12-Trifaria trifaria

B-Indotristicha(I): 4-Ramosissima 5-Tirunelveliana

C-Dalzellia(D): 6-Carinata 7-Diversifolia 8-Sessilis 9-Ceylanica

D-Malaccotristicha(M) : 10-Malayana

E-Weddellina(W) : 11-Squamulosa

Dissimilarity data sets Without taking into account the rules Taking into account the rules
Cluster1 1/T 3/T 6/D 7/D 8/D 9/D 10/M
Cluster2 11/W 1/T 2/T
Cluster3 2/T 12/T
Cluster 4 3/T 6/D 7/D 8/D 9/D 10/M 12/T 4/I 5/I
Cluster 5 4/I 5/I 11/W

TAB. 4 – Clustering Results for the species of podostemaceae

Table 4 shows clearly that the 5-clusters partitions given by the clustering algorithm applied
on the data while taking the rules into account are closer to the 5-classes partition known a
priori than it is in the 5-clusters partitions obtained by the same algorithms applied without
taking rules into account.

The CR and OERC indices corroborate this conclusion: the indices obtained from the
results displayed in Table 4 were, respectively, 0.288 and 0.333 without taking the rules into
account, and 0.617 and 0.250 when the 9 hierarchical rules were considered.

In conclusion, the algorithm had better performances when it take into consideration the
hierarchical rules in the computation of dissimilarities.

The Phlebotominae
The sub-species of Phlebotominae (genus Lutzomyia) data set consists of 70 species of

sand flies described by 18 symbolic set-valued variables, 33 symbolic list-valued variables and
one nominal variable (Vignes (1991)). There are 4 hierarchical rules. These rules are repre-
sented by 2 different connected graphs involving 6 symbolic variables. All the symbolic set-
valued and list-valued variables were considered for the dissimilarity computation with and
without taking into account the 4 hierarchical rules.

The Phlebotominae subfamily includes numerous genera of blood-feeding flies, including
the primary vectors of leishmaniasis, sandfly fever. In the New World, leishmaniasis is spread
by sand flies of the genus Lutzomyia, which are common inhabitants of caves, where they feed
on bats. The nominal variable Groups of genus Lutzomyia (1-Aragoi, 2-Baityi + Cayennen-
sis + Oswaldoi, 3-Dreisbachi + Microps, 4-Evandromyia, 5-Lutzomyia, 6-Migonei + Saulen-
sis, 7-Nyssomyia, 8-Pilosa + Trichopygomyia, 9-Pintomyia + Pressatia, 10-Psathyromyia, 11-
Psychodopygus, 12-Trichophoromyia, 13-Verrucarum, 14-Viannamyia) was used as an a pri-
ori classification.

The clustering algorithm were applied to the dissimilarity table computed with the formula
2 with or without taking the 4 hierarchical rules into account.

The 14-clusters partitions obtained with this method by applied to the dissimilarity data
sets with and without the 4 hierarchical rules were compared and with the 14-classes partition
known a priori.

The a priori classification is :
A-Aragoi: 5-aragaoi 7-barrettoi barrettoi 11-brasiliensis 32-inflata

B-Baityi+Cayennensis+Oswaldoi 40-Moucheti 14-cayennensis 38-Micropyga 50-quadrispinosa 46-peresi 51-rorotaensis
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64-trinidadensis

C-Dreisbachi+Microps: 22-dreisbachi 27-fluviatilis 57-sordellii

D-Evandromyia:10-brachyphalla 33-infraspinosa 39-Monstruosa 48-pinottii

E-Lutzomyia:13-carvalhoi 29-gomezi 35-lichyi 58-spathotrichia

F-Migonei+Saulensis:43-pacae 54-sericea 68-walkeri 52-saulensis

G-Nyssomyia: 3-anduzei 4-antunesi 25-flaviscutellata 61-sylvicola 67-umbratilis 69-whitmani 70-yuilli pajoti

H-Pilosa+Trichopygomyia: 15-chassigneti 47-pilosa 36-longispina 63-trichopyga

I-Pintomyia+Pressatia: 59-spinosa 16-choti 23-equatorialis 62-triacantha

J-Psathyromyia: 1-abonnenci 12-campbelli 20-dendrophyla 37-Lutziana 49-punctigeniculata 53-scaffi 56-shannoni

K-Psychodopygus: 2-amazonensis 6-ayrozai 8-bispinosa 17-claustrei 18-corossoniensis 19-davisi 21-dorlinsis 30-guyanensis

31-hirsuta 41-nocticola 44-panamensis 45-paraensis 60-squamiventris Maripaensis

L-Trichophoromyia: 9-brachipyga 26-flochi 34-ininii 66-ubiquitalis

M-Verrucarum: 42-odax 55-serrana

N-Viannamyia: 24-fariasi 28-furcata 65-tuberculata

The clustering algorithm was run 500 times and the best result according to the adequacy
criterion is selected. CR and OERC indices were calculated for the best result. Table 7 shows
the clusters given by the clustering algorithm.

Dissimilarity data sets Without taking into account the rules Taking into account the rules
Cluster 1 5/A 6/K 7/A 10/D 5/A 7/A 11/A 32/A 37/J

19/K 22/C 25/G 27/C
30/K 31/K 35/E 36/H

45/K 64/B 66/L
Cluster 2 24/N 28/N 10/D 16/I 23/I 36/H 52/F

54/F 62/I 63/H
Cluster 3 48/D 2/K 6/K 8/K 17/K 18/K

19/K 21/K 30/K 31/K 41/K
44/K 45/K 60/K

Cluster 4 16/I 23/I 62/I 20/J 53/J 56/J
Cluster 5 1/J 4/G 13/E 20/J 56/J 24/N 28/N 65/N
Cluster 6 18/K 21/K 61/G 22/C
Cluster 7 9/L 33/D 35/E 39/D 59/I 68/F
Cluster 8 11/A 26/L 32/A 34/L 3/G 4/G 25/G 61/G 67/G

69/G 70/G
Cluster 9 2/K 17/K 33/D 39/D 41/K 27/C 57/C

44/K 49/J 58/E 63/H
Cluster 10 40/B 12/J
Cluster 11 3/G 15/H 47/H 67/G 70/G 9/L 26/L 34/L 66/L
Cluster 12 12/J 60/K 1/J 49/J
Cluster 13 37/J 54/F 68/F 69/G 14/B 15/H 38/B 40/B 42/M

46/B 47/H 48/D 51/B 55/M
64/B

Cluster 14 8/K 14/B 29/E 38/B 42/M 13/E 29/E 43/F 50/B 58/E
43/F 46/B 50/B 51/B 52/F
53/J 55/M 57/C 59/I 65/N

FIG. 7 – Clustering Results: Sub-species of Phlebotominae genus Lutzomyia

Tables 7 shows clearly that the 14-clusters partition given by the clustering algorithms,
applied on dissimilarity taking the rules into account, is closer to the 14-classes partition known
a priori than the 14-clusters partition given by the same clustering algorithms applied without
taking into account the rules.

The computation of CR and OERC indices corroborate this conclusion. The CR and
OERC indices obtained from the results displayed in Table 7 were, respectively, 0.192 and
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0.528 for the dissimilarity without taking into account the hierarchical rules, and 0.750 and
0.228 for the dissimilarity taking into account the rules.

In conclusion, the algorithm had a better performance in clustering species of phlebotomi-
nae taking into consideration the hierarchical rules in the computation of dissimilarities.

8 Concluding remarks
The main contribution of this paper is to describe an approach to cluster symbolic data

constrained by rules between variables in a quadratic time. We used for this approach a well
known clustering algorithm, the dynamic clustering algorithm which performs on dissimilarity
table, but the data were decomposed before using the Normal Symbolic Form (N.S.F.). We have
detailed all the operations needed to perform this decomposition, and experimental results have
proven the usefulness of this approach. We need now to adapt the N.S.F. to histogram variables
and use it on other data set directly extracted from data bases.
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