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Abstract. Histograms are commonly used for representing summaries of ob-
served data and they can be considered non parametric estimates of probabi-
lity distributions. Symbolic Data Analysis formalized the concept of histogram
symbolic variable, as a variable which allows to describe statistical units by hi-
stograms instead of single values. In this paper we present a linear regression
model for multivariate histogram variables. We use a Least Square estimation
method where the sum of squared errors is defined according to the `2 Wasser-
stein metric between the observed and the predicted histogram data. Consistently
with the l2 Wasserstein metric, we solve the Least Square computational prob-
lem by introducing a suitable inner product between two vectors of histogram
data. Finally, measures of goodness of fit are discussed and an application on
real data shows some interpretative advantages of the proposed method.

1 Introduction
Symbolic Data Analysis (SDA) is a relatively new statistical approach concerning the anal-

ysis of higher level individuals (like typologies, classes or concepts) that are described by
multi-valued variables (Bock and Diday (2000); Diday and Noirhomme-Fraiture (2008)).
The term symbolic variable was coined in order to introduce such new set-valued descriptions.
In a classic data table (n×p individuals per variables) each individual is described by a vector of
values, similarly, in a symbolic data table each individual is described by a vector of set-valued
descriptions (like intervals of values, histograms, set of numbers or of categories, sometimes
equipped with weights, probabilities, frequencies, an so on). According to the taxonomy of
symbolic variables presented in Bock and Diday (2000) we may consider as numerical sym-
bolic variables all those symbolic variables whose support is numeric. The main quantitative
and multi-valued symbolic variable types are interval and modal numeric symbolic variable.
Linear regression models allow to modeling the linear relationship between a quantitative re-
sponse symbolic variable and a set of independent or explicative quantitative symbolic variables
of the same type. Regression models for interval data extend the classic linear model to inter-
val variables (see Afonso et al. (2008) and Lima Neto and de Carvalho (2010)) and the therein
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references for a full overview of regression models for interval symbolic data).
In this paper we focus on the regression analysis of histogram symbolic data which are realiza-
tions of histogram symbolic variables (such variables are particular cases of modal symbolic
variables). In Billard and Diday (2006) was presented a first regression model for histogram
variables. This approach is based on the basic statistics (i.e., the mean, the standard deviation
and the correlation) proposed by Bertrand and Goupil (2000). However, the proposed model
allows to predict punctual values and only using Monte Carlo procedures it is possible to pre-
dict a response histogram variable given a set of observed explicative histogram variables (the
authors themselves leave as open problem the output prediction in terms of symbolic data).
In order to be fulfill such requirement, (i.e. a model that have in input histogram variables
and as output a response histogram variable too) Verde and Irpino (2010) proposed a simple
linear regression model for histogram variables. The parameters of the model are estimated
using the `2 Wasserstein distance (also known as Mallow’s distance (Rüschendorf, 2001)) for
defining the residual sum of square criterion of the Least Square method. Recently, Dias and
Brito (2011) proposed a multivariate linear regression model for histogram data (HD) based
on the `2 Wasserstein distance and on a constrained Least Square optimization problem. The
authors proposed a regression model with a doubled number of predictors including, for each
independent variable, its symmetric histogram variables.
In the present paper, we propose an extension of the simple model of Verde and Irpino (2010)
to the multivariate case. We do not introduce new variables (like in Dias and Brito (2011)) but
we use a particular decomposition of the observed variables that both, fits the data and allows
an easy interpretation of the estimated parameters of the model. Observing that `2 Wasserstein
distance is computed using the quantile functions (qf s) associated with histograms, we show
how to compute the inner product between two vectors of qf s according to a decomposition
of the Wasserstein metric introduced by Irpino and Romano (2007). We also furnish a novel
goodness of fit index for the evaluation of the model.
The paper is organized as follows: the section 2 introduces the histogram variables according to
the symbolic variables definition given in Bock and Diday (2000) and Diday and Noirhomme-
Fraiture (2008). Considering the `2 Wasserstein metric, we present the derived main statistics
and algebraic operators for histogram data. In section 3 the regression model for histogram
symbolic variables is introduced and detailed as well as the main goodness of fit indices for
the evaluation of the model. Finally, section 4 compares our proposed model to the other ones
presented in the literature using a climatic dataset and highlights some interpretative results.

2 Histogram variables: definitions and basic statistics

Let us E = {e1, . . . , en} be a set of n statistical units (individuals, concepts, classes).
According to Bock and Diday (2000) a symbolic modal variable X , with domain D, is a
mapping X : E → P = M(D) ∈ <+ from E into the family of all non-negative measures
(frequency, probability or weight distributions) on the domain D. For each element ei of E a
modal variable assigns a measure M(Ii) = Pi defined on the set of values Ii ⊆ D.

If X(ei) has the same properties of a random variable, it is defined as a Numerical Prob-
abilistic (Modal) Symbolic Variable and Pi can be a probability density function, a histogram,
an empirical frequency distribution fi(x).
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In this paper we refer only to Numerical Probabilistic (Modal) Symbolic Data, that are in
the domain of Numerical Probabilistic (Modal) Symbolic Variables, and in particular we refer
to Histogram Data (HD), that are in the domain of Histogram Variables (HV). In order to
simplify the notation, hereafter we denote X(ei) with X(i) (for i = 1, . . . , n) , i.e. the modal
description of the individual ei for the symbolic variableX . In this paper, we assume thatX(i)
(being X a HV) is a histogram partitioned into hi bins Iui (u = 1, . . . , hi) and it is described
as the following vector of pairs:

X(i) = {(I1i, p1i) , ..., (Iui, pui) , ..., (Ihii, phii)} ,

where Iui = [aui, bui[ is an interval, given u 6= u′ then Iui ∩ Iu′i = ∅ and 0 ≤ pui ≤ 1 such

that
hi∑
u=1

pui = 1, and u = 1, . . . , hi.

Basic statistics for HD In general, a histogram (Pearson, 1895) can be considered as a sim-
plified non-parametric estimates of a probability distribution. As usual when dealing with his-
tograms, each bin is uniformly distributed and then for each X(i) we can define a pdf density
function, a cdf distribution function and the corresponding quantile function (qf ). The pdf of
X(i) is:

fi(x) =

{ pui
bui − aui

if x ∈ Iui
0 otherwise

(1)

We here introduce the quantities wui that represent the cdf values observed at the upper ex-
treme of each bin of X(i) as follows:

w0i = 0; wui =

u∑
`=1

p`i u = 1, . . . , hi. (2)

in this way it is easy to describe the cdf associated with X(i) as:

Fi(x) =


0 if x < a1i

w(u−1)i + pui
x− aui
bui − aui

if x ∈ Iui and u > 0

1 if x > bhii

(3)

The cdf of a histogram is a piece-wise linear function, consequently also the corresponding qf
is piece-wise linear. Given t ∈ [0, 1], we denote with qi(t) the t − th quantile of X(i) and is
expressed as follows:

qi(t) = F−1
i (t) = aui +

t− w(u−1)i

wui − w(u−1)i
(bui − aui) 0 ≤ w(u−1)i ≤ t ≤ wui ≤ 1. (4)

Using the proposed notation we recall how to compute the basic statistics for each histogram.
We denote with x̄i the mean and with si the standard deviation associated with X(i). Let
c`i = (a`i+ b`i)/2 and r`i = (b`i−a`i)/2 be the center and the radius of the `-th bin of X(i),
we recall that the mean and the standard deviation of a histogram can be calculated, in a linear
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time w.r.t. the number of bins hi of the histogram X(i), as follows:

x̄i =

bhi∫
a1

xfi(x)dx =

bhi∫
a1

xdFi(x) =

1∫
0

qi(t)dt =

hi∑
`=1

p`ic`i. (5)

while the standard deviation is:

si =

 bhi∫
a1

[x− x̄i]2fi(x)dx


1
2

=

 1∫
0

[qi(t)− x̄i]2dt


1
2

=

[
hi∑
`=1

p`i

(
c2`i +

1

3
r2
`i

)
− x̄2

i

] 1
2

.

(6)

Basic statistics for histogram variables according to the `2 Wasserstein metric. Verde
and Irpino (2007) compared different probabilistic metrics for histogram data. The `2 Wasser-
stein distance (known also as Mallow’s distance) showed some useful properties for the defi-
nition of basic statistics of histogram variables. According to the notation presented in paper,
the `2 Wasserstein distance between two histograms X(i) and X(j) is:

dW (X(i), X(j)) =

√
1∫
0

[qi(t)− qj(t)]2 dt (7)

The equation (7) implies the invertibility of the cdf s for expressing the distance into a closed
form and this is not in general true. Fortunately, for histograms we can define a closed form of
the distance. According to Irpino et al. (2006), to compute the distance between two histograms
X(i) and X(j), exactly and in a finite number of steps, we need to identify a set of uniformly
dense intervals to be compared on the basis of the two qf s. In order to find such set of intervals,
firstly we merge the cumulated weights of the two histograms into a single vector:

v =
[
w0i, . . . , wui, . . . , whii, w0j , . . . , wvi, . . . , whjj

]
(8)

where hi and hj are respectively the number of bins ofX(i) andX(j). After that, we construct
the vector w that contains the sorted and unique values of w:

w = [w0, ..., w`, ...., wm] (9)

where w0 = 0, wm = 1 and max(hi, hj) ≤ m ≤ (hi + hj − 1).
With the same vector, it is possible to associate a vector of m weights π = [π`] where
π` = w` − w`−1, and the d2

W between two histograms can be expressed as follows::

d2
W (X(i), X(j)) =

m∑
`=1

w`∫
w`−1

(qi(t)− qj(t))2
dt. (10)

Each pair (w`−1, w`) allows us to identify two uniform intervals, one for X(i) and one for
X(j), having respectively the following bounds that are computed using their quantile func-
tions:

I∗`i = [qi(w`−1); qi(w`)] and I∗`j = [qj(w`−1); qj(w`)]. (11)
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The asterics indicate that we are not considering the original bins but a new set of bins which
arise by partitions of the original ones: i.e. we describe the same histogram using more bins
but without modifying the density function. For each bin, it is possible to compute the centers
and the radii as follows:

c∗`i = (qi(w`) + qi(w`−1))/2 r∗`i = (qi(w`)− qi(w`−1))/2
c∗`j = (qj(w`) + qj(w`−1))/2 r∗`j = (qj(w`)− qj(w`−1))/2.

Finally, considering the m bins as m uniform distributions the squared `2 Wasserstein distance
between two HD’s is:

d2
W (X(i), X(j)) :=

m∑
`=1

π`

[(
c∗`i − c∗`j

)2
+

1

3

(
r∗`i − r∗`j

)2]
. (12)

Equation (12) (Irpino et al., 2006) allows to define an inertia measure of a set of HD and
the mean histogram as this histogram which minimizes such inertia. Having observed n units
described by the histogram variable X , the mean histogram is the histogram associated to the
quantile function q̄(t), which minimizes the following sum of the squared differences:

SS(X) =

n∑
i=1

d2
W (X(i), X̄) =

n∑
i=1

1∫
0

[qi(t)− q̄(t)]2 dt (13)

The minimum of SS(X) is achieved when q̄(t) =
n∑
i=1

qi(t)/n for each t ∈ [0, 1]. Also in this

case it possible to define the quantile function q̄(t) in a linear (w.r.t. the sum of the number of
bins of the HD’s) time. By the vector

v = [w01, . . . , wh11, . . . , w0i, . . . , whii, . . . , w0n, . . . , whnn] (14)

containing n+
n∑
i=1

hi elements and sorting the unique values, we obtain the vector w

w = [w0, ..., w`, ...., wm] (15)

where min(hi) ≤ m ≤
(

n∑
i=1

hi − 2n+ 1

)
is the number of bins of the mean histogram X̄

associated with the q̄(t) mean quantile function:

X̄ =
{

(Īl, pl)|l = 1, . . . ,m
}

(16)

where Īl =

[
n∑
i=1

qi(w(l−1))/n;
n∑
i=1

qi(wl)/n

]
and pl = wl − wl−1.

Equation (13) allows the definition of a standard deviation measure Sx for a histogram variable
(Verde and Irpino, 2008) as follows:

Sx =
√
SS(X)/n =

√√√√ 1

n

n∑
i=1

d2
W (X(i), X̄). (17)

In order to simplify the notation of the presented formulas and for coherence with the notation
generally used for denoting regression model variables,
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– we denote with xij(t) the quantile function qi(t) associated with the histogram descrip-
tion of the i− th unit for the Xj independent histogram variable;

– we denote with yi(t) the quantile function associated to the histogram description of the
i− th unit for the Y dependent histogram variable.

Inner product between two histogram variables related to the `2 Wasserstein metric.
Considering eq. (12) we express the inner product of two quantile functions associated with
two HD as follows:

〈xi(t), xj(t)〉 =

∫ 1

0

xi(t) · xj(t)dt =

m∑
`=1

π`

[
c∗`i · c∗`j +

1

3
r∗`i · r∗`j

]
. (18)

Given two HD’s X(i) and X(j) and xcf (t) and xcg(t) the respective centered quantile func-
tions, Cuesta-Albertos et al. (1997) showed that the `2 Wasserstein distance can be rewritten
as

d2
W (X(i), X(j)) = (x̄i − x̄j)2

+

1∫
0

[
xci (t)− xcj(t)

]2
dt. (19)

This property allows us to consider the squared distance as the sum of two components:
the first related to the locations of HD and the second related to their variability structure.
An interesting decomposition of the `2 Wasserstein distance proposed by Irpino and Romano
(2007) for continuous random variables is the following:

d2
W (X(i), X(j)) = (x̄i − x̄j)2

+ (si − sj)2
+ 2sisj (1− ρ(xi, xj)) (20)

where ρ(xi, xj) is the correlation coefficient between the two quantile functions, which, in the
case of HD is:

ρ(xi, xj) =

1∫
0

xi(t)xj(t)dt− x̄i · x̄j

si · sj
=

m∑̀
=1

π`

[
c∗`ic
∗
`j + 1

3r
∗
`ir
∗
`j

]
− x̄i · x̄j

si · sj
. (21)

The equation (21) permits to write a general expression for the inner product between two qf s,
where eq. (18) is a specific formula for HD, as follows:

〈xi(t), xj(t)〉 = ρ(xi, xj) · si · sj + x̄i · x̄j (22)

that allows a better interpretation in term of scale, size and shape of the two HD’s. Finally,
given two vectors of quantile functions x = [xi(t)]n×1and y = [yi(t)]n×1, we can express the
scalar product of two vectors of HD’s as:

xTy =

∫ n∑
i=1

(xi(t), yi(t))dt =

n∑
i=1

[ρ(xi, yi) · sxi · syi + x̄i · ȳi] . (23)

It is worth noting that, when x is a vector of scalar, each value can be treated as a impulse
function, i.e., x̄i = xi and sxi

= 0, thus:

xTy =

n∑
i=1

[ρ(xi, yi) · 0 · syi + xi · ȳi] =

n∑
i=1

[xi · ȳi] . (24)
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3 Two components linear model: Least Squares estimation
method for `2 Wasserstein based linear regression

Let us X1, . . . , Xp be p independent histogram variables and Y a response histogram vari-
able too. They are observed on a set E of n units. We represent them in a symbolic data table
(where instead of a matrix of scalar values, it is a matrix of histogram data), that is:

[Y X] = [Y (i) X1(i) . . . Xp(i)]n×1 . (25)

As in the classic regression approach we assume that the data are generated from the model:

Y = φ(X|β) + e (26)

where e is a random error and φ(X) is linear with respect to the parameters β 1.
When the descriptors are HV, two main approaches for the estimation of the parameters of lin-
ear regression model have been proposed. Starting from the elementary statistics proposed by
Bertrand and Goupil (2000), a first approach Billard and Diday (2006) extended of the classic
OLS (Ordinary Least Squares) linear regression model to the histogram-valued variables. A
second group of approaches is based on the use of the quantile functions (which are in bijec-
tion with their corresponding pdf ’s) of the HD and of the `2 Wasserstein distance for defining
the sum of square errors in the LS function. The idea behind the latest approaches is to predict
a quantile function after having observed a set of quantile functions as predictors. In this paper,
we follow the latest approach.

Given the matrix (25), we consider the associated matrix M containing the corresponding
quantile functions:

M = [Y X] = [yi(t) xi1(t) . . . xip(t)]n×(p+1) (27)

A natural choice for the linear model should be:

yi(t) = β0 +

p∑
j=1

βjxij(t) + ei(t) ∀t ∈ [0; 1],

and the Sum of Squared Errors (SSE) criterion to minimize for the solution of the OLS prob-
lem is related to the Squared `2 Wasserstein distance is:

SSE =

n∑
i=1

1∫
0

[ei(t)]
2
dt =

n∑
i=1

d2
W

yi(t),
β0 +

p∑
j=1

βjxij(t)

 =

=

n∑
i=1

1∫
0

yi(t)−
β0 +

p∑
j=1

βjxij(t)

2

dt.

A problem arises for the linear combination of quantile functions. Quantile functions are
not decreasing function in [0; 1], thus only if βj ≥ 0 (j = 1, . . . , p) it assures that yi(t) is a

1. We assume the random components of the model ei(t) as generated by an error function.
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quantile function too. To tackle this issue, Verde and Irpino (2010) presented a new regression
model based on the decomposition of d2

W for the simple regression model, while Dias and
Brito (2011) proposed to consider an adjoint set of histogram variables related to the observed
ones and a constrained LS method.
In this paper, we consider a multivariate extension of the model proposed by Verde and Irpino
(2010). Considering that xcij(t) = xij(t)− x̄ij , each element of X, as well as each element of
Y, can be rewritten as:

xij(t) = xcij(t) + x̄ij .

The matrix M is then transformed as:

M =
[
Ȳ + Yc X̄ + Xc

]
=
[
Ȳ X̄

]
+ [Yc Xc] (28)

where:
– Ȳ = [ȳi]n×1 is the vector of the means of the fi(y) ,
– Yc = [yci (t)]n×1 is the vector of the centred quantile functions of fi(y)’s,
– X̄ = [x̄ij ]n×p is the matrix of the means of the fi(xj),
– Xc =

[
xcij(t)

]
n×p is the matrix of the centred quantile functions of fi(xj)’s.

We consider each quantile function yi(t) as a linear combination of the means x̄ij (that are
scalars) and of the centered quantile functions xcij(t) plus a function error term ei(t) as:

yi(t) = β0 +

p∑
j=1

βj x̄ij +

p∑
j=1

γjx
c
ij(t) + ei(t) (29)

Denoting X̄+ = [1|X̄], we rewrite the model in (29) using the following matrix notation:

Y = X̄+B + XΓ + e. (30)

The model in eq. (30) permits to interpret the relationship between the predictors and the
dependent variable taking into consideration two main aspects: the B vector quantifies the
linear relationship due to the positions of the HD (their means), while the Γ vector quantifies
the effect of the internal variability of the predictor variables Xj on the response variable Y .
Using the `2 Wasserstein distance in the LS estimation method, we write the SSE function in
scalar form as follows:

SSE(B,Γ) =

n∑
i=1

1∫
0

yi(t)− β0 −
p∑
j=1

βj x̄ij −
p∑
j=1

γjx
c
ij(t)

2

dt (31)

while in matrix form is:

SSE(B,Γ) = eTe =
[
Y − X̄+B −XcΓ

]T [
Y − X̄+B −XcΓ

]
. (32)

Considering the algebraic operators introduced in eq. (23) and (22) follows that:

X̄T
+Xc = 0(p+1)×p, X̄T

+Y = X̄T
+Ȳ, XcTY = XcTYc (33)

Thus, SSE(B,Γ) can be decomposed into two positive quantities as follows:

SSE(B,Γ) = SSE(B) + SSE(Γ) = ēT ē + (ec)
T

ec (34)
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being:
ē = Ȳ − X̄+B ec = Yc −XcΓ (35)

with ē = [ēi]n×1 a vector of real values. We may express the single minimization problem
as the minimization of two independent functions: the first one related to the means of the
predictor quantile functions x̄ij’s in X̄+, and the second one related to the variability of the
centered quantile distributions xcij(t)’s in Xc. Then two models are independently estimated:

Ȳ = X̄+B + ē Yc = XcΓ + ec (36)

The first equation is solved as classical OLS problem for the estimation of B:

B̂ =
(
X̄T

+X̄
)−1

X̄T
+Ȳ. (37)

The second equation in (36) is solved using the NNLS (Non Negative Least Squares) algorithm
proposed by Lawson and Hanson (1974) and the inner product as defined in eq. (18) and (23)
for the matrix operations:

argminΓ SSE(Γ) = [Yc −XcΓ]
T

[Yc −XcΓ] (38)
s.a. γj ≥ 0 j = 1, . . . , p.

Therefore, ŷi(t) is predicted according to the estimated parameters as follows:

ŷi(t) = ˆ̄yi + ŷci (t) = β̂0 +

p∑
j=1

β̂j x̄ij +

p∑
j=1

γ̂jx
c
ij(t). (39)

The estimated model explicit the linear relation between a histogram response variable and a set

of histogram predictors shared in two components. The first component ˆ̄yi = β̂0 +
p∑
j=1

β̂j x̄ij

expresses the linear relation between the mean of the dependent histogram variable and the
means of the independent histogram variables. The βs are allowed to be either positive or neg-
ative because it is a linear combination of scalar values.

The second component ŷci (t) =
p∑
j=1

γ̂jx
c
ij(t) expresses the relation between qf s apart from

their mean value, i.e. the relation among their variability structures, where, with the term vari-
ability we intend all the other characteristics of the corresponding HD without considering its
mean. In this case, allowing to predict a qf (i.e. a non decreasing function) the γ’s cannot be
negative.

Goodness of fit (GOF) indices Considering the nature of the data, the evaluation of the
goodness of fit (GOF) of the model is not straightforward like for the classic linear regression
models. To evaluate the GOF of a regression model on histogram data, we propose to consider
the following three indices.

Ω index (Dias and Brito, 2011) The proposed measure is the ratio

Ω =

n∑
i=1

d2
W

(
Ŷ (i), ȳ

)/ n∑
i=1

d2
W (Y (i), ȳ) (40)
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(where ȳ is the mean of Ȳ ) that varies from 0 to 1 and it is the sum of (Wasserstein)
squared distances between quantile functions and a punctual value.

Pseudo−R2 It is a measure proposed by Verde and Irpino (2010) for the simple linear
regression model and here extended to the multivariate case.
In order to build a R2 index, it is possible to prove (see appendix for details) that SSY
can be decomposed as follows:

SSY =
n∑
i=1

d2
W

(
Y (i), Ȳ

)
=

n∑
i=1

1∫
0

[ŷi(t)− yi(t)]2 dt︸ ︷︷ ︸
SSE

+

n∑
i=1

1∫
0

[ȳ(t)− ŷi(t)]2 dt︸ ︷︷ ︸
SSR

+

−2

n ·
s2

ȳ −
p∑
j=1

γ̂jρ(ȳ, x̄j)sȳsx̄j

+

p∑
j=1

γ̂j ·
∂SSE

∂γj
(γ̂j)


︸ ︷︷ ︸

Bias

(41)
where the Bias term reflects the impossibility of the linear transformation of a set of
x̄(t)’s of recovering the variability structure of ȳ(t). 2 We propose a conservative GOF
index considering the following formulation of the Pseudo−R2:

PseudoR2 = min

[
max

[
0; 1− SSE

SSY
;
SSR

SSY

]
; 1

]
. (42)

RMSE The Root Mean Square Error is commonly used as measure of GOF. In our case,
consistently with the used distance, we propose the following GOF measure:

RMSEW =

√√√√ n∑
i=1

d2
W

(
Ŷ (i), Y (i)

)
n

=

√
SSE

n
. (43)

4 Application on real data
To illustrate the proposed method we present comparison of the existing regression meth-

ods for HV on a climatic dataset. The data were obtained from the Clean Air Status and Trends
Network (CASTNET) 3, an air quality monitoring network of United States which is designed
to provide data to assess trends in air quality, atmospheric deposition, and ecological effects
due to changes in air pollutant emissions. In particular, we have chosen to select data about the
Ozone concentration in 78 USA sites for which the monitored data was complete.

Ozone is a gas that can cause respiratory diseases. In the literature there exists studies that
relates the Ozone concentration level to the Temperature, the Wind speed and the Solar ra-
diation (see for example (Dueñas et al., 2002)). Given the distribution of Temperature (X1)
(Celsius degrees), the distribution of Solar Radiation (X2) (Watts per square meter) and the

2. Note that Γ∇SS(Γ) depends from the constraints on the solution of the NNLS algorithm for the Γ parameters.
3. http://java.epa.gov/castnet/
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Ozone Concentration Temperature Solar Radiation Wind Speed
(Y in Ppb) (X1 in Celsius deg.) (X2 Watt/m2) (X3 m/s)

Mean (BD) 41.2147 23.2805 645.3507 2.3488
Barycenter mean (VI) 41.2147 23.2805 645.3507 2.3488
Barycenter std (VI) 9.9680 3.7641 225.7818 1.0987
Standard dev. (BD) 13.790 5.3787 252.6736 1.7125
Standard dev. (VI) 9.5295 3.8422 113.4308 1.1337

TAB. 1 – Ozone dataset: summary statistics. BD is referred to the Billard and Diday (2006)
approach, while VI to the Verde and Irpino (2008) one.

Model Estimates Goodness of fit
Ω Ps-R2 RMSE

Billard-Diday ŷi = 18.28 + 0.357xi1 + 0.017xi2 + 1.550xi3 0.203 0.024 9.419

Dias-Brito ŷi(t) = 13.32 + 0 xi1(t) + 0.037xi2(t) + 1.691xi3(t)+

+0 x̃i1(t) + 0 x̃i2(t) + 0 x̃i3(t) 0.670 0.371 7.557

Irpino-Verde ŷi(t) = 2.93 − 0.346 x̄i1 + 0.07 x̄i2 + 0.395 x̄i3

+0.915xc
i1(t) + 0.018xc

i2(t) + 1.887xc
i3(t) 0.742 0.460 6.999

TAB. 2 – Ozone dataset: estimates of the three regression models and GOF indices

distribution of Wind Speed (X3) (meters per second), the main objective is to predict the dis-
tribution of Ozone Concentration (Y ) (Particles per billion) using a linear model. CASTNET
collect hourly data and as period of observation we choose the summer seasons of 2010 and
the central hours of the days (10 a.m. – 5 p.m.).
For each sites we have collected the histogram data with respect to the four variables.

In table 4 we reported the main summary statistics for the four histogram variables.

Using the full dataset we estimated the three models and the associated goodness of fit
indices as reported in table 4.

Observing the good of fitting measures of the three models we can conclude that the pro-
posed and the Dias-Brito model fit better the linear relationship than the Billard-Diday model,
and the proposed model is more accurate than the Dias-Brito one. However, the main ad-
vantages are related to the interpretation of the models. The Billard-Diday model does not
explicit the relationships among the different characteristics of the histogram data. The Dias-
Brito model introduce the symmetric distribution concept that can sound particular difficult to
explain and to justify. The proposed model allows the researcher to observe the linear relation-
ships among the means in a classic fashion, while it is possible to read the second component
in terms of shrinking factor of the variability: for example, we say that an increase of one
of Celsius degree in mean will decrease the mean of the Ozone Concentration of 0.346 Ppb,
while the variability of the Ozone Concentration increases of about two times (1.877) when
the variability of the Wind speed increases of one m/s.
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5 Conclusions

The paper present a novel method for linear regression of histogram variables. Consider-
ing the nature of the data we proposed to use a particular decomposition of the Wasserstein
distance for the definition of the regression model. We showed that the proposed model has in
general better interpretation with respect the two main approaches presented in the literature.
We consider to address new efforts in the direction of investigate the properties of the involved
estimators and in particular of the bias term.
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APPENDIX The decomposition of the sum of squares of Y

Considering 1 = [1]n×1, SSY can be written as:

SSY = n · s2
y =

n∑
i=1

d2
W (yi(t), ȳ(t)) =

n∑
i=1

1∫
0

[yi(t)− ȳ(t)]
2
dt

further

SSY =
n∑
i=1

1∫
0

[yi(t)− ȳ(t) + ŷi(t) + ŷi(t)]
2
dt =

=

n∑
i=1

1∫
0

e2
i (t)dt︸ ︷︷ ︸

SSE

+

n∑
i=1

1∫
0

(ŷi(t)− ȳ(t))
2
dt

︸ ︷︷ ︸
SSR

−2
n∑
i=1

1∫
0

(ȳ(t)− ŷi(t)) ei(t)dt

Differently that in the OLS estimate regression model the term:

Bias =

n∑
i=1

1∫
0

(ȳ(t)− ŷi(t)) ei(t)dt 6= 0

It can be write as:

Bias =

n∑
i=1

1∫
0

ȳi(t)ei(t)dt︸ ︷︷ ︸
I

−
n∑
i=1

1∫
0

ŷi(t)ei(t)dt︸ ︷︷ ︸
II

For (I), replacing ei(t) = yi(t)− β̂0 −
p∑
j=1

β̂j x̄ij −
p∑
j=1

γ̂jx
c
ij(t) we have:
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n∑
i=1

1∫
0

ȳi(t)ei(t)dt =
1∫
0

ȳ(t)
n∑
i=1

yi(t)dt−
1∫
0

ȳ(t)dt ·
n∑
i=1

(β̂0 +

p∑
j=1

β̂j x̄ij)︸ ︷︷ ︸
=ȳi

+

−
n∑
i=1

p∑
j=1

γ̂j
1∫
0

ȳ(t)xcij(t)dt =

= n · σ2
ȳ + nȳ2 − nȳ2 − n

p∑
j=1

γ̂prȳx̄j
σȳσx̄j

= n · σ2
ȳ − n

p∑
j=1

γ̂prȳx̄j
σȳσx̄j

=

= n ·

(
σ2
ȳ −

p∑
j=1

γ̂prȳx̄jσȳσx̄j

)
(note that: σx̄c

j
= σx̄j and rȳx̄c

j
= rȳx̄j )

For (II), being

ŷi(t) = β̂0 +

p∑
j=1

β̂j x̄ij +

p∑
j=1

γ̂jx
c
ij(t)

and

ei(t) = yi(t)− β̂0 −
p∑
j=1

β̂j x̄ij −
p∑
j=1

γ̂jx
c
ij(t)

and indicating with
p∑
j=0

β̂j x̄
+
ij = β̂0 +

p∑
j=1

β̂j x̄ij (where x̄+
i0 = 1), we have:

n∑
i=1

1∫
0

ŷi(t)ei(t)dt =

=
n∑
i=1

1∫
0

(
p∑
j=0

β̂j x̄
+
ij +

p∑
j=1

γ̂jx
c
ij(t)

)(
yi(t)−

p∑
j=0

β̂j x̄
+
ij −

p∑
j=1

γ̂jx
c
ij(t)

)
dt =

=
n∑
i=1

1∫
0

 p∑
j=0

β̂j x̄
+
ijyi(t)−

(
p∑
j=0

β̂j x̄
+
ij

)2

−

(
p∑
j=0

β̂j x̄
+
ij

)(
p∑
j=1

γ̂jx
c
ij(t)

)
+

+
p∑
j=1

γ̂jx
c
ij(t)yi(t)−

(
p∑
j=1

γ̂jx
c
ij(t)

)(
p∑
j=0

β̂j x̄
+
ij

)
−

(
p∑
j=1

γ̂jx
c
ij(t)

)2
 dt =

=
n∑
i=1

p∑
j=0

β̂j x̄
+
ij

1∫
0

yi(t)dt−
n∑
i=1

(
p∑
j=0

β̂j x̄
+
j

)2

− 2
n∑
i=1

(
p∑
j=0

β̂j x̄
+
j

)
p∑
j=1

γ̂j

1∫
0

xcij(t)dt︸ ︷︷ ︸
=0

+

+
n∑
i=1

p∑
j=1

γ̂j
1∫
0

xcij(t)yi(t)dt−
n∑
i=1

1∫
0

p∑
j=1

γ̂jx
c
ij(t)

2

dt =

=
p∑
j=0

β̂j
n∑
i=1

x̄+
j ȳi −

p∑
i=0

p∑
j′=0

n∑
i=1

β̂j β̂j′ x̄
+
ij x̄

+
ij′+

+
n∑
i=1

p∑
j=1

γ̂j
1∫
0

xcij(t)yi(t)dt−
n∑
i=1

1∫
0

(
p∑
j=1

p∑
j′=1

γ̂j γ̂j′x
c
ij(t)x

c
ij′(t)

)
dt =



R. Verde, A. Irpino

=
p∑
j=0

β̂j

 n∑
i=1

x̄+
ij

ȳi − p∑
j′=0

β̂j′ x̄
+
ij′


︸ ︷︷ ︸

C1=0

+

+
p∑
j=1

γ̂j

 n∑
i=1

1∫
0

xcij(t)yi(t)dt−
p∑
j=1

γ̂j′

1∫
0

xcij(t)x
c
ij′(t)dt


︸ ︷︷ ︸

C2

The expression in C1 is equal to 0 according to the first order conditions for each β̂j in the
OLS estimation solution: ∂SSE∂βj

(β̂j) = 0. The expression in C2 is also related to the first order
condition for each γ̂j , but it could be not equal to 0 because of the constraints for the solutions
of the Non Negative Least Squared algorithm.
Then, denoting

C2 =
∂SSE

∂γj
(γ̂j)

we can rewrite

p∑
j=1

γ̂j

 n∑
i=1

 1∫
0

xcij(t)yi(t)dt−
p∑
j=1

γ̂j′

1∫
0

xcij(t)x
c
ij′(t)dt

 =

p∑
j=1

γ̂j ·
∂SSE

∂γj
(γ̂j).

The bias term is

bias = −2

n ·
σ2

ȳ −
p∑
j=1

γ̂jrȳx̄jσȳσx̄j

+

p∑
j=1

γ̂j ·
∂SSE

∂γj
(γ̂j)


and, finally the SSY decomposition is:

SSY = SSE + SSR− 2

n ·
σ2

ȳ −
p∑
j=1

γ̂jrȳx̄j
σȳσx̄j

+

p∑
j=1

γ̂j ·
∂SSE

∂γj
(γ̂j)

 .


