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Abstract. This work presents a new approach to analyze a series of m n × p
tables X(1), . . . , X(m) of symbolic interval variables. In this new approach, we
firstly define a space of intervals with laws of composition ⊕, ⊗1, ×. This
allows extending this reasoning to the matrices of intervals. Then, we define a
n× p compromise matrix X =

(
Xij

)
i=1,...,n; j=1,...,p,

of type intervals, a mea-
sure of covariance between interval variables, a new measure of correlation η
between interval variables and the product operator ⊗2 between a matrix n× p
of intervals and one p vector u. This way, we achieve a symbolic PCA of com-
promise. To express the variability of tables X(1), . . . , X(m), they are projected
on the principal axes of PCA of intervals of compromise. For the interpretation
of factorial map, a new measure of correlation η will be used.

1 Introduction

Expert 1
Banana Coffee Tea Cocoa

Region 1 [0.9,3.1] [5.8,6.2] [6.5,7.5] [2.1,2.7]
Region 2 [4.8,5.2] [2.9,3.1] [2,2] [3.1,3.4]
Region 3 [5.4,6.6] [0.8,1.2] [0.95,1.05] [2.1,2.3]
Region 4 [6.9,7.9] [0.75,1.25] [1.85,2.15] [1.4,2.0]
Region 5 [1.9,2.6] [5,5] [3.6,4.4] [6.1,6.2]
Region 6 [2.8,3.2] [3.8,4.9] [3.6,4.4] [7.1,8.0]

TAB. 1 – Example of symbolic interval variable.
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Advances in information technology lead to more complex data. This complexity is re-
flected by data in the form of images, histogram or tables structured into blocks of symbolic
interval variables. . . . The formalism of symbolic objects (see Bock and Diday (2000), Billard
and Diday (2006), Diday and Noirhomme-Fraiture (2008)) captures this kind of complex data.
The purpose of this work is to propose an analysis in principal axes of a series ofm tables con-
taining symbolic interval variables. Table 1 is a an example in which an expert assesses some
products from six regions in a 0-8 scale. Authors such as Cazes et al. (1997), Palumbo and
Lauro (2003), Ichino (2007), Ichino (2008) and Diday et al. (2011) proposed symbolic Princi-
pal Component Analysis (PCA) of interval-type variables.This work is an attempt to extend the
issue raised by Cazes et al. (1997), Palumbo and Lauro (2003), Ichino (2007), Ichino (2008)
and Diday et al. (2011) to multiple tables. In analysis of structured data in blocks, the STATIS
(Structuration A Trois Indice de la Statistique) method of L’Hermier des Plantes (1976) (see
Lavit (1988)), the Generalized Principal Component Analysis of Casin (2001), the Multiple
Factor Analysis (MFA) of Escofier and Pagès (1998), the CCAW (Component Common Anal-
ysis and Specific Weight ) of Hanafi et al. (2006) used to analyze several tables of ordinary size
n× p (n and p are respectivly the number of individuals and variables). In symbolic data anal-
ysis, Corales and Rodriguez (2011) extended the STATIS method for interval-type variables.
The method of Corales and Rodriguez (2011) and STATIS have the advantage of dealing with
tables that do not necessarily concerne the same number of observations and variables. But the
main drawback with these two methods is the lack of direct connection between the representa-
tions of individuals and variables with the representation of m tables. Our method overcomes
this drawback. We define a space of intervals that we supply with the laws of composition.
These laws of composition allow to define a compromise X =

(
Xij

)
and to carry out after

a symbolic interval PCA based on min and max. The proposed approach generalizes that
of Ichino (2007). Indeed, for m = 1, X = X(1) and PCA of the compromise is equivalent
to interval PCA of Ichino (2007). Furthermore, we propose a new measure of correlation η.
Finally, to simultaneously analyze the tables X(1), . . . , X(m), their variables are projected as
supplementary variables onto principal plans of the interval PCA of compromise.

2 Definition of operators.

Let n, p, m be the number of individuals, variables and tables describing the same number
of individuals and the same number of variables. LetX(k) =

{
X

(k)
ij

}
i=1,...,n j=1,...,p k=1,...,m,

the array of symbolic interval variables. For i = 1, . . . , n, j = 1, . . . , p, X
(k)
ij is of form

X
(k)
ij =

[
a
(k)
ij , b

(k)
ij

]
. For a description of the intervals, we propose a method similar to the

algebra of Moore (1966).

2.1 Space of interval.

Let I be the space of intervals. The algebra proposed by Moore (1966) for a description of
the intervals used the centers and radiums. The proposed approach instead uses the min and
max intervals. Let

[
a
(k1)
ij , b

(k1)
ij

]
and

[
a
(k2)
ij
′, b

(k2)
ij
′
]

belong to I. We supply in the space I
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laws of composition ⊕, × ⊗1, so that :

– addition: [aij , bij ]+
[
a′ij , b

′
ij

]
=
[
min

{
aij + a′ij ; bij + b′ij

}
,max

{
aij + a′ij ; bij + b′ij

}]
.

We define the subtraction of the same way.

– multiplication in a scalar λ: λ× [aij , bij ] = [min {λaij ;λbij} ,max {λaij ;λbij}].
– the product of two intervals:

[
a
(k1)
ij , b

(k1)
ij

]
⊗1

[
a
(k2)
ij
′, b

(k2)
ij
′
]

=

 a
(k1)
ij

b
(k1)
ij

×
 a

(k2)
ij
′

b
(k2)
ij
′


[
a
(k1)
ij , b

(k1)
ij

]
⊗1

[
a
(k2)
ij
′, b

(k2)
ij
′
]

= a
(k1)
ij a

(k2)
ij
′ + b

(k1)
ij b

(k2)
ij
′. (1)

– The norm of an interval ‖, ‖I :

‖
[
a
(k1)
ij , b

(k1)
ij

]
‖I =

√[
a
(k1)
ij , b

(k1)
ij

]
⊗1

[
a
(k1)
ij , b

(k1)
ij

]
=

√(
a
(k1)
ij

)2
+
(
b
(k1)
ij

)2
The space of intervals (I,⊕,⊗1, ‖, ‖) is an euclidian vectorial space.

2.2 Extension to the matrix of intervals.
Previous operators are extending to the matrices of intervals. Let be In a space of n-uplets

of intervals. We supply in In laws of composition ⊕, ×, ⊗1, ⊗2. Then, for
X

(k1)
.j1

=
([
a
(k1)
ij1

, b
(k1)
ij1

])
i=1,...,n;

and X(k2)
.j2

=
([
a
(k2)
ij2

, b
(k2)
ij2

])
i=1,...,n

∈ In :

– the product is

X
(k1)
.j1
⊗1 X

(k2)
.j2

=

n∑
i=1

a
(k1)
ij1

a
(k2)
ij2

+

n∑
i=1

b
(k1)
ij1

b
(k2)
ij2

(2)

– if X(k1)
.j1
∈ In, the mean of interval g

X
(k1)
.j1

is:

g
X

(k1)
.j1

=

[
g
X

(k1)
.j1

, g
X

(k1)
.j1

]
with

g
X

(k1)
.j1

=
1

n

n∑
i=1

a
(k)
ij1

; g
X

(k1)
.j1

=
1

n

n∑
i=1

b
(k)
ij1
.

For example if X.1 =

 [2, 4]
[−5, 6]
[9, 8]

 then gX.1 =
[
1
3 (2− 5 + 9), 13 (4 + 6 + 9)

]
= [2, 6] . The

centered vector X∗(k1).j is : X∗(k1).j =
(
X

(k1)
ij − g

X
(k1)
.j

)
i=1,...,n

. We have for example:

X∗.1 =

 [2, 4]− [2, 6]
[−5, 6]− [2, 6]
[9, 8]− [2, 6]

 =

 [0,−2]
[−7, 0]
[7, 2]

 .
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The interval gX∗
.1

= [(0− 7 + 7)/3, (−2 + 0 + 2)/3] = [0, 0]. In general, if X∗(k1).j1
is a

vector centered, =⇒ g
X

∗(k1)
.j1

= [0, 0].

Consequently, the covariance of two symbolic interval variables X(k1)
.j1

and X(k2)
.j2

is:

Cov
(
X

(k1)
.j1

, X
(k2)
.j2

)
=

(
X

(k1)
ij1
− g

X
(k1)
.j1

)
⊗1

(
X

(k2)
ij2
− g

X
(k2)
.j2

)
i = 1, . . . , n. (3)

In the case of two centered vectors X∗(k1j1). and X∗(k2).J2
, the relationship (3) becomes :

Cov
(
X

(k1)
.j1

, X
(k2)
.j2

)
=
(
X

(k1)
ij1
− [0, 0]

)
⊗1

(
X

(k2)
ij2
− [0, 0]

)
=
(
X

(k1)
ij1

)
⊗1

(
X

(k2)
ij2

)

Cov
(
X

(k1)
.j1

, X
(k2)
.j2

)
=



a
(k1)
1j1
...

a
(k1)
nj1

b
(k1)
1j1
...

b
(k1)
nj1


×



a
(k2)
1j2
...

a
(k2)
nj2

b
(k2)
1j2
...

b
(k2)
nj2


=

n∑
i=1

a
(k1)
ij1

a
(k2)
ij2

+

n∑
i=1

b
(k1)
ij1

b
(k2)
ij2

. (4)

The covariance of intervals obtained from equations (3) and (4) induces a variance-covariance
matrix W.

– the norm ‖, ‖In of the interval variable X(k1)
.j1

is defined as :

‖X(k1)
.j1
‖In =

√
X

(k1)
.j1
⊗1 X

(k1)
.j1

=

√√√√ n∑
i=1

((
a
(k1)
ij

)2
+
(
b
(k1)
ij

)2)
. (5)

The space of interval variables (In,⊕,⊗1, ‖, ‖In) is an euclidian vectorial space.

2.3 Correlation of two symbolic interval variables.

2.3.1 Correlation of two symbolic interval variables proposed by Billard.

Billard (2007) and Billard (2008), developped two ways of correlating interval variables.
Billard’s correlation is based on the centers of interval X(k1)

.j =
([
a
(k1)
ij , b

(k)
ij

])
i=1,...,n

. These

centers are called

µ
(k)
ij =

1

2

n∑
i=1

(
a
(k)
ij + b

(k)
ij

)
. (6)
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The average of centers µ(k)
.j and the variance of interval X(k)

.j defined by Bertrand and Goupil
(2000) are :

µ
(k)
.j =

1

2n

n∑
i=1

(
a
(k)
ij + b

(k)
ij

)
(7)

(σ
(k)
.j )2 =

1

3n

n∑
i=1

((
b
(k)
ij

)2
+ b

(k)
ij a

(k)
ij +

(
a
(k)
ij

)2)
− 1

4n2

[
n∑
i=1

(
b
(k)
ij + a

(k)
ij

)]2
. (8)

Compared to (4), the covariance γ proposed by Billard (2007) is

γ
(
X

(k1)
.j1

, X
(k2)
.j2

)
=

1

3n

n∑
i=1

Gj1Gj2 [Qj1Qj2 ]
1/2 (9)

where

Gj =

{
−1, if µ(k)

ij ≤ µ.j
1 else

(10)

and
Qj = (a

(k)
ij − µ.j)

2 + (a
(k)
ij − µ.j)(b

(k)
ij − µ.j) + (b

(k)
ij − µ.j)

2. (11)

The measure of correlation ρ proposed by Billard (2007) is given by the following formula :

ρ(X
(k1)
.j1

, X
(k2)
.j2

) =
γ
(
X

(k1)
.j1

, X
(k2)
.j2

)
σ
(k1)
.j1

σ
(k2)
.j2

. (12)

The formula proposed by Billard (2008) is similar with the formula proposed by Billard (2007).

2.3.2 New correlation of two symbolic interval variables.

The formalism used to describe intervals allows us to suggest a new measurement of cor-
relation of interval variables η. The correlation η we propose uses the min and the max. Let
L
X

(k1)
.j1

, L
(k2)
X.j2

two n-vectors obtained from respectively lower and higher values ofX(k1)
.j1

, X
(k2)
.j2

.

The correlation η betwen X(k1)
.j1

, X
(k2)
.j2

is:

η
(
X

(k1)
.j1

, X
∗(k2)
.j2

)
=

Cov
(
X

(k1)
.j1

, X
(k2)
.j2

)
√
Cov

(
X

(k1)
.j1

, X
(k1)
.j1

)√
Cov

(
X

(k2)
.j2

, X
(k2)
.j2

)

η
(
X

(k1)
.j1

, X
∗(k2)
.j2

)
= r

(
L
X

(k1)
.j1

, L
X

(k2)
.j2

)
= r





a1j1
...

anj1
b1j1

...
bnj1


,



a1j2
...

anj2
b1j2

...
bnj2




(13)
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where r is the Pearson’s correlation.

For two variables X1 =


[11, 11.2]

[10.3, 11.3]
[11, 11.2]
[11.5, 12]

[11.1, 11.6]
[12, 12.1]

 , X2 =


[67, 68]
[62, 64]
[57, 59]
[53, 55]
[55, 57]
[[50, 52]]

, the correlation is

η (X1, X2) = r

〈


11
10.3

...
12

11.2
11.3

...
12.1


,



67
62
...

50
68
64
...

52



〉
= −0.625.

The correlation proposed by Billard (2007) gives ρ (X1, X2) = −0.786

2.4 The operator ⊗2.
Let Z(k) = X(k) ⊗2 uα be the product of a matrix n× p of interval X(k) and an ordinary

p vector uα. Z(k) is defined as follows

Z(k) =
(
Z

(k)
ij

)
=
([
z
(k)
iα , z

(k)
iα

])
i=1,...,n; α=1,...,p

with

z
(k)
iα = min


[
a
(k)
i1 . . . a

(k)
ip

]
×

 u1α
...

upα

 ;
[
b
(k)
i1 . . . b

(k)
ip

]
×

 u1α
...

upα




z
(k)
iα = min

{
p∑
l=1

a
(k)
il ulα;

p∑
l=1

b
(k)
il ulα

}
, (14)

z
(k)
iα = max


[
a
(k)
i1 . . . a

(k)
ip

]
×

 u1α
...

upα

 ;
[
b
(k)
i1 . . . b

(k)
ip

]
×

 u1α
...

upα




z
(k)
iα = max

{
p∑
l=1

a
(k)
il ulα;

p∑
l=1

b
(k)
il ulα

}
(15)

with a(k)il , ulα, b
(k)
il ∈ R.
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2.5 Definition of the Compromise X(1) and the principal axes.
2.5.1 Compromise.

The compromiseX is an n×p table which is representative from them tablesX(1), . . . , X(m).
The definition of the compromise is given by the following formula :

X =
1

m

[
X(1) ⊕ . . .⊕X(m)

]
=

1

m

m∑
k=1

X(k). (16)

2.5.2 The principal axes.

Let be Zα = X ⊗2 uα, α=1,...,p where uα, α=1,...,p are the solutions of the following
optimisation problem

P :

 max V ar
(
Zα
)

utαuα = 1
utαuβ = 0, α 6=β ,

Let’s suppose that X is centered and the weight of all n observations is given by 1
n , then

V ar
(
Zα
)

= V ar
(
X ⊗2 uα

)
=
utα ⊗2 X

t ⊗1 X ⊗2 uα
n

= utαWuα, (17)

where W = X
t⊗1X
n is the variance-covariance matrix. Therefore,

P :

{
max utαWuα
utαuα = 1

P ⇔ max
{
utαWuα − λα(utαuα − 1)

}
where λα are the Lagrange’s multiplicators. After differenciation in uα, the solution we obtain
is

Wuα − λαuα = 0⇔Wuα = λαuα.

λα, uα, Zα represents respectively the αth eigenvalue, eigenvector (or principal axe) and the
generalized principal components of the compromise.

2.5.3 Visualizations of interval variables and individuals

After the determination of the generalized principal component Zα, we suggest the com-
putation of the correlation η

(
Xj , Zα

)
between the interval variables of the compromise and

the generalized components. The plot of variables is given by the correlation η
(
Xj , Zα

)
for

j = 1, . . . , p; α = 1, . . . , p.
For the representation of individuals, we suggest the projection of each dataset X(1) . . . X(m)

as supplementary element on the principal axes of the compromise via the matrix products
X(1) ⊗2 uα, . . . , X

(m) ⊗2 uα.
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2.5.4 The steps of the proposed approach.

Six steps are involved in our approach :

1. Calculate the compromise X = 1
m

[
X(1) ⊕ . . .⊕X(m)

]
2. Calculate 1 W = 1

nX
t ⊗1 X (or Λ correlation matrix) covariance matrix 2of the com-

promise through the relation (4).

3. Calculate the eigenvalues λα and eigenvectors uα of W i.e resolve Wuα = λαuα.

4. Calculate the principal components of interval type of compromise Z(k)
α from the prod-

uct Z(k) = X(k) ⊗2 uα.

5. Calculate the correlation η
(
Xj , Zα

)
between the principal components of the compro-

mise and the variables of the compromise (which are both symbolic interval variables).

6. Projection from the X(1) . . . X(m) in supplementary axes of the compromise via the
matrix products X(1) ⊗2 uα, . . . , X

(m) ⊗2 uα.

3 Comparaison with PCA of Ichino (2007) and INTERSTATIS.

3.1 Comparaison with PCA of Ichino (2007).
If we suppose that m = 1 table, X = X(1) and the method proposed is equivalent to the

symbolic PCA interval of Ichino (2007) based on nested recovering. Indeed, Ichino (2007)
defined for each observation of the table X(1) :

Mi. =

(
a
(1)
i1 . . . a

(1)
ip

b
(1)
i1 . . . b

(1)
ip

)
(18)

and

M =


M1.

M2.

...
Mn.

 . (19)

Mi. and M are 2 × p and 2n × p usual matrices. Interval PCA of Ichino (2007) consists
in computing an ordinary PCA on M. In this regards, Ichino (2007) suggests the usage of
the correlation of spearman or the correlation of kendall. Each individual has 2 values. The
interval principal components are given by the min and the max of these 2 values.

3.2 Comparaison with INTERSTATIS.
STATIS is a 3-index information tool. It is used to analyze multiple data tables. STATIS

is capable of analyzing m tables refering to the same number of variables or the same num-
ber of individuals (STATIS DUAL). In order to analyze the individuals, the variable and the
tables, STATIS defines respectively the compromise, the intrastructure, and the interstructure.

1. if variables are centered.
2. X

t is the transposed matrix.
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INTERSTATIS proposed by Rodriguez (2011) extends the STATIS method to the case of sym-
bolic interval variables. The extension proposed by Rodriguez uses the arithmetic proposed by
Moore (1966). If in the methodology that we proposed, we use the product ⊗1 defined in the
relationship (1), Rodriguez (2011) used instead the following product ⊗3 proposed by Moore
(1966) : [

a
(k1)
ij , b

(k1)
ij

]
⊗3

[
a
(k2)
ij
′, b

(k2)
ij
′
]

= [c, d] (20)

where  c = min
(
a
(k1)
ij a

(k2)
ij
′, a

(k1)
ij b

(k2)
ij
′, b

(k1)
ij a

(k2)
ij
′, b

(k1)
ij b

(k2)
ij
′
)

;

d = max
(
a
(k1)
ij a

(k2)
ij
′, a

(k1)
ij b

(k2)
ij
′, b

(k1)
ij a

(k2)
ij
′, b

(k1)
ij b

(k2)
ij
′
)
.

The results of the covariance and the correlation induced from ⊗3 between two interval vari-
ables are intervals. By contrast, the covariance and the correlation induced by ⊗1 are scalars.

3.2.1 Interstructure.

We supposed that tables are centered. Given the individuals in the m datasets, the inter-
structure compare their spatial distribution by using the n × n matrices of intervals Vk =

X(k) ⊗3

(
X(k)

)t
. In this regards, the interstructure defines the following metric

∆k1,k2 = 〈Vk1 ,Vk2〉 = Trace (Vk1 ⊗3 Vk2) (21)

or

∆∗k1,k2 =
Trace (Vk1 ⊗3 Vk2)√

Trace (Vk1 ⊗3 Vk1)
√
Trace (Vk2 ⊗3 Vk2)

. (22)

∆k1,k2 and ∆∗k1,k2 are intervals because of definition of the product ⊗3. If a(k)ij = b
(k)
ij , ∀ i =

1, . . . , n; j = 1, . . . , p; k = 1, . . . ,m, the relationship (21) and (22) are called coefficient
RV of Escoufier (1973).

The center PCA (CPCA) of Cazes et al. (1997) is performed on

∆ = (∆k1,k2)k1=1,...,m;̨1=1,...,m. .

The interstructure is the correlation circle from the interval CPCA of ∆. Each point represents
each data table. Close points mean similar individual configuration.

Compared to our methodology, we can assimilate each table X(k) by its center of gravity
g(k) =

([
g.1

(k), g.1
(k)
]
, . . . ,

[
g.m

(k), g.m
(k)
])

and we suggest the projecting of the minima
and the maxima as supplementary elements on u1, . . . , up via the product g(k) ⊗2 uα.

3.2.2 The compromise and the intrastructure.

Regarding the analysis of the individuals, INTERSTATIS proposed by Corales and Ro-
driguez (2011) defines Vk = X(k) ⊗3

(
X(k)

)t
. The compromise proposed by INTERSTATIS
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is

V =

m∑
k=1

βkVk (23)

where βk, k = 1, . . . ,m are the weights of the Vk tables. Each βk is a function of the first
eigenvector and the first eigenvalue of the CPCA of the interstructure. The study of individ-
uals of INTERSTATIS is given by the CPCA of Cazes et al. (1997) of the compromise. The
correlations circle induced from the previous CPCA gives the intrastructure.

Compared to our methodology, the compromise V is a n × n matrix of intervals. But the
compromise we proposed X in the relationship (16) is a n × p matrix of intervals. In our ap-
proach, the implicit weighting that we use for each table is 1

m . INTERSTATIS can also involve
tables which have the same number of individuals but different number of variables. In this
regards, INTERSTATIS is more general than our approach because our methodology requires
the same number of individuals and variables. But in our methodology, we compute only one
system of principal axes u1, . . . , up. The drawback of STATIS and INTERSTATIS is the usage
of two different systems of axes for the interstructure in one hand, and the compromise and the
intrastructure on the another hand.

4 Application.
The proposed approach is implemented to the serie of m = 3 tables (6 × 4). Information

in these tables were assessed by 3 experts to evaluate various product from six regions.

Expert 2
Banana Coffe Tea Cocoa

Region 1 [0,1] [4.9,5.1] [5.8,6.2] [1.0,4.0]
Region 2 [4.1,4.2] [3.5,4.1] [5,5] [1.8,2.1]
Region 3 [4.8,5.2] [1.8,2.5] [0.8,1.2] [4.0,4.3]
Region 4 [6.9,7.8] [2,2] [1.7,2.1] [2.0,4.8]
Region 5 [4.0,6.3] [5,5] [4.4,5.6] [6.2,7.4]
Region 6 [3.0,3.1] [4.75,5.25] [4.6,5.4] [6.5,7.7]

TAB. 2 – Appreciation by the expert 2.
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Expert 3
Banana Coffee Tea Cocoa

Region 1 [2.9,3.1] [2.0,3.5] [6.8,8] [4.0,4.3]
Region 2 [3.9,4.1] [3.8,4.2] [3,3] [3.0,3.4]
Region 3 [6.8,7.2] [1,1] [0.9,1.1] [2.1,2.2]
Region 4 [0,1] [1.8,2.2] [3.8,4.5] [4.0,4.7]
Region 5 [1.9,2.1] [6,6] [5.8,6.2] [7.0,7.5]
Region 6 [0.9,1.9] [6.9,7.8] [5,7.3] [7.5,7.9]

TAB. 3 – Appreciation by the expert 3 .
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FIG. 1 – Correlation map beetwen principal component and variables of compromise from η.

Figure 1 represents the correlation towards η between the variables of compromise and
their principal components. It allows to explain the positioning of individuals in Figure 2.
Figure 2 shows the individual in rectangular form (because of their symbolic nature) on the
principal axes of the compromise. The first two eigenvalues have a cumulative percentage of
variability equal to 75.36 + 21.59% = 96.95%. The experts 1 and 2 favourably rated Banana
from Region4 and Region3. The expert 3 rated favourably Banana from Region3. Coffee
and Tea from Region 1 are well rated by the expert 1 and the expert 2. Expert 3 appreciates
coffee, Tea and Cocoa from region5 and region6. The above findings are reversed with the
variable banana. The dispersions of the region 1 and the region 2 from the expert 2 are more
pronounced.
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FIG. 2 – Individual map.
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FIG. 3 – Individual map (Axes 1-3).

In the figures 3 and 4 we also write down that for the expert 3 the Region4 has a weak value
of Coffee and Banana.
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5 Conclusion.
The proposed approach allows the simultaneous analysis in principal axes of a set from m

tables for the same number of individuals and the same number of symbolic interval variables.
For the m = 1 table, the method proposed is equivalent to the symbolic PCA interval of
Ichino (2007). The use of a compromise and supplementary elements is a common practice
in data analysis. Indeed, Benzécri (1973), Escofier and Pagès (1998), Cazes (2002), Makosso-
Kallyth and Diday (2010), Makosso-Kallyth and Diday (2012) have used this approach. The
uniqueness of the new method is the usage of m ≥ 1 series of n × p interval tables. It
also proposes a new correlation η. The suggested approach establishes a direct connection
between the graphs of individuals and those variables. However, if we assume that the arrays
X(1), . . . , X(m) are observed in m different time and the time dependence of the structure of
tables is complex, the approach may be less robust.
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