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Abstract. Our aim is to define a framework supporting analysis in MDW with
reductions. Firstly, we describe a modeling solution for reduced MDW. A schema
of reduced MDW is composed of states. Each state is defined as a star schema
composed of one fact and its related dimensions valid for a certain period of
time. Secondly, we present a multi-state analysis framework. Extensions of clas-
sical drilldown and rollup operators are defined to support multi-states analyses.
Finally we present a prototype of our framework aiming to prove the feasibility
of concept. By implementing our extended operators, the prototype automati-
cally generates appropriate SQL queries over metadata and reduced data.

1 Introduction

Nowadays, Multidimensional Data Warehouse (MDW) is a widely used component in deci-
sion support systems. A MDW schema is based on facts (analysis subjects) and dimensions
(analysis axes). The facts contain analysis indicators while the dimensions organize analysis
parameters according to their level on hierarchies: from the minimal (most detailed) granular-
ity to the maximal (most general) granularity.

In a MDW, data are stored permanently and new data is steadily added. As result, a MDW
stores a huge volume of data in which the analyst may be lost during her/his analyses. On the
other hand, the relevance of MDW data decreases with age: detailed information is generally
considered essential for recent data Skyt et al. (2008), while more aggregated information can
usually satisfy the need of analysis over older data. For instance, an analyst may have interest
in analyzing published news by subthemes for the last four years. However, as most of today’s
subthemes did not exist before, the subtheme granularity level may be proved useless for an
older period. As a result the analyst may have no more interest in analyzing published news
by subtheme over the last ten years but by a higher and more stable granularity level, such as
news’ theme.

Facing large volumes of data among which a great amount of inadequate data are found, our
aim is to both increase the efficiency of analysis and facilitate the analysts’ task. To this end, we
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provide a conceptual MDW model which provides only pertinent data over time. Meanwhile
we also develop a framework compatible with our conceptual MDW model in order to provide
powerful analysis tools to decision-makers.

– The MDW model with reduction increases analysis efficiency by allowing analysts to re-
move useless temporal granularity levels according to their needs. As detailed information
loses its value over time, we intend to implement selective deletion at low granularity levels.

– The compatible framework permits to manage reduced data and model analysis process by
including analysis operators and a graphical interface.

This paper is composed of the following sections. Section 2 describes a state of the art of
data reduction. Section 3 presents preliminary concepts of reduced MDW with the help of
a case study. Section 4 describes our analysis framework compatible with reduced MDW
by emphasizing modeling principles of metamodel. Section 5 focuses on extended analysis
operators. Section 6 presents a prototype showing the feasibility of concepts.

2 Related work

Reducing data allows us to both decrease the quantity of irrelevant data in decision making and
increase future analysis quality Udo and Afolabi (2011) . In the context of decision support,
data reduction is a technique originally used in the field of data mining Okun and Priisalu
(2007)Udo and Afolabi (2011).

In the data warehouse context, Garcia-Molina et al. (1998) were the first to propose solutions
for data deletion. They study data expiration in materialized views so that they are not affected
but maintained after updates with the help of a set of standard predefined views. No discussion
about carrying out analyses in data warehouse after data expiration can be found in this work.

In the multidimensional approaches, Chen et al. (2002) propose an architecture allowing the
integration of data streams into a MDW by reduce their size. The size reducing process is
predefined and automatically executed by partially aggregating the data cube; it makes sure the
detailed information is only available for a certain period of time. But this work only focuses
on the fact table, and no analysis support component is included in proposed architecture. Skyt
et al. (2008) present a technique for progressive data aggregation of a fact. This study intends
to specify data aggregation criteria of a fact due to higher levels of dimensions. Although
the authors propose techniques to query reduced multidimensional data, they fail to provide
metamodel permitting to manage data reduction in MDW. Kimball and Ross (2011) define the
concept of Slowly Changing Dimensions (SCDs) and indicate that data may change within
a dimension even though it occurs less frequently than in a fact. They propose three basic
modeling solutions for managing dimensional data changes, namely overwrite old data, create
new record for each change and keep data changes as alternative values in MDW. Golfarelli and
Rizzi (2009) point out that not only data but also MDW schema can change over time according
to user’s requirements. SCD, however, does not provide solution for handling schema changes
and it does not take user’s need into account.
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In Iftikhar and Pedersen (2011), a gradual data aggregation solution based on conception, im-
plementation and evaluation is proposed. This solution is based on a table containing different
temporal granularities: second, minute, hour, month and year. Unfortunately this work does
not discuss possibilities of carrying out analysis over gradual aggregated data.

The previous works only focuses on reduction of fact table or data changes within dimensions.
Iftikhar and Pedersen (2010) and Iftikhar and Pedersen (2011) use a temporal table for gradual
data reduction. Analysts’ needs are ignored in data reduction process. None of the previous
work fully support carrying out analysis in reduced MDW. Facing to these issues, our goal is
more ambitious as it aims to meet several challenges mentioned in Golfarelli and Rizzi (2009):

– We propose a solution for handling the complete MDW schema changes by generalizing
the mechanism of reduction. In consequence all of the dimensions as well as the fact are
susceptible to sustain reductions to different granularity levels so as to fully satisfy analyst’s
needs. The information judged useless is aggregated and then deleted from MDW in order
to provide only necessary data for analysis.

– We face issues of carrying out analysis in MDW whose schema changes over time. We pro-
vide decision-makers with an analysis-support framework applicable to MDW with reduc-
tion. The framework contains allows managing both reduced MDW and analysis process.

3 Preliminary concepts of reduced MDW

We will firstly describe a case study of data reduction in MDW that fulfills decision-makers’
needs. This case study intends to give a first glance at selective deletion of data in MDW as
well as data model notations. Then we define a formal presentation for reduced MDW. At the
end of the section we describe a set of reduction operators permitting to define reduced MDW.

3.1 Case study

This case study shows a complete multidimensional schema progression that fulfills the ana-
lyst’s needs. A MDW populated by the RSS streams allows decision-makers to analyze the
number of published news from her/his favorite websites. Containing over ten million tuples
in the fact table, this MDW face the first important problem of performance while a decision-
maker carries out analyses. Moreover, most of the old detailed data become obsolete nowa-
days, they are no more used in analysis process and should be deleted according to user’ needs.
More precisely, a decision-maker expresses her/his needs as followed: (a) during the last four
years, news analysis is carried out with reference to lowest levels of granularity (subtheme, city
and publication date); (b) in the previous period from 2000 to 2010, analyses are summarized
according to news’ theme, country mentioned in the news and month of publication because
no daily analysis referring to subtheme and city is required; (c) before 2000, only aggregated
information about published news by quarter and by continent makes sense.

The following three figures represent the conceptual multidimensional schemas fulfilling user’s
needs. Each schema is based on star schemas introduced in Golfarelli et al. (1998). A star

- 83 -



Analysis Framework for Reduced Data Warehouse

schema is based on a subject of analysis (fact) related to different dimensions. Each fact
is composed of one or more indicators. For instance, in figure 1 the fact named ”FNews”
contains one indicator: number of published news (NBN). A dimension models an analysis
axis; it represents information according to which subjects of analysis are to be dealt with. For
instance, the ”FNews” fact is associated to 3 dimensions: DTheme, DGeography and DTimes.
Dimension attributes (also called parameters or levels) are organized according to one or more
hierarchies such as HTHM on dimension DTheme.

FIG. 1: MDW schema valid from 2010 to 2014

FIG. 2: MDW schema valid from
2000 to 2010

FIG. 3: MDW schema valid from
1990 to 2000

3.2 Concepts

In order to manage progressive schema changes, we model a reduced MDW with a set of star
schemas called states. The current state corresponds to the present status of the MDW con-
taining the most detailed information, while past states correspond to a succession of reduced
states over time in which information is aggregated.
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– A MDW is defined by S = (nS ; E ;Map), where nS ∈ N is the name of the MDW;
E = E1; ...;En is a set of states composing the MDW; Reduction function Map : E →
E|Map(Ek) = Ek+1 defines the state named Ek+1 obtained by the reduction of Ek.

– Each state Ei = (Fi;Di;Ti) is a star schema defined for a temporal period, where Fi ∈ F
is a fact representing a subject of analysis; Di = {Dtimes;D1; ...;Dm} ⊆ D is a set of
dimensions associated to the fact with necessarily a temporal dimension denoted Dtimes.
To define the Ti temporal interval, we adopt a linear and discrete time model approaching
time in granular way through time observation units Wang et al. (1997). A temporal interval
Tk of state Ek is defined by a couple of instants. These instants can be fixed (temporal grains
such as the year of 1990) or dynamic (defined with the instant tnow ).

– A fact denoted Fi is defined by Fi = (nFi,MFi), where nFi is the fact name; MFi is a set
of measures or indicators, ∀i, j|i < j → Mj ⊆ Mi. A dimension denoted Di is defined by
(nDi, ADi, HDi), where nDi is the dimension name; ADi is the set of the attributes of the
dimension; HDi is a set of hierarchies, ∀i, j|i < j → Dj ⊆ Di ∧Hj ⊆ Hi ∧Aj ⊆ Ai.

– A hierarchy, denoted Hj (abusive notation ofHDi
j ) is defined by (nHj , PHj ,≺Hj ,WeakHj),

where nHj is the hierarchy name; PHj is a set of attributes called parameters; ≺Hj is an
antisymmetric and transitive binary relation between parameters; WeakHj is an applica-
tion that associates to each parameter a set of dimension attributes, called weak attributes.
Hierarchies organize the attributes of a dimension, from the finest graduation (root param-
eter denoted IDDi) to the most general graduation (extremity parameter denoted ALLDi).
Thus, a hierarchy defines the valid navigation paths on an analysis axis.

– Analysis results are presented in forms of multidimensional table, denoted MTi, ∀i ∈
[1..n], which is defined by (Si;Axi;Ri; Ii), where Si ∈ F is the analysis subject; Axi =
{axi1, axi2, [, axi3[, axi4, . . .]]} is the set of analysis axes currently presented, among which
axi1 and axi2 are the horizontal and vertical displayed axes respectively; Ri =< pred1,
pred2, . . . > is a set of selection predicates filtering displayed analysis results; Ii ⊆ DTIMES

is a set of temporal interval representing the validation period of MTi.

4 Multi-states analysis framework

Data reduction brings changes to not only MDW’s schema but also its instances. In regard
to schema changes, a MDW is no more modeled as single static schema but a set of schemas
(states) over time. As for instance changes, a reduced MDW no longer contains all detailed
information over time. Judged useless by analysts, certain detailed information in recent states
would be aggregated and then deleted. As consequence, dimensions and facts in recent and
older states certainly have different instances, as they contain different attributes and measures
respectively.

Due to the schema and instances changes, existing metamodel for MDW as well as analysis
operators is no more applicable to reduced MDW. In order to manage different states in MDW
and provide decision-makers with efficient analysis tools, we propose an analysis framework
compatible with reduced MDW. In this section, we first present the architecture of our frame-
work and the roles of its mains components. Then we detail Data Management parts along
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with a deeper discussion about how reduced MDW can be managed through our framework.
Details about Analysis Engine can be found in Section 5.

4.1 Architecture of multi-states analysis framework

The multi-states analysis framework is composed of three components, namely Data Manage-
ment, Analysis Engine and Interactive Restitution (cf. figure 4). Each part has specific roles
and interacts with others.

FIG. 4: Main components of multi-states analysis frameworks

– The Data Management part accommodates a metamodel and a set of reduced MDW. The
metamodel allows managing reduced MDW, new MDW can be defined by instantiating the
metamodel.

– The Analysis Engine part is composed of a set of algebraic operators and three parsers :
– The set of algebraic operators defines elementary operations that decision-makers can

carry out while analyzing. The definition of algebraic operators is independent to tools
and implementation languages. More sophisticated analysis operations can be realized
via composition of algebraic operators.

– The operator parser (a) translates operators in algebraic form into queries over metadata,
(b) analyzes metadata queries’ results and generates corresponding SQL queries which
interrogate concerned MDW and its states, (c) receives partial SQL query results and
combines them together before sending one global result to graphical interface;

– The metadata query parser (a) receives and executes queries over metadata generated by
operator parser, (b) returns metadata queries’ results to operator parser;

– The SQL query parser (a) receives SQL queries generated by operator parser and exe-
cutes them in corresponding MDW and states, (b) returns partial SQL queries’ results to
operator parser.

– The Interactive Restitution part contains (a) a graphical implementation of analysis operators
in order to facilitate decision-makers’ tasks and (b) a graphical interface.

This multi-states analysis framework guaranties the transparency of data reduction in MDW.
Decision-makers carry out analysis via graphical implementation of algebraic operators (arrow
tagged "1" in figure 4) and then receive a global analysis result (arrow tagged "11" in figure
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4). No knowledge about schema and instance evolution of MDW is required for effectuating
analysis via our framework. This is thanks to the Data Management and Analysis Engine parts
of our framework which adapt themselves to users’ needs.

4.2 Data management

The Data Management part of framework permits to (a) manage MDW composed of one or
several states and (b) define new reduced MDW. As we can see from the figure 5, the meta-
model embodies all proposed concepts. The graphical notation of our conceptual metamodel
is based on UML class diagram.

FIG. 5: UML class diagram metamodel of the reduced MDW

Firstly, as all facts, dimensions and hierarchies have a name, the name of elements is central-
ized and managed by the class notated Meta_Element which is the base of our metamodel. All
the rest is considered as specialized classes of Meta_Element. Secondly the notion of state is
represented by the association class Meta_star. This association class possesses a temporal
interval between a start date and an end date. Thirdly, the fact and the dimension are embodied
respectively by the classes Meta_Fact and Meta_Dimension. Each of these classes possesses
a recursive association denoted Derive pointing to itself. Fourthly, by definition a fact contains
a set of measures while a measure belongs to one and only one fact. This rule is expressed
by the relationship notated Contain between the class Meta_mesure and the class Meta_fact.
The ternary association in our metamodel permits to organize attributes according to their
level on a hierarchy of a dimension, which corresponds to concept hierarchy Hj = (nHj ,
PHj ,≺Hj ,WeakHj).

5 Analysis

One of the core components of our framework is Analysis Engine. In this section we present
more details about multi-states analysis processing steps. Detailed studies about emblematic
and the most used operators (drilldown and rollup) are also effectuated. To explain how el-
ementary analysis operations are carried out, we present execution algorithms for algebraic
operators.
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5.1 Analysis processing

To facilitate the decision-maker’s tasks, she/he only interactively selects the MT components:
the displayed measures of a fact, the displayed attributes of dimensions as well as the temporal
interval of the analysis. The system converts the selection into corresponding analysis oper-
ators. All operators supporting multi-states analysis are processed according to the five steps
showed in figure 6. More precisely, through a set of temporal intervals chosen by decision-
makers, the analysis operator firstly determines the states in which analysis is carried out be-
fore adjusting input parameters if necessary. Then it splits up into several classical operators,
each one of them is applied to a single concerned state along with input parameters eventually
adjusted. Next each partial operator is translated and executed independently to get partial
results. At last all partial results are combined in order to return a unique global result to
decision-makers.

FIG. 6: Analysis processing steps of multi-states analysis operators

Our proposition of analysis processing differs from the one in Morzy and Wrembel (2004).
Firstly, Morzy and Wrembel (2004) involves only issues at querying level, no discussion about
analysis operators can be found. Secondly, decision-makers should provide the exact set of
schemas in which analysis is carried out, which requires her/him to have a profound knowl-
edge about schema evolution in MDW. At last, analysis results are possible to be presented
separately, which makes the interaction with data more complex.

Conversely, our proposition of analysis processing has multiple advantages. First of all, it
depends on formally defined analysis operators which are extensions of classical operators.
Existing analysis tools and languages are fully reusable to the extended operator. Secondly,
data reduction in MDW is entirely transparent to decision-makers. While carrying out analysis,
decision-makers do not necessarily need to know schema evolutions in MDW. The multi-states
operators systematically search concerned states and adapt themselves if necessary. Moreover,
multi-states analysis operators provide a single analysis result even if information may come
from several states. No information about states in MDW is presented to decision-makers,
which reinforces the transparency of data reduction.

5.2 Extended analysis operators

Ravat et al. (2008) define a set of generic algebraic analysis operators based on MDW with one
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stable schema over time. Even though these analysis operators sustain flexible and adaptable
to different classical modeling solutions (star and constellation models), they become incom-
patible with reduced MDW. Firstly, classical analysis operators are conceived to manipulate
one unique schema rather than a set of schemas evolving over time. Secondly, classical anal-
ysis operators do not provide solutions for handling heterogeneities of instances in different
states. Conceived to modify analysis precision, the classical drilldown and rollup operators are
highly affected by data reduction in MDW. An analysis involving an inexistent parameter, for
instance, is theoretically impossible according to classical analysis operators.

Facing to these issues, we propose two extended analysis operators: Drilldownmulti−states

and Rollupmulti−states, in order to support multi-states analyses in reduced MDW. They both
take a set of temporal intervals, a multidimensional table currently displayed, an analysis di-
mension and a parameter as input. A new multidimensional table is produced as output con-
taining information at lower or higher granularity level. As data reduction is completely trans-
parent, decision-makers have no information about which dimension Di in state Ei to choose
to carry out analyses. For the sake of simplicity, we allow decision-maker to simply specify
the name of dimension nDi in which analyses are carried out. The analysis operators adapt
themselves by finding the corresponding dimensions Di in state Ei while executing. In order
to distinguish dimensions Di in state Ei (cf. Section 3.2) from dimension chosen by decision-
makers, in the following paper we add "_Ei" as suffix to dimension in state Ei, while the name
of dimension chosen by decision-makers is without suffix.

5.2.1 Drilldownmulti−states operator

Drilldownmulti−states ([I] ; MTk, Di ; Pinf )= MTK+1 ;

Input

- I ⊆DTIMES : a set of optional temporal intervals on dimension DTIMES

- MTk: multidimensional table currently displayed
- Di : analysis axis currently displayed
- Pinf : chosen parameter on dimension Di

Output

- MTK+1 = (SK+1;AxK+1;RK+1; Ik+1) analysis result MT such as
- Analysis subject SK+1 = SK

- Analysis axesAxK+1 ⊆ D,∀axK+1
j ∈ AxK+1|axK+1

j = (DK+1
j ,

HK+1
j , PK+1

j ) such as
- Dimension DK+1

j = DK
j ,

- Hierarchy HK+1
j = HK

j ,
- Parameter PK+1

j ⊆ P (HK+1
j )|(DK+1

j = Di → PK+1
j =< Pinf >

∨ < Pλ
1 >) ∧ (DK+1

j 6= Di → PK+1
j =< P

DK
j

1 , P
DK

j

2 , . . . >)

- Selection predicates on dimensions and/or fact RK+1 = RK

- Validation period Ik+1 = I ∨ Ik+1 = Ik

1. Adjusted parameter Pλ ∈ PH
K+1
j |Pinf ≺H

K
j Pλ

TAB. 1: Algebraic multi-states drilldown operator
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TheDrilldownmulti−states operator permits to display information at a finer granularity level
on currently displayed dimension in several states. As certain parameters of low granularity
exist only in most recent states but not in former ones, it is very likely that some input param-
eters are not present in all states involved in analysis, especially for Drilldownmulti−states

operator. For example, from 2000 to 2014, hierarchy HGeo on dimensions DGeography_E1
and DGeography_E2 can sustain a drilldown operation to Continent and Country levels. But a
classical drilldown until to City level is impossible because the parameter City exists no longer
in "E2" state after reduction. To handle this issue, we propose to augment parameter’s granu-
larity level until finding the first common parameter among all involved states(cf. table 1). The
execution algorithm of Drilldownmulti-states is as follows.

Algorithm 1: Drilldownmulti−states ([I] ; MTk, Di ; Pinf )
Input: Set of temporal intervals I, displayed multidimensional table MTk, displayed dimen-
sion D, parameter P. Output: new multidimensional table MTk+1

1 Let Hactual be the actually displayed hierarchy
2 Let Pactual be the actually displayed parameter
3 If Pactual ≺Hactual P ∨ALLD ≺Hactual P then
4 Impossible operation
5 Else
6 Find the subset of states Ei → ∀Ej ∈ Ei|IEj ∈ I ∨ IMTk

–Adaptation
7 Let PDrilldown = P
8 Let r = FALSE
9 While ALLD ≺Hactual PDrilldown ∧ r = FALSE
10 If ∀Ej ∈ Ei|PDrilldown ∈ ADEj

then
11 r = TRUE
12 Else
13 PDrilldown increases one granularity level
14 End if
15 End While
16 If r = FALSE then
17 Impossible operation
18 Else
19 For Ej ∈ Ei – Decomposition
20 Let MT

Ej

K be the part of MT in states Ej
21 Translate Drilldown(MT

Ej

K , D, PDrilldown)into query Q – Translation
22 MT

Ej

K+1= Result of query Q – Execution
23 MTK+1 = MTK+1

⋃
MT

Ej

K+1 – Integration
24 End for
25 End if
26 End if

For instance, if a decision-maker carries out an analysis to City level in "E1" and "E2" states,
the initial Drilldownmulti−states ([2000,2014], MTk, DGeography, City) operator will be
handled as follows: (a) the first step Adaptation replaces inexistent parameter by the nearest
superior parameter. In this case, City is replaced by Country which is the nearest superior
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common parameter on hierarchy HGEO of dimensions DGeography_E1 and DGeography_E2.
We obtain by consequence a new operator with an adjusted parameter Drilldownmulti−states

( [2000, 2014], MTk, DGeography, Country); (b) the second step Decomposition decomposes
the adjusted operator into several classical drilldown operators. Each one of them is then
applied to a cube containing one single state deducted from the set of intervals; (c) next we find
the classical Translation phase which transforms each drilldown operator into an independent
SQL query; (d) the following phase Execution executes independently each SQL query to
obtain a set of partial analysis results in forms of cube; (e) at last Integration phase gathers all
individual results obtained from each state in order to form one single analysis result.

5.2.2 Rollupmulti−states operator

Rollupmulti−states ([I] ; MTk, Di ; Pinf )= MTK+1 ;

Input

- I ⊆DTIMES : a set of optional temporal intervals on dimension DTIMES

- MTk: multidimensional table currently displayed
- Di : analysis axis currently displayed
- Psup : chosen parameter on dimension Di

Output

- MTK+1 = (SK+1;AxK+1;RK+1; Ik+1) analysis result MT such as
- Analysis subject SK+1 = SK

- Analysis axesAxK+1 ⊆ D,∀axK+1
j ∈ AxK+1|axK+1

j = (DK+1
j ,

HK+1
j , PK+1

j ) such as
- Dimension DK+1

j = DK
j ,

- Hierarchy HK+1
j = HK

j ,
- Parameter PK+1

j ⊆ P (HK+1
j )|(DK+1

j = Di → PK+1
j =< Psup >

) ∧ (DK+1
j 6= Di → PK+1

j =< P
DK

j

1 , P
DK

j

2 , . . . >)

- Selection predicates on dimensions and/or fact RK+1 = RK

- Validation period Ik+1 = I ∨ Ik+1 = Ik

TAB. 2: Algebraic multi-states rollup operator

The Rollupmulti−states operator consists in moving from finer granularity data to coarser
granularity data on a currently displayed dimension in several states (cf. table 2).

Rollupmulti−states operator reveals data at a higher granularity level. As currently displayed
granularity levels exist in all concerned states, chosen parameter denoted Psup presents no
doubt in all concerned states. For example, if the decision-makers wants to roll up analysis
level from Country to Continent after the previous analysis, she/he can simply carry out the
following operator: Rollupmulti−states ( [2000, 2014], MTk+1, DGeography, Continent). No
special treatment is needed in Adaptation step (cf. algorithm 2).
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Algorithm 2: Rollupmulti−states ([I] ; MTk, Di ; Pinf )
Input: Set of temporal intervals I, displayed multidimensional table MTk, displayed dimen-
sion D, parameter P. Output: new multidimensional table MTk+1

1 Let Hactual be the actually displayed hierarchy
2 Let Pactual be the actually displayed parameter
3 If P ≺Hactual Pactualthen
4 Impossible operation
5 Else
6 Find the subset of states Ei → ∀Ej ∈ Ei|IEj ∈ I ∨ IMTk

7 For Ej ∈ Ei – Decomposition
8 Let MT

Ej

K be the part of MT in states Ej
9 Translate Rollup(MT

Ej

K , D, P )into query Q – Translation
10 MT

Ej

K+1= Result of query Q – Execution
11 MTK+1 = MTK+1

⋃
MT

Ej

K+1 – Integration
12 End for
13 End if

6 Implementation

Based on our proposed framework, we develop a prototype in Java. The prototype implements
the reduced MDW of our case study. As our previous work Atigui et al. (2014) shows that
queries are more efficiently computed within a reduced Star Schema in DBMS Oracle 11g,
we chose to implement our case study with the R-OLAP schema presented in figure 7. As a
first step, the aim of our prototype is to demonstrate the feasibility of carrying out multi-states
analysis in reduced MDW. Issues about execution efficiency of multi-states analysis operators
will be included in our future work. Moreover, we choose to implement in the first place
the reduced MDW in a R-OLAP environment, because R-OLAP suffers from poorer query
execution performance than M-OLAP and H-OLAP Vassiliadis and Sellis (1999), especially
in an era of massively abundant data. Thus, one of the main focuses of our future work is to
evaluate analysis efficiency in other OLAP environments, such as M-OLAP and H-OLAP.

Now we will illustrate how multi-states analysis operators are transformed into SQL queries
over metadata and reduced data. A decision-maker is analyzing published news in the world
by month from 2000 to 2014 (states "E1" and "E2" in reduced MDW). Wishing to consult the
number of published news by month and by continents to get more detailed information, she/he
slides the cursor on line to Continent level. The framework detects it concerns a multi-states
drilldown operation from ALL_G to Continent on dimensions DGeography_E1 and DGeog-
raphy_E2. After executing a Drilldownmulti−states operator, two queries are generated by
Analysis Engine of framework.

– By translating algebraic Drilldownmulti−states operator, the prototype generates firstly the
query applicable to metamodel (cf. left part in figure 8). It interrogates the metamodel in
order to find states in which the drilldown operation is carried out and verify if the chosen
parameter is available in concerned states. In this case parameter Continent presents in both
"E1" and "E2" states.
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FIG. 7: R-OLAP schema of case study

– After receiving the results of the previous query , the prototype transforms the multi-states
drilldown operator into several classical drilldown operator. Each one of classical drilldown
is then translated into a query based on a single state. At last the prototype combines partial
queries with SQL clause UNION (cf. right part in figure 8). In this way the prototype returns
one global result for each analysis. Moreover, as each partial query could be run individually
without effect on other queries’ results, our approach facilitates parallel computing of partial
queries in parallel DBMS environment (for instance Oracle Parallel, Oracle Distributed,
etc.).

FIG. 8: Queries over metadata generated by prototype

- 93 -



Analysis Framework for Reduced Data Warehouse

7 Conclusion

This paper resides within the field of MDW. Our first objective is to specify reduced mul-
tidimensional schema over time in order to store only the useful data for decision support
according to the needs of analysts. The second objective is to provide a framework allowing
analysts to carry out multi-states analysis in reduced MDW.

Firstly, we define a MDW model which allows us to specify MDW schemata composed of
a set of states varying over time. Each state consists of a star schema valid for a certain
period of time. Secondly, we present a generic framework permits to manage both reduced
and unreduced MDW through a metamodel and support multi-states analysis with the help of
extended analysis operators. By instantiating the metamodel, we explain how reduced MDW
can be managed by our framework. As regard to multi-states analysis operators, we present an
algebraic form followed by an execution algorithm in order to show how analysis results are
produced. One of the main advantages of our analysis framework is the transparency of data
reduction: decision-makers can freely carry out analysis without the need for knowing schema
evolution in MDW. Finally, we implement our multi-states analysis framework in order to show
the feasibility of proposed concepts. We show how multi-states analysis operators are executed
by giving concrete examples of automatically generated SQL queries.

In the future, we intend to integrate more analysis operators in a short term, such as Dice, Slice,
etc. Moreover, even though our previous work has shown that queries were more efficiently
computed in reduced R-OLAP MDW Atigui et al. (2014), the efficiency of multi-states analysis
in M-OLAP and H-OLAP environments still remains to be evaluated. Our long term goals are
to study influence of data reduction over pre-aggregated data.
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Résumé

Notre objectif est de définir un environnement permettant d’effectuer des analyses décision-
nelles dans un entrepôt de données multidimensionnel (EDM) réduit. Dans un premier temps,
nous proposons une modélisation pour EDM réduit. Un schéma d’EDM réduit est composé de
plusieurs états. Chaque état est défini comme un schéma en étoile composé d’un fait et de ses
dimensions valables pour une période déterminée. Dans un deuxième temps, nous présentons
un environnement d’analyse multi-états. Des extensions des opérateurs classiques drilldown et
rollup sont définies pour les analyses multi-états. Enfin, nous présentons un prototype afin de
prouver la faisabilité du concept. En implantant nos opérateurs étendus, le prototype génère
automatiquement des requêtes SQL adéquates sur des méta-données et des données réduites.
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