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Abstract. New frameworks such as Spark, Tez, Flink, or Hive offer new pos-
sibilities, but using more than one framework is generally not easy. We build
an abstraction layer that allows users to define their big data operations in a
declarative way. This abstraction layer is backed by a platform that optimizes
the workflow by carefully profiling each operation and running them, transpar-
ently, on the most appropriate framework given the description of the job and
the currently available resources.

1 Introduction

For a time, it looked like the world would settle on Apache Hadoop for all its big data
needs, but the Hadoop project has been split, and while its data storage part, HDFS, has indeed
become the lingua franca of big data processing frameworks, its processing engine, Hadoop
MapReduce, has seen a lot of competition lately. New frameworks such as Apache Spark (see
Zaharia et al. (2010)), Apache Tez (based on Verma et al. (2011)), Apache Flink (continuation
of Warneke and Kao (2009)), or Apache Hive offer new possibilities, along with tradeoffs and
challenges.

In this work, we build an abstraction layer that allows users to define their big data oper-
ations in a declarative way. This abstraction layer is backed by a platform that optimizes the
workflow by carefuly profiling each operation and running them, transparently, on the most
appropriate framework given the description of the job and the currently available resources.

In Section 2, we describe the high-level API exposed to users and the general principles
behind it. In Section 3, we describe the architecture of the underlying platform. Section 4
presents our demonstration scenario, and, finally, Section 5 concludes.

2 High-Level API

We expose an API rather than a GUI for our platform. This has multiple advantages: we can
focus on the platform itself, support multiple clients in the future, and allow other programs to
interact with the platform. These other programs may be IDEs, including textual and graphical
DSL frontends.

The API is based upon the REST principles, as described in Fielding (2000). The central
resource type is a dataset, which presents the user with metadata about an actual dataset present
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{"schema": [{"name": "id", "type": "string"}, {"name": "age", "type": "number"},
{"name": "hair-color", "type": "string"},
{"name": "height", "type": "number"}],
"id": "initial-dataset",
"_controls":
{"op:remove-cols": {"href": "/some/other/url", "method": "POST",
"template": {"name": "remove-cols",
"datasets": ["initial-dataset"]}},
"Qcolumns": {"type": "array",
"items": {"type": "integer"}}}}

FIG. 1 — An example of (a subset of) a dataset representation in JSSON

{"name": "remove-cols", "datasets": ["initial-dataset"], "columns": [0, 2]}

FIG. 2 — An example request to remove two columns from the dataset in Figure I

on the server. The actual contents of the dataset is not, in the general case, available for down-
load, as we assume that the datasets are too big for the client to handle. An important part of the
metadata available about a given dataset is the list of operations that the client can request on
that dataset. This list includes all of the information the client needs to submit a well-formed
request for each operation. The server is therefore responsible for determining which operation
can be applied on which dataset.

Whenever the client requests that an operation be performed on a dataset, the result is the
creation of a new resource. For most operations, that new resource is itself a dataset, which
can be used in other operations, building a graph of datasets. For some operations, the result
is a model, which is a computational entity of which the client can subsequently ask questions
and get responses. The new resource is immediately resolvable and can return some of its
metadata even before the computation starts on the cluster. This allows the client to quickly
chain operations together.

An example usage of the API will yield more insight. The examples are given in JSON
(see Crockford (2006)), and are somewhat abridged to fit in the constraints of this paper. Full
representations contain additional information. We start with an initial dataset, as represented
on Figure 1. Without going into the details of the representation, it should be clear that the
representation advertizes the available operations and how to request them.

The client can then issue a request as represented on Figure 2. The response from the server
is a new dataset representation, similar in format to Figure 1. The cycle can continue until the
client is satisfied with the result. The list of supported operations is constantly evolving; we
plan to support operations ranging from the usual data cleaning and extraction found in typical
ETL tools to advanced machine learning. We have a team of data scientists working on new,
state-of-the-art algorithms for automatic feature extraction and deep learning that we plan to
incorporate within the platform.
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3 Underlying Platform

Within the underlying platform, requested operations are placed on a queue. An orchestra-
tor accesses that queue and processes operations in the correct order given their interdependen-
cies. For efficiency reasons, all jobs run on a single, shared cluster. Indeed, if at a given point
in time Spark is not running at all, and Hive is consuming all of its available resources, in a
typical setup it is not easy at all to redirect some of the Spark machines to the Hive cluster.
With our unified approach, resources are dynamically allocated to each framework by a single
orchestrator.

From a functional perspective, the orchestrator has two objectives: starting jobs in the cor-
rect order, given that there are dependencies between jobs, and ensuring that jobs can be piped
together even when they run on different frameworks.

From a performance perspective, the orchestrator can do quite a lot more. For some oper-
ations, there can be multiple implementations with different resource usage patterns, and the
orchestrator can choose the best one given the current circumstances: which nodes are avail-
able, where the required data is, how much data there is, and so on. The orchestrator can also
analyze the graph of operations present on the queue and eliminate or reorder some of them, as
long as it does not affect the results of the user-visible results (datasets for which the user can
request full data, and models). This includes identifying jobs that have already been computed,
and reusing their results.

As the ODAP platform will be installed in very different environments, and any given
installation could evolve dramatically over time, it is very important that the platform can
dynamically adapt to its running environment. To that end, all operations will be profiled and
the above optimizations will be based on cost estimates derived from real, recent measurements
on the actual environment. We strive for minimal manual tuning.

Finally, to make it easy to deploy our platform, it is built to run within portable, self-
contained Docker containers. This makes it quick and easy to setup new nodes and add them
to the cluster, and just as easy to remove the platform from a machine after installation.

4 Scenario and Implementation

The whole system is built atop the Java platform, the same as Hadoop (from which we
reuse Yarn and HDFS) and the vast majority of the supported frameworks. We use ZooKeeper
(see Hunt et al. (2010)) to record the distributed state of the application (job queue and list of
existing datasets). The API server is completely stateless. The orchestrator is mostly stateless:
its only internal state is the communication channels it has with the currently running jobs.
In other words, a crash of the orchestrator can, at worst, necessitate that the jobs that were
currently running have to run again. The jobs themselves are not taken out of the queue before
they are fully completed, so even if the whole Yarn subsystem crashes, no job definition is lost.
ZooKeeper itself is distributed and fault-tolerant.

For the demonstration, the use-case will be what we call a billboard optimization problem:
given a set of cities, a set of users, a set of products, and a marketing budget, decide in which
city each product should be advertized. The problem combines general data cleaning (extract
the price paid by each user for each service), traditional data mining (recommendation to esti-
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mate how much each person would pay for a service he does not have yet), and optimization
(find a good placement of products in cities).

5 Conclusion and Future Work

We have built, and presented, a platform to unify big data applications, particularly data
mining and machine learning. The platform dynamically optimizes its workload, taking into
account its available resources. It unifies different frameworks, making different types of op-
erations available, on a single data lake, increasing resource utilization. Finally, this platform
presents a high-level, declarative interface shielding the user from the differences between
frameworks.
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Résumé

Des outils tels que Spark, Tez, Flink ou Hive offrent de nouvelles possibilités, mais il est
souvent difficile d’utiliser plusieurs de ces outils en méme temps. Nous présentons une couche
d’abstraction qui permet aux utilisateurs de définir, de maniere déclarative, des opérations sur
de grandes quantités de données. Cette couche d’abstraction cache une plateforme intelligente
qui optimise les opérations demandées en choisissant les outils appropriés, en tenant compte
des caractéristiques des opérations demandées et des ressources disponibles.
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Résumé

L’entreposage de données et I’analyse en ligne se sont imposées comme des outils fon-
damentaux et incontournables de 'informatique décisionnelle. Elles sont aujourd’hui
confrontées a de nouveaux défis scientifiques qui apparaissent avec la prolifération de
nouveaux types de données, de nouvelles architectures et infrastructures, etc. La con-
férence francophone sur les entrepots de données et I'analyse en ligne EDA, arrivée
A sa onziéme édition, vise & créer un contexte pour la rencontre et ’échange entre
chercheurs, industriels et utilisateurs intéressés par les avancées dans les entrepdts
de données et 'analyse en ligne. Le présent recueil constitue les actes du colloque
EDA 2015, qui s’est déroulé a Bruxelles, Belgique, les 2 et 3 avril 2015, avec un pro-
gramme comprenant douze présentations scientifiques, deux conférences invitées, et
des démonstrations scientifiques.

Summary

The data warehousing and on-line analysis processing (OLAP) technologies have
emerged as fundamental and indispensable tools for business intelligence. They are
now confronted with new scientific challenges that appear with the proliferation of
new data types, new architectures and infrastructures, etc. The French conference
on data warehousing and on-line analysis EDA, which reached its eleventh edition,
alms to create a context for the meeting and exchange between researchers, indus-
try and users interested in advances in data warechouses and on-line analysis. This
book constitutes the proceedings of the EDA 2015 symposium, which was held in
Bruxelles, Belgium, on April 2-3, 2015, with a program consisting of twelve scientific
presentations, two invited lectures and scientific demonstrations.
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