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Abstract. The division of a national territory is a mandatory process to anal-
yse socio-economic dynamics. Commuting is then an important dimension to
build such classification and weighted network analysis is adapted to study this
phenomenon. We present in this paper a procedure to help users to identify hi-
erarchical partitions of cities that capture commuters flows density. We enforce
our method on a network which represents commuting in France (based on the
1999 national census). Our approach is based on a common technique improved
by visual tools: highlight dense areas using a strength metric and extract clusters
at different levels using the variation of a quality measure function.

1 Introduction
The definition of good spatial units is important for regional planning and geo-statistical

analysis. Spatial network analysis based on different kinds of human interactions has been used
in this context. A good example is the study of a telecommunication network in Great Britain
by Ratti et al. (2010). Another interesting approach is the study of commuting (Gargiulo et al.
(2011); Rouwendal and Nijkamp (2004)) which can be defined as the regular travel between
place of residence and place of work. It is obviously related to the development of suburbs and
commuter towns. A “Regionalization” of urban areas could not today be reasonably assessed
without taking commuters flows into account. In this context, graph based methods have been
used to visualize and study these flows (Patuelli et al. (2007)).

The work we present here is based on the result of the 1999 French national census on
all the national territory without overseas departments. According to this census there were
about 3 millions commuters in France who correspond to 12% of the total labor force. The
network induced from these data contains about 36500 cities divided in 96 departments and
22 administrative regions (see Figure 1 for a map). The relations between the cities (network’s
nodes) are built as follows : two cities A and B are linked by an arc (oriented edge) if there is
at least one person living in A and working in B. This arc is then weighted by the number of
commuters going from A to B.
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FIG. 1: Administrative division of France into Departments and Regions without overseas
departments (source : Le Robert - 1995)

We are interested in finding clusters, which correspond to subsets of nodes (cities). In the
case of this work, a clustering corresponds to a partition of the set of nodes. That is, a collec-
tion of mutually disjoint subsets such that their union gives the initial set of nodes. When nodes
inside a cluster are again divided into subclusters the resulting configuration is denoted hier-
archical clustering. Note that a possible hierarchical clustering is the division of French cities
into administrative regions which are divided into departments. We want to find alternative
classifications of cities that can be used by regional planners. This problem will therefore not
be solved using overlapping clustering. We hope the situation where a city can not be assigned
to only one group shall be captured by the way groups are organized hierarchically. This ap-
proach also matches with the official classification used by the French institute of statistics and
economical studies (INSEE) which is described latter.

Numerous network clustering procedures or algorithms have been developed in the last
decades (Fortunato (2010)). De Montis et al. (2011) used the modularity maximization based
algorithm of Blondel et al. (2008) to test if new provinces of Sardinia (Italian island) corre-
spond to labor basins found using the algorithm. Another procedure due to Lancichinetti et al.
(2011) was applied to the United-Kingdom commuters’ network.

In this paper, we propose a procedure to that allow user to extract hierarchical partitions
from a weighted network. We illustrate the relevance of this approach by looking at the com-
muters networks induced by four French regions. The rest of this paper is organized as follows.
In section 2, we describe the official definition of urban areas used by the INSEE which is based
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on commuters flows. In section 3 we present a graph metric allowing to visually highlight
dense areas. A classic procedure to calculate clusters according to this metric is introduced in
section 4. By precisely describing how this method works, the section 5 presents an interactive
and visual way to detect multi-scale clustering. The results are detailed in section 6 as long
as a discussion of our results when compared to existing methods and algorithms. The visu-
alizations we present are built using Tulip, a network analysis framework (Auber et al. (2012)).

2 Official INSEE Classification

The work we present here is based on the result of the 1999 French national census on
all the national territory without overseas departments. The INSEE uses commuters flows to
define a partition of cities into metropolitan areas and metropolitan regions along with a clas-
sification into urban cores, monopolar cities, multipolar cities and rural cities which are parts
of the ZAUER classification 1. These concepts were developed after the 1999 French national
census. This classification is mostly used in analysis of demographic evolution and then plays
an important role in regional planning. We shall explain here its construction.

The base component of the metropolitan area is the urban core which is a group of close
cities providing at least five thousand jobs such that any city inside this group does not be-
long to any other metropolitan area. The metropolitan area is then constructed iteratively by
merging cities having at least 40% of their labor force commuting inside the area. These cities
are designed as monopolar. After that cities having 40% of their labor force commuting to
multiple metropolitan areas are designed as multipolar. The metropolitan areas linked by mul-
tipolar cities form metropolitan regions. A city which does not belong to any metropolitan
area or region is designed as rural. The ZAUER classification actually provides a finner clas-
sification of rural areas but we shall here focus on urban areas where the commuting is stronger.

The ZAUER classification is illustrated in Figure 2. Note that a hierarchical clustering can
be induced by the INSEE classification because metropolitan areas are included in metropoli-
tan regions. Then the flows of workers can be analyzed at different scales. One can assume that
flows are dense inside metropolitan regions and even denser inside metropolitan areas while
being sparse between these regions.

Two ideas underlie the way the ZAUER classification is built : firstly cities belonging to
the same group are close one to each other. This corresponds to the fact that commuters des-
tination is not far from their living place. Secondly areas where commuters flows are stronger
(here metropolitan areas) are often smaller than administrative departments or regions due to
the fact that some cities can not reasonably be assigned to urban group (rural cities).

1. http://www.insee.fr/en/methodes/
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FIG. 2: French cities according to the 1999 ZAUER classification

3 Highlighting dense areas

In order to identify close cities using commuters flows, we want to provide visualizations
of areas where commuting is important and (visually) identify clusters of cities. To do so, we
start by defining a metric capturing interesting topological features of this network. To simplify
our problem note that the orientation of the edges is not very relevant. Indeed, we are looking
for areas where the commuting phenomenon is important (i.e. densely connected subsets of
nodes) not including cities that are the origin or the destination of only a few workers. (i.e.
weakly connected nodes). We thus replace each double way arc by a single edge weighted by
amount of workers travelling between these two destinations.

To highlight dense areas we can begin be identifying the relations that do not likely belong
to such areas. The strong metric values correspond to links in dense regions. We can quantify
this by calculating a strength metric (Auber et al. (2003); Chiricota et al. (2003)) on edges
of the network taking the number of commuters into account. This metric, described here, is
denoted J(u, v) for a link (u, v) in the network.

Let u, v (see Figure 3 for a small example) be the two cities and t(u, v) be the number of
commuters between u and v. We also define the direct neighborhood of u as Nv which is a
set of cities w such as t(u, w) > 0 (including v). The number of commuters travelling in the
direct neighborhood of both city u and v is given by :

I(u, v) = t(u, v) +
∑

w∈Nu∩Nv

(t(u, w) + t(v, w))
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and let
E(u) =

∑

w∈Nu\Nv

t(u, w)

be the number of commuters travelling in neighborhood of the city u but not in the neighbor-
hood of v. Our strength metric (denoted J) is then

J(u, v) =
I(u, v)

2(E(u) + E(v)) + I(u, v)

FIG. 3: An example of small network. Edges labels indicate their value. The blue part
represents the common neighborhood of both entities u and v (Nu ∩ Nv), the green is the
exclusive neighborhood of u (Nu\Nv) and the pink that for v (Nv\Nu). We have I(u, v) = 10,
E(u) = 11 and E(v) = 10 then we have J(u, v) ≈ 0.19

This metric is close to the Jaccard index (Hamers et al. (1989)) between the neighborhood
of u and v taking the weight of relations into account. A value close to 1 indicates that the
relation between the two cities occurs most likely within a dense area. On the other hand a
value close to 0 indicates that the relation could be either a bridge between two communities
or an exchange of workers between two isolated cities. A trivial algorithm to compute J is to
compare u and v neighborhoods for each edge (u, v). The time complexity is O(mn2) where
m (resp. n) is the number of edges (resp. vertices) in the network.

A simple way to visualize the distribution of the metric over the network is the linear map-
ping between metric values and a color scale applied on edges in the layout (see Figure 4(b)).
The idea is to filter out the low values. In this image we removed edges having a value below
0.5. The image displayed in Figure 4(b) contains some interesting features. First note that
relations with a high metric value are not uniformly spread over the network but are most of
the time gathered in small regions especially within areas close to big cities. These areas seem
to also coincide with peripheral regions around big cities. Observe that these groups can be
of different sizes and can be linked together with edges of significant weight, revealing the
presence of hierarchies in the network.

Looking at the strength metric mapping in Figure 4(b) and the ZAUER classification in
Figure 2 one can easily see that urban areas match with regions of the graph where the strength
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(a) Simple graph layout (b) Linear mapping between strength metric values and
a transparent to opaque scale

FIG. 4: Representation of the 1999 French commuters network. Departments biggest city is
labeled in red.

metric is high. Those simple observations validate our approach. The visualization of dense
areas may however differ on some part of the network. For instance in the West of France,
we can see edges with high value crossing wide areas over the coasts. However, in the ZA-
UER classification, these regions contain many rural cities and dense regions are concentrated
around big cities.

4 Clusters calculation

An intuitive way to retrieve clusters of cities inside the network consists in filtering out the
low valued edges in relation to the metric and assuming that two nodes are in the same cluster
when they are connected by an edge having a high strength value. In terms of graph theory,
the clustering is given by the connected components resulting of the removal of the low valued
edges. This procedure is known as single-linkage clustering (Fortunato (2010)). To enforce
this method we need to define what is a strong or a weak edge according to our measure. A
convenient approach consists in using a threshold: an edge is considered weak if its strength
metric is below this threshold (the edge is discarded) and strong otherwise (the edge is kept).

Figure 5 illustrates the procedure. With a threshold equal to 0.2, the weak edges (in grey)
are removed. This new network has four connected components (red, green, blue and orange)
which form a clustering containing two singletons (blue and orange). Taking a threshold value
equal to 0 does not disconnect the network while taking 0.8 or more results in a clustering
containing only singletons.
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FIG. 5: Illustration of single-linkage clustering based on the example introduced in Figure 3.

This method allows hierarchical clustering. Indeed, let t1 and t2 be two thresholds such
as t1 < t2, the clustering corresponding to t2 can be obtained by applying the single-linkage
procedure to each group of the clustering corresponding to t1. In the example of Figure 5, tak-
ing another threshold t2 = 0.4 yields to a hierarchical clustering by splitting the red coloured
nodes into three subclusters. The single-linkage clustering is then well adapted to our study
because we suppose that hierarchies may exist in the network formed by commuters’ flows.

In order to evaluate the groups of cities found with a given threshold, we use a quality
measure. They are often used in graph clustering algorithm to compare methods or choose
between different results. The quality measure used here is the MQ measure first introduced
by Mancoridis et al. (1998) and further analysed by Delest et al. (2011). This measure is based
on the difference between internal and external connectivity ratio and is bounded by [−1, 1].
The MQ value is close to 1 when clusters are densely connected while the connections with
the rest of the network are sparse. Let C be a clustering of cities i.e. Ci corresponds to a group
of cities, its size is denoted |Ci|. Set

Win(Ci) =
∑

u 6=v∈Ci

J(u, v)

the sum of the J-metric for edges within the cluster Ci and

Wout(Ci) =
∑

u∈Ci

∑

v∈V \{Ci}
J(u, v)

the sum of the J-metric for edges outside. The network contains a total of n cities. The MQ
quality measure is then

MQ =
1

n

k∑

i=1

(
2Win(Ci)

|Ci| − 1
− Wout(Ci)

n − |Ci|

)

Note that even if we filter edges below the threshold value to determine the clustering, the
measure MQ is computed for the whole network including filtered edges. Consider the small
network illustrating the construction of the J-metric. The Figure 5 provides an example of
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clustering for this graph using an arbitrary threshold value. The resulting clustering denoted
C is composed of four clusters. For example taking Cred the cluster corresponding to the
red coloured nodes, we have Win(Cred) = 5.26 and Wout(Cred) = 0.46. Finally, we get
MQ ≈ 0.3.

An important feature of this measure is that the size of clusters is taken into account. It
means that a cluster consisting of only few cities has a lower impact on the MQ value than
a cluster composed of hundred of cities. The method described here is then well adapted to
the fact that some rural cities cannot reasonably be assigned to larger and denser group (see
the ZAUER classification). A threshold value is associated with the corresponding MQ value.
Most of the time the quality measure is used to decide the best threshold (we seek the thresh-
old corresponding to the maximum MQ value). However, doing so risks to discard interesting
phenomena such as the presence of hierarchies inside the network. This idea is developed in
the next section.

5 Visualization-based procedure

As said in Section 1, mapping of a colour scale on edges according to strength metric is
effective at highlighting dense areas. It is however hard to determine the thresholds to use in
order to identify a hierarchical clustering of a network. We explain in this section how one can
use the evolution of MQ to detect this kind of features and turn clustering of the network into
a data exploration process.

Each variation of the quality measure MQ corresponds to different kinds of evolution of
the clustering:

– Steady state: Most of the time no variation occurs if no other edge is discarded at this
step, the clustering then stays the same.

– Slow increase/decrease: This situation occurs when several small clusters are discon-
nected from a larger component, making this component slightly denser/sparser. And
because the disconnected small clusters do not have a huge weight in the MQ value, the
increase/decrease of the measure is not very high.

– Step upward/downward: At some value of the threshold a big component can be cut
into smaller clusters which are big and dense enough to lead to a huge gain of the MQ
measure. Alternatively and most of the time for a large threshold value, dense clusters
may be totally disconnected leading to an important loss of quality.

The behaviours listed above may be combined to give a visual representation which helps to
understand the clustering process. Looking at the MQ curve for the example network (Figure
6), we can visually identify a phase of slow increase (orange then blue clusters are discon-
nected), a huge variation (red and green clusters are separated), another phase of slow increase
(two red nodes are disconnected) then MQ rapidly falls (the dense red and green clusters are
disconnected). Even if the best MQ value is obtained after the removal of two nodes from the
red cluster, the major change happen here when the red and green cluster appear.
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FIG. 6: Evolution of the MQ (y-axis) measure according to the threshold value (x-axis) used
to clusterize the example network in Figure 5.

The plot given by the pairs (threshold,MQ) value is used here to extract hierarchical clus-
terings. A hierarchical organization of the network can then be inferred using the evolution of
MQ by looking for local maxima (huge variations in the measure followed by a null or nega-
tive gains) which are relatively close to the global maximum (to guarantee a certain robustness
of each level of the hierarchical clustering). Instead of using heuristics we can rely on the
human eyes for several reasons:

– The user knows the number of level he/she wants (the INSEE uses a two level classifi-
cation).

– Several alternatives partitioning can be found for the same network.
– The analysis of the evolution of MQ can be coupled with a filtering of edges in the graph

layout.
– MQ curves of various networks can be compared to find similar connectivity patterns.
For a given threshold t1, the partition and the corresponding MQ value can be computed

in linear time. Plotting the MQ curve for l different threshold value would take O(lm) in this
case. In practice, the procedure can be implemented efficiently by updating the partition and
the MQ value. Indeed, when an edge is removed either the partition does not change or a
cluster is split into two sub-clusters. The MQ value can be updated by removing the gain of
the previous cluster and adding the gains of the two sub-clusters.

6 Results
We apply the procedure described above on French administrative regions. Several reasons

justify this choice. First, people living in a region and working in another only represent 5%
of the total number of commuters. Secondly, cities that send more workers outside the region
than inside are most of the time located near the borders separating these regions. Finally,
when looking at Figure 4(b) we can see that high valued edges barely cross regions’ borders.
In this section we detail the results for four regions, each of them illustrates a different phe-
nomenon.
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(c) Pays de la Loire
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(d) Provence-Alpes-Côte d’Azur

FIG. 7: Evolution of MQ values for several French regions in the 1999 commuters’ flow
network. The blue vertical lines indicate the threshold selected for each region.

In Figure 7 we present MQ curves in relation to these regions. The result of our procedure
for each region is shown in Figure 8.

The Figure 7(a) corresponds to the region Ile-de-France having Paris as capital. Looking at
the evolution of MQ for this sub-network it is hard to detect any significant increase. Indeed,
increasing the threshold value disconnects cities that are less connected (often at the border of
the region).

The situation is very different for the region Basse-Normandie (Figure 7(b)) : the positive
variation of MQ is stronger and leads to a single threshold which also corresponds to the max-
imal value. No significant hierarchical configuration can really explain the commuters’ flow
occurring in this region. Looking at the representation in Figure 8(b), we note that the clusters
correspond most of the time to the suburbs of the biggest cities. Note also that these groups
are very distant and separated by singletons that are actually rural cities.

The analysis of the MQ curves for the region Pays-de-la-Loire and Provence-Alpes-Côte
d’Azur reveals that these regions contain areas we can hierarchically decompose. The Figure
8(d) shows that the dense groups are located in the south (near the Mediterranean sea) and
include some important cities (such as Marseille or Toulon). This clustering does not differ
so much from the ZAUER classification. However, we see that we can use a third level to
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(a) Ile-de-France (b) Basse-Normandie

(c) Pays de la Loire (d) Provence-Alpes-Côte d’Azur

FIG. 8: Representation of the hierarchical clusterings found using the threshold values chosen
in Figure 7. Only the groups of cities which contain more than 5000 workers are shown. The
groups are displayed using concave hulls. The color of the hulls corresponds to the depth of
the cluster inside the hierarchy (first level: blue, second: brown, third: green). Finally, the
name of the biggest city of each group is shown.

disconnect smaller and very dense areas.
The region Pays-de-la-Loire mostly consists of isolated metropolitan areas in the ZAUER clas-
sification. However, we found that a larger group which contains three important metropolitan
areas (around Nantes, Angers and the North of the Vendée) can be found. It can be explained
by the fact that road and rail infrastructure is very developed between these zones.

We shall now compare our results to different classifications. The Figure 9 provided the re-
sults using the ZAUER classification (Fig. 9(a)) detailed in Section 2. We used two recent
hierarchical clustering algorithms: the Infomap algorithm (Rosvall and Bergstrom (2011))
(Fig. 9(b)) and the Oslom algorithm (Lancichinetti et al. (2011)) (Fig. 9(b)). The clustering
provided by the later is actually overlapping i.e. a city can be part of several clusters.

As said previously, our results differ from the ZAUER classification. They are however
closer than those obtained using other methods. Both Infomap and Oslom algorithms provide
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(a) ZAUER classification (b) Infomap clustering

(c) Oslom clustering (from left to right: first, second and third level).

FIG. 9: Different clusterings for the region Pays-de-la-Loire. Only the groups corresponding
to more than 5000 workers are displayed.

clusters of uniform sizes at the different levels. This configuration is very different from the
ZAUER classification where large groups can be found around big cities. Moreover, relatively
large groups can be found in rural areas where the number of commuters is low.

7 Conclusion and future works
We introduced in this paper a procedure to detect multilevel clustering in commuters net-

work. In the literature, graph clustering algorithms are most of the time black box tools re-
turning one solution. With our method however, the user (geographer or sociologist) is able to
visually mine the network that he/she studies and explore various solutions. Combining edges
filtering with the evolution of a suited quality measure provides an efficient method for the
detection of dense clusters and hierarchies inside a network. It may also be used to classify
networks base on the shape of the quality curve.

We enforced this procedure to study French commuters flows. It appears that hierarchies
of cities can be found for several regions. The results provide a different kind of information
than the ZAUER classification but are more consistent than those obtained using other hierar-
chical algorithms. Note also that the ZAUER classification takes into account the geographical
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distance between cities while we only used the amount of workers travelling between cities as
input. People working for the INSEE in charge of the ZAUER classification contacted us and
were interested by this work. Moreover, geographers found our method and results relevant for
the study of commuters flow networks 2. We also claim that our procedure can be used to study
and partition other kind of networks (weighted or not) such as social networks. However, the
method proposed here focused on finding non-overlapping partitions.

An interesting lead to validate the choice of the threshold values is to use a hierarchical
quality measure introduced in Delest et al. (2011). We should be able to tell whether the local
maxima in the evolution of MQ corresponds to a good hierarchical clustering. Regarding
our case study, we plan to use our method to extract hierarchical decompositions over the
years using the previous national census data. We suspect that this approach can help the
understanding of the dynamic of such networks. However, additional visualisation tools may
be needed. For example, we should be able to highlight significant changes in the structure of
the network represented by a hierarchical clustering.
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