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Abstract. This paper deals with new descriptive statistics for histogram data, in
the framework of symbolic data analysis. A main contribution consists in defin-
ing the main order statistics (median and quartiles) of a histogram variable using
the quantile functions associated with the corresponding empirical distribution
functions of the observed histograms. The definition of an order relationship
between quantile functions is based on an appropriate probabilistic metric: the
`p Wasserstein distance. Starting from the median and quartile functions defini-
tion, we extend the classic box-plot representation for set of quantile functions.
Finally, we propose new measures of variability and skewness for a histogram
variable associated with this representation. An application on real data allows
us to corroborate the proposed measures and the new box-plot visualization tool.

1 Introduction

The advance of technology is making possible to observe and to collect very large datasets.
The analysis of such data is often performed after a summarization step whose aims are to
obtain a more manageable information, in size and in terms of computational resources, while
preserving as much as possible the information of the entire data set. The representation of
data through histograms is a common practice in data summarization. In fact, a histogram is
parsimonious representation, with respect to storage requirements, and it provides an idea of
the underlying distribution of the observed data or of subsets of values observed for a single
attribute.

Symbolic Data Analysis (in short SDA) (Boch and Diday, 2000; Billard and Diday, 2006;
Diday and Noirhomme-Fraiture, 2008) provides a formalization of a new symbolic descrip-
tor, the histogram variable which is a particular case of symbolic multi-valued modal variable.
Several techniques (Clustering, Regression, PCA,. . . ) have been proposed in Billard and Diday
(2003) to analyze histogram data. Some basic statistics like the sample mean and the standard
deviation for a histogram variable have been introduced in Bertrand and Goupil (2000), Bil-
lard and Diday (2003), Billard and Diday (2006) and Irpino et al. (2006). Graphical tools for
visualizing symbolic data (including histogram data) have been also presented by Noirhomme-
Fraiture and Rouard (1997) and by Noirhomme-Fraiture and Nahimana (2008).
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Box-plot for Histogram Variables

The aim of this paper is to introduce order statistics for histogram variables, especially the
Median and the other quartiles. Generally, the definition of order statistic requires to establish
an order relationship among data. In data analysis, the ordering definition problem is not a
trivial issue. A meaningful example is provided in multivariate data analysis where it is not
possible to define a natural ordering in Rd when d > 1. A well known approach is based on
the concept of data depth (Tukey (1975), Liu et al. (1999), Zuo and Serfling (2000)), which
is based on center outward ordering criterion. In this sense, a depth measure associates a high
degree of centrality to an observation, with respect to a dataset, if it is close to the center of data
cloud. Here, we assume histogram data as empirical distribution functions. Each histogram is
uniquely associated with a cumulative distribution function (cdf ), which is a piece-wise linear
function, and with a quantile function (the inverse function of the cdf, which is still a piece-
wise linear function). In this paper, we propose a definition of ordering for histogram data by
means of their quantile functions. In order to find an ordering within a set of quantile functions
associated with observed histogram data, a possibility can be the statistical depth introduced
for functional data (Ramsay and Silverman (2005), López-Pintado and Romo (2009)). Fol-
lowing this approach, the median function is defined as the function having the highest depth.
However, the functional data approaches do not guarantee that the central function (i.e., the
function having the highest depth) is unique.
Our proposal consists in determining the Median histogram according to a natural ordering
of the piece-wise quantile functions in sub-intervals of their domain. We select the segments
of the quantile function having a central position in each sub-interval that does not intersect
the other piece-wise functions. Therefore, the median level-wise quantile function does not
present any intersection with other observed functions and it is completely inside the other
quantile functions, differently from the median obtained using depth functions. The median
piece-wise quantile function associated to the median histogram data must respect the propri-
eties of the median in descriptive statistics and so, it has to minimize the sum of `1 distances
from all the other quantile functions. In order to compare quantile functions we make reference
to a family of metrics (Rüshendorff (2001)), here denoted as `p Wasserstein distances. In par-
ticular, according to Arroyo (2008), Arroyo and Maté (2009), Arroyo et al. (2011), the median
can be defined as the quantile function which minimizes the `1 Wasserstein distance.

Finally, after having defined the most common quantile functions-order statistics (1-st and
3-rd Quartiles, Median, Minimum and Maximum quantile functions) we propose a box-plot-
like tool for quantile functions which is an extension of the classical visualization tool. Fur-
thermore, in order to improve the description of a set of histogram data, we propose some
variability (as the interquartile range IQR) and skewness measures of the quantile functions
distribution.

The paper is organized as follows: In the section 2, we introduce the `p Wasserstein metrics
to compare histogram data; in section 3, we give: a detailed description of the procedure for
computing the order statistics for quantile functions, the algorithm scheme, and some com-
putational evaluations; in section 4, we illustrate the procedure to construct the box-plot; in
section 5, we present some skewness indexes. The section 6 ends the paper with an application
on real data.
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2 Histogram data
Let us consider a continuous variable Y with support S = [y; y] where y and y are the

minimum and maximum observed values. The support S can be divided in a set of contigu-
ous and non overlapping intervals (or bins). Given N observations of Y, a histogram H is
a representation of Y consisting of a finite number of pairs {(Ik, fk); k = 1, . . . ,K} where
Ik = [y

k
, yk) ⊆ S (with y

k
≤ ȳk) are the K bins of the histogram and fk are the associated

relative frequencies (that is, the number of observed values contained in Ik normalized by N ).
A Histogram Variable H is a symbolic multi-valued variable whose realizations are his-

tograms (Bertrand and Goupil (2000)). We indicate with Hi = {(Iik, fik); k = 1, . . . ,Ki}
(i = 1, . . . , N) a set of N realizations of H. Since it is assumed that the values are uniformly
distributed within each interval Iik = [y

ik
, yik), and having indicated with wik the cumulative

frequencies fik, as:

wi0 = 0; wik =
k∑

`=1

fi` k = 1, . . . ,Ki, (1)

it is easy to define the cumulative distribution function cdf Fi(y) associated to Hi as fol-
lows:

Fi(y) =





0 if y < y
i1

wik +
y−y

ik

ȳik−y
ik

fik, if y
ik
≤ y < ȳik (k = 1, . . . ,Ki − 1)

1 if y ≥ ȳiKi .

(2)

Reminding that the quantile function (qf) of a probability distribution is the inverse of its
cumulative distribution function (cdf), the (qf) associated to each Hi is:

Fi
−1(t) =





y
i1

if t = 0

y
ik

+ t−wik−1

wik−wik−1
(ȳik − yik) if wik−1 ≤ t < wik (for k = 1, . . . ,Ki)

ȳiKi
if t = 1

(3)
Graphically, (cdf) and (qf) are piecewise linear functions as shown in Fig. 1.
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FIG. 1 – From the left to the right: a histogram datum, its cumulative distribution function
(cdf) and the corresponding quantile function (qf).
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2.1 Metrics for histogram data

An interesting challenge concerns the choice of the metric to compare histogram data. A
possibility is to use one of the metrics for probability distributions. Furthermore, the dissimi-
larity between two histogram data can be computed considering their corresponding cumulated
distribution functions.
Among the metrics proposed for matching probability distributions, we can mention: the f-
divergence based measures, the discrepancy metric, the Kolmogorov (or Uniform metric), the
Prokhorov-Lévi distance and the Wasserstein-Kantorovich-Monge-Gini distance (an overview
is available in Gibbs and Su (2002)). In particular, we focus our attention on the latter family
of metrics.

According to Rüshendorff (2001), the `p Wasserstein distance between two distribution
functions is expressed by:

dpp(i, j) =

1∫

0

∣∣F−1
j (t)− F−1

j (t)
∣∣p dt (4)

where Fi(y) and Fj(y) are the cumulative distribution functions (cdfs) associated to the i− th
and j − th histograms (empirical density functions) and the F−1

i (t) and F−1
j (t) are the cor-

responding quantile functions (qfs). It is worth noting that the closed form distance depends
on the possibility of expressing the quantile functions in closed form. According to the for-
mula in equation (4), Irpino et al. (2006) introduced the following closed form of the squared
Wasserstein distance (`2) between two histograms:

d2
2(Hi, Hj) =

1∫

0

(
F−1
i (t)− F−1

j (t)
)2
dt. (5)

Being the Hi and Hj two observed histograms (empirical distribution functions), the cor-
responding distribution functions Fi and Fj , as well as the quantile functions F−1

i and F−1
i ,

are piece-wise linear functions with angular points in wl (for l = 1, . . . ,m).
The wl are the cumulated relative frequencies associated to the elementary intervals Il; by
considering the union of the two sequences of wl related to the cumulate frequencies of the
histograms Hi = {(Iik, fik) | k = . . . ,Ki} and Hj = {(Ijk, fjk) | k = . . . ,Kj} :

{wi0, . . . , wiu, . . . , wiKi
}
⋃
{wi0, . . . , wju, . . . , wjKj

}

Sorting the wl values and erasing the equal values, we get the set of m distinct levels:

{w0, . . . , wl, . . . , wm}

where: w0 = 0, wm = 1 and max(Ki,Kj) ≤ m ≤ (Ki +Kj − 1).

Expressing each bin Ik by its center ck =
ȳk+y

k

2 and its radius ck =
ȳk−y

k

2 , and the
intervals Ik in normal form: Ik(t) = ck + rk(2t− 1) for 0 ≤ t ≤ 1, the distance between two
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histograms expressed by the equation (5) can be written as:

d2
2(Hi, Hj) :=

m∑

k=1

fk

[
(cik − cjk)

2
+

1

3
(rik − rjk)

2

]
. (6)

Using this distance proposed in Irpino et al. (2006) and Verde and Irpino (2008), it is proved
that the Average histogram of a set of histogram data is the histogram H̄ having in its descrip-
tion the bins Ik = [c̄k − r̄k; c̄k + r̄k] and the relative frequencies fk, with c̄k and r̄k the means
of the centers cik and radius rik of Ik (for k = 1, . . . ,m and i = 1, . . . , N ). In fact:

minHf(H|H1, . . . ,HN ) = minH

N∑

i=1

d2
2(Hi, H) = (7)

= minck,rk

N∑

i=1

m∑

k=1

fk

[
(cik − ck)

2
+

1

3
(rik − rk)

2

]
.

In particular, (7) is solved by H with:

ck = N−1
N∑

i=1

fkcik ; rk = N−1
N∑

i=1

fkrik.

An interesting decomposition of the `2 Wasserstein distance between two continuous quan-
tile functions associated to random variables Yi and Yj was proposed by Irpino and Romano
(2007):

d2
2(Hi, Hj) =

(
yi − yj

)2
+ (si − sj)2

+ 2sisj (1− ρ(i, j)) (8)

where considering that the mean values of the distributions can be obtained using the quantile
function Gilchrist (2000) as follows:

yi =

+∞∫

−∞

x dF (x) =

1∫

0

F−1
i (t)dt, (9)

while the standard deviation is similarly obtained as

si =

√√√√√
+∞∫

−∞

x2 dF (x)− [yi]
2 =

√√√√√
1∫

0

[F−1
i (t)]2dt− [yi]

2 (10)

yi and yj ,and si and sj are respectively the means and the standard deviations of the two
distributions is the correlation coefficient between the two quantile functions, defined as:

ρ(i, j) =

1∫
0

yi(t)yj(t)dt− yi · yj
si · sj

. (11)
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When the qfs are piece-wise linear functions associated to the histogram data Hi and Hj

then:

ρ(i, j) =

m∑
k=1

fk
[
cik · cjk + 1

3rik · rjk
]
− yi · yj

si · sj
. (12)

3 The Median quantile function and other order statistics
At first we find the Median qf and the Median histogram for a set of histogram data

{Hi}i=1,...,N . Taking into account the proprieties of the median, in descriptive statistics, and
according to Arroyo (2008), Arroyo and Maté (2009), Arroyo et al. (2011), the Median his-
togram can be defined as the histogram HME which minimizes the `1 Wasserstein distance in
(4):

min
HME

N∑

i=1

d1(Hi, HME) = min
F−1(t)

N∑

i=1

1∫

0

∣∣F−1
i (t)− F−1

ME(t)
∣∣ dt, (13)

where F−1
i and F−1

ME are the qfs associated to Hi and HME respectively.
It is noteworthy that HME is the center histogram of the set of histogram data Hi according
to the `1 Wasserstein distance so as the Average histogram is the center according to the `2
distance as shown by Verde and Irpino (2008), Irpino et al. (2006).

According to the nature of the data and the minimization problem in eq. (13), the level-wise
median functionME(t) is a quantile function that, for each t ∈ [0; 1], takes the middle value of
the sequence of ordered values Fi(t) (for i = 1, . . . , N ); in such a way, ME(t) is the quantile
function that leaves N/2 quantiles at level t before and N/2 after its taken values. Like in the
classic case, Arroyo et al. (2011) highlight that the definition of Median histogram, if the num-
ber of histograms is even, is not unique. However, similarly then the classic way, the median is
taken as the value that is half-way between the two central values at positionN/2 andN/2+1.

Thus, we have a level-wise order (for a given t we may order the qfs) but not a full order
or semi-order relation among qfs. Naturally, if for each t ∈ [0; 1] the order of the qfs is always
the same, we can extend the level-wise order to a full order relation (in all the support interval
[0, 1] but generally the qfs tend to intersect each other like shown in Figure 2.

For our scope, we refer to each histogram Hi, i = 1, . . . N through the set of couples
{(Iik, fik) k = 1, . . . ,Ki} with wik =

∑k
l=1 fil, k = 1, . . . ,Ki the cumulative relative

frequencies or levels. Our strategy to find a piece-wise level median quantile function consists
to reduce the number of points t in [0, 1] to the level set w of common wk levels to all the
the qfs associated to the histograms Hi, and to look for the median values ME(wk) only
in correspondence of these levels wk (for k = 1, . . . ,K). For that, a first step (here called
homogenization step) to find the minimum set of wk cumulative frequency levels (as union of
all the sets wi for i =, . . . , N ), is needed.

Hereafter are described the two main steps to determine the piece-wise level Median quan-
tile function:

– Homogenization step. It detects the minimum set of level values wik (for i = 1, . . . , N
and k = 1, . . . ,Ki, allowing to define a set of elementary intervals [wk−1, wk] of levels
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FIG. 2 – The black dotted curve represents the Median-qf obtained with the proposed method.

that do not contain angular points. Thus,

{w10, . . . , w1K1
, . . . , wi1, . . . , wiKi

, . . . , wN0, . . . , wNKN
} (14)

is the set of the cumulated relative frequencies associated to all histograms Hi, i =
1, . . . , N . After sorting the elements of w and eliminating the replicated values, the set
w is now:

{w0, . . . , wk, . . . , wK} , (15)

where w0 = 0, wK = 1 and, denoting with K = N−1
N∑
i=1

Ki, the value of K varies in

max
1≤i≤N

Ki ≤ K ≤ (N(K − 1) + 1).

For each wk, k = 0, . . . ,K the values of F−1
i (wk) = yk, i = 1, . . . , N are known

or they can be easily computed by a linear interpolation (because the qfs are piece-wise
linear functions). So, each Hi, i = 1, . . . N is constituted by a new set of K couples
{(I∗ik, f∗ik); k = 1, . . . ,K}, where: I∗ik = [yk−1, yk] and f∗ik = wk − wk−1.

– Median level piece-wise selection step. This step is repeated for each k elementary
interval of cumulative frequency levels. Each elementary interval of levels [wk−1;wk]
containsN segments F−1

i (t) (withwk−1 ≤ t < wk) associated to theN qfs F−1
i (t). Let

F−1
(i) (t) (with wk−1 ≤ t < wk) be the i − th piece-quantile function, with (i) its order

with respect to all the others pieces qfs F−1
(j) (t) (with wk−1 ≤ t < wk). The order (i)

of F−1
(i) (t) is kept in all the level interval (wk−1, wk) only if there are not intersections

between pieces quantile functions F−1
(i) (t) and F−1

(j) (t) (with wk−1 ≤ t < wk) in the
interval (as simply shown in figure 3), that changes the order of the sub-pieces of the
quantile functions. It requires to check in each level interval (wk−1, wk) the intersection
points and then, to perform a further splitting of the interval in sub-intervals of cumulate
frequency levels. The set of wk’s will be increased and the final w set is updated by the
new levels, so the selection of the median pieces quantile F−1

(N
2 )

(t) (withwl−1 ≤ t < wl)

is performed on an updated number of levels wk with k = 1, . . . ,m (with m ≥ K). If
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FIG. 3 – Selection of the pieces quantile level of the Median-qf (the dotted path) in the ele-
mentary interval of levels [wk−1, wk] with N = 3.

N is even, we consider the value that is half-way between two middle quantile functions
values, like in the classic case.
The Median qf may correspond to an observed quantile function F−1

(N
2 )

(t) or it is ob-

tained by the selected F−1

(N
2 )

(t) (with wl−1 ≤ t < wl) segments of position (N2 ) in each

interval quantile level (wl−1, wl). In order to distinguish the Median-qf to an observed
qf we denote it ME(t). Obviously, the Median histogram is a histogram associated to
the Median-qf of the set of N qfs.

Using the same algorithm it is possible to compute the generic p · N (p ∈ [0; 1]) or-
der qf statistic, because they may be not observed qfs they are denoted Q(pN)(t). The pro-
posed algorithm for order quantile functions searching, guarantees a unique correspondence
between the histograms and the qfs, so the First Quartile-histogram HQ1 is associated with the
qfQ(0.25·N)(t) (orQ1(t)), the Third Quartile-histogramHQ3

with the quantile qfQ(0.75·N)(t)
(or Q3(t)) as well as the Median histogram HME with the quantile qf ME(t).

Computational cost of building a order statistics for a set of qfs >From a computational
point of view we evaluate the time complexity. The selection step is performed K times. The
maximum number of intersection between the N segments to be evaluated in O(N2). Thus,
taking into account the number of bins and the number of potential intersections, in the worst
case, the computational cost of the whole processing is of order:

O
(
[N(K − 1) + 1]N2

)
= O(KN3).

4 Box and Whiskers plot for qfs

A new representation tool, similar to the box-plot, is here introduced for showing the his-
togram data set distribution. The box is defined as the region bounded by the piecewise quantile
functions Q1(t) and Q3(t).
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For the choice of the whiskers we can consider different criteria for selecting the piecewise
qfs corresponding to theQLow lower andQUpp upper bounds. We take into consideration three
possible ways.

Min-Max qf The lower and the upper bounds are chosen as the first Q(0)(t) and the last
Q(N)(t) qfs. However, this solution presents, as disadvantage, the possibility to include
extreme or outlying qfs.

90% most central quantiles A second way consists in choosing Q(0.05·N)(t) and the
Q(0.95·N)(t) bounded qfs. This solution is less sensible to outlying qfs.

1.5 times the Inter Quartile Range this third way needs to define, firstly, an extension of
the Inter Quartile Range (IQR) measure. In this analysis context, we define the Inter
Quartiles Range (or IQR) as the area between the qfs (similarly the cdfs) associated
with the first Q1(t) and the third Q3(t) computed through the `1 Wasserstein distance:

IQR = d1(HQ1
, HQ3

) =

1∫

0

|Q3(t)−Q1(t)|dt = Q3 −Q1, (16)

where Q3 and Q1 are the means of the densities described by the histograms HQ1
and

HQ1
, computed according to Eq. (9).

The choice of `1 distance seems to be consistent with the metric used for defining the
order statistics like the Median and the Quartile functions. Considering that Q3(t) ≥
Q1(t) ∀t ∈ [0, 1], IQR can be interpreted as the difference between the mean values of
the HQ1 and the HQ3 distributions 1. Therefore, a third way for defining the upper and
the lower bounds of the whiskers consists in translating Q3(t) and Q1(t) of 1.5 times
the Inter Quartile Range IQR. Thus, HLow is the histogram associated with Q1(t) −
1.5IQR, while HUpp is the histogram associated with Q3(t) + 1.5IQR. In this case,
the qfs-bounds have the same shape of Q1 and Q3. However that can represent a limit
in the interpretation of the final results, since it does not take into consideration eventual
different shapes of the extreme qfs.

4.1 Variability and shape measures
The qfs box-plot shown in Fig. 4 generalizes the classic box and whisker plot to quantile

functions. It is composed by the qfs related to the MedianME(t) (in the center), theQ1(t), the
Third Quartile Q3(t), for the box, and by the lower QLow(t) and upper QUpp(t) that delimit
the whiskers.

The interpretative features of a classic box-plot can be generalized to the box-plot of qfs.
However, the complex nature of the histogram-valued data, even observed through their qfs,
does not allow a direct generalization. We here present some variability and shape-related

1. Because Q3(t) ≥ Q1(t) for each t ∈ [0, 1], and thus, Q3(t)−Q1(t) ≥ 0, we obtain that

IQR =

1∫

0

|Q3(t)−Q1(t)|dt =
1∫

0

(Q3(t)−Q1(t)) dt =

1∫

0

Q3(t)dt−
1∫

0

Q1(t)dt = Q3 −Q1.
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FIG. 4 – The quantile function box-plot consisting in five qfs: the median, the First and the
Third quartile qfs delimiting the box, an Upper and a Lower bound qf are the extremes of the
whiskers.

measures, like the skewness, that must be considered a first tentative to extend some classic
measures for point-valued valued to histogram-valued ones.
As measures of variability we propose the IQR introduced in (16). Alternatively, we can define
a further interquartile range IQR2 based on the `2 Wasserstein distance as follows:

IQR2 = d2
2(HQ1 , HQ3) =

1∫
0

(Q3(t)−Q1(t))
2
dt =

=
(
Q3 −Q1

)2
︸ ︷︷ ︸

IQR2

+ (sQ3 − sQ1)
2

+ 2sQ3sQ1 (1− ρ(Q3, Q1))︸ ︷︷ ︸
∆IQR2

.
(17)

As shown in the eq. (8), the `2 Wasserstein distance can be decomposed in the two components
related to the location and the variability respectively. Thus, the (17) takes into account the
location and the variability of the set of the qfs respectively.
Moreover, the distance of the Median qf with respect to the First and the Third Quartile qfs
can indicate a global degree of skewness of the set of the qfs, even if it takes into account only
a partial information (around the 50%) of the distribution of the qfs around the Median qf.

We propose the following skewness indices:

A1 =
d1(HQ3

, HME)

d1(HQ1, HME)
=
Q3 −ME

ME −Q1
; (18)

A1 > 0 being the averages of the Third Quartile, Median and First Quartile qfs in following
relations: Q3 ≥ME and ME ≥ Q1.

A1 = 0 when Q3 = ME and ME 6= Q1. If the averages of Q3(t) and ME(t) qfs are the
same, then the 25% of the qfs upper the half are coincident with the ME(t); that means the IQR
is equal to the difference between the ME(t) and the Q1(t) qfs. Then, the qfs distribution
presents a negative asymmetry. In the case, that also ME = Q1, the A1 is indeterminate but it
happens only if there is not an interquartile variability of the qfs.

A1 → +∞ if (ME − Q1) � (Q3 −ME); that can be interpreted as a strong positive
asymmetry of the qfs distribution.
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FIG. 5 – The averages of the Q1(t), ME(t) and Q3(t) quantile functions are respectively:
Q1 = 0.5, ME = 1, Q3 = 1.5. The value of A2 = 0 in both the configurations, that cor-
responds to a symmetry of the distributions of the qfs whereas the shape of the areas between
Q3(t) and ME(t), and between ME(t) and Q3(t) are not the same.

A1 = 1 if (Q3−ME) = (ME−Q1). That can correspond to a symmetry of the qfs distri-
bution of the quartiles Q3(t) and Q1(t) qfs with respect to ME(t) qf based on the differences
between the averages of Q3(t), ME(t) and Q1(t).

A limit of this index is that it is expressed as a ratio between two distances and to assume
an infinite value when the measure at denominator is equal to 0. Therefore, an alternative
formulation of A1 can be provided by a log transformation, as follows:

LA1 = log(d1(HQ3
, HME))− log(d1(HQ1, HME)) = log(Q3 −ME)− log(ME −Q1);

(19)
LA1 takes values in all real number domain <; in particular, it assumes value 0 when there

is a symmetry of the quartiles Q3(t) and Q1(t) qf distributions with respect to ME(t) qf.
Let us define a second skewness index, expressed by:

A2 = d1(HQ3
, HME)− d1(HQ1

, HME) = Q1 +Q3 − 2ME. (20)

We can interpret the asymmetry of the qfs distribution, according to the values that the A2

index takes:
A2 < 0 if (Q3 −ME) < (ME −Q1) , that corresponds to a negative asymmetry
A2 > 0 if (Q3 −ME) > (ME −Q1), that corresponds to a positive asymmetry
A2 = 0 if (Q3 − ME) = (ME − Q1), that corresponds to symmetric distribution of

the qfs, but always based on the difference between the averages of the Quartiles functions
((Q3 −ME) and (ME − Q1)). We notice that A2 = 0 does not take into account eventual
different shapes of the Q3(t), ME(t) and Q1(t) qfs (see Fig. 5).

This can be instead considered by using the A2(`) index (hereafter detailed) which allows
to evaluate the differences between the average values of the Quartile functions ((Q3(`) −
ME(`)) and (ME(`)−Q1(`))) for every frequency level of the qfs.
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Therefore, an extension of the Bowley skewness index (Kenney and Keeping, 1962), also
known as quartile skewness coefficient) is:

A3 =
d1(HQ3 , HME)− d1(HQ1, HME)

d1(HQ3
, HQ1)

=
A2

IQR
, (21)

it is the normalizedA2 index.A3 takes values in [−1, 1]. Because IQR ≥ (d1(HQ3
, HME)−

d1(HQ1, HME) then:
A3 = −1 if (Q3 = ME), that corresponds to a negative asymmetry
A3 = 1 if (Q1 = ME); that corresponds to a positive asymmetry
A3 = 0 if d1(HQ3 , HME) ∼= d1(HME , HQ1), the distribution of qfs can be considered

symmetrical in mean. In fact, as shown in Fig. 5, we obtain d1(HQ3 , HME) ∼= d1(HME , HQ1)
also when the Median qfs is not always at the center between the two Quartile qfs .

The A1 and A2 indices can be extended to a wider domain of the distributions considering
the quantile functions at 5% and 95% of the distributions (excluding extreme quantile functions
which can be outliers) rather than the Q1 and Q3. The index A3 extended to a 5th and 95th
quantile requires a different normalization than the previous one. In such way we propose:

A′3 =
d1(H0.95N , HME)− d1(H0.05N , HME)

N−1
N∑
i=1

d1(Hi, HME)

(22)

where the normalizing term N−1
N∑
i=1

d1(Hi, HME) is a sort of simple median deviation mea-

sure computed according to the Wasserstein `1 distance.
In order to take into account the skewness of the set of the qfs in correspondence of the

different level intervals [wl−1, wl], we propose to expressA2 as a level-wise function assuming
constant values in [wl−1, wl] as follows:

A2(l) =
wl∫

wl−1

|Q3(t)−ME(t)|dt−
wl∫

wl−1

|Q1(t)−ME−1(t)|dt =

=
wl∫

wl−1

[Q1(t) +Q3(t)− 2 ·ME(t)] dt
(23)

for wl−1 ≤ t ≤ wl with l = 1, . . . L′ where the number L′ is computed during the homoge-
nization step for the Q1,ME,Q3 and max{KQ1,KME ,KQ3

} ≤ L′ ≤ (KQ1 + KME +
KQ3

− 2) with KQ1,KME ,KQ3
the number of quantile levels of the First quartile, Me-

dian and Third quartile functions. Obviously, the index A2 can be retrieved by the sum of
the A2(l), l = 1, . . . , L′, that is A2 =

∑L
l=1A2(l) 2. It provides an information about the

skewness of the distribution of qfs around the Median qf for each frequency level interval. In

2.
∑L

l=1
A2(l) =

∑L

l=1

{
wl∫

wl−1

[Q1(t) +Q3(t)− 2 ·ME(t)] dt

}
=

∑L

l=1

wl∫
wl−1

Q1(t)dt +

∑L

l=1

wl∫
wl−1

Q3(t)dt− 2
∑L

l=1

wl∫
wl−1

ME(t) =
1∫
0

Q1(t)dt+
1∫
0

Q3(t)dt− 2
1∫
0

ME(t)dt =

Q1 +Q3 − 2 ·ME = A2
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fact, A2(`) = 0 means a symmetry of the qfs (50%) distribution in the interval wl−1, wl; while
A2(`) < 0 (A2(`) > 0) means an higher concentration of qfs pieces distribution between the
Q1(l) and theME(l) than between theME(l) andQ3(l), forwl−1 ≤ t ≤ wl. Some examples
of A2(l) functions associated to four groups of four histogram variables are shown in Fig. 9.
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FIG. 6 – The quantile functions of the histogram data in the China dataset.

Similarly the indices IQR in (16) and (17) may be expressed as a piece-wise function
IQR(l), l ∈ {1, . . . , L′} for a fixed L′, as follows:

IQR(l) =

wl∫

wl−1

|Q3(t)−Q1(t)|dt, IQR2(l) =

wl∫

wl−1

(Q3(t)−Q1(t))
2
dt. (24)

The previous functions are useful for obtaining information about variability of the set of qfs
in each level interval [wl−1, wl].
Conversely, the A1 and A3 are assumed only as global indices: the A1 being expressed as a
ratio cannot be summarized by the sum ofA1(l) values at each level l; theA3(l) l ∈ {0, . . . , L}
is a normalized A2(l) index, the denominator IQR scales the A2(l) in smaller values which
are difficult to interpret with respect to the values−1 and 1 that the globalA3 index can assume
in case of negative and positive asymmetry.

5 An example
To corroborate the proposed order basic statistics, the variability and the skewness mea-

sures as well as the box-plot tools, we analyze a dataset of histograms obtained summarizing

- 41 -



Box-plot for Histogram Variables

climatic information recorded by 60 meteorological Chinese stations. The histogram dataset is
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FIG. 7 – The Box and Whisker plot for quantile functions of the China dataset.

constructed starting from a public available repository of climatic data 3 containing values of:
Mean monthly Temperatures, Precipitations, Relative Humidity and Wind Speed for 60 sta-
tions in China from 1930 to 1988.
In order to deal with histogram data, we have considered the Mean monthly measurements for
each station collected for each meteorological season (Winter, Spring, Summer and Fall), car-
rying out a dataset of 60 stations described by 4× 4 (variables× seasons) histogram variables.
The quantile functions associated with each histogram are shown in Figure 6.
We computed the following piece-wise qfs: Q0.05(t), Q1(t), ME(t), Q3(t) and Q0.95(t) for
each histogram variable. The relative box-plots drawn by using these qfs are shown in Figure

3. Dataset URL: http://dss.ucar.edu/datasets/ds578.5/
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7. With each qfs, it is possible to associate its density function. However, the box-plot of qfs
offers a more simple interpretation of the characteristics of the observed variable, while, the
interpretation using the density functions is complicated by an absence of a natural ordering
for histograms. In Fig. 8, we present a direct comparison between the box-plots for the variable
temperature and a representation of the densities that are associated with the qfs of the main
elements of the box-plot. For adding a bit of readability, we have not represented on the same
plane, but in a sliced way.
It is worth of noting (Fig. 6) that the qfs of the Temperatures in the Summer show almost
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−20

−10

0

10

20

30

40

Temperature (C)

FIG. 8 – The Box and Whisker plot for quantile functions of Temperature and the correspond-
ing histograms. Please note that, even if the histograms have the same support, they were
represented in a sliced way in order to improve the readability of the graph.

constant values in the coldest and in the warmest days (the corresponding qf curves are quite
parallel to horizontal axis) and a few variability in the range of values around 15-25 ◦C. Simi-
larly, the shape of the qfs of the Temperatures in the Winter observed in the 60 meteo-stations,
in particular the warmest regions, do not point out relevant variations of the temperatures be-
tween the coldest and the warmest days (from 15◦C to 20 ◦C) while we note that the coldest
regions have a stronger change of the temperatures from the coldest and the less cold days
(from -30◦C to 15 ◦C). However, comparing the distribution of the 60 qfs of the Temperatures
in the Winter with the qfs of the Temperatures in the Summer it presents a higher variability as
shown by the wideness of the bands between the five piecewise qfs (Q0.05(t), Q1(t), ME(t),
Q3(t) and Q0.95(t)).

The shape of the qfs of the Temperatures in the Spring and in the Fall is different. They are
"step functions" with quite constant trends in correspondence of each of the three months. For
reason of brevity, among the other nine (3× 3) variables, we comment only some of them: the
Precipitations, for the specific characteristics, presents a strong variability from the lowest to
the highest values of precipitations in the same regions (that is typical of precipitation series).
The qfs distribution of the Relative Humidity and Wind speed, in the different seasons, have
intermediate configurations with a more considerable variability of the ones related to the Rel-
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ative Humidity values especially in the Spring and in the Summer, while a qf "outlier curve" is
learnt in the Winter (the lowest in the graphic representation).

TAB. 1 – Variability and skewness indices.
Variable Season IQR IQR2 ∆IQR2

IQR2
A1 A2 A3

Temperature Winter 13.6 186.9 0.004 0.707 -2.3 -0.172
(C) Spring 7.0 50.6 0.045 0.634 -1.6 -0.224

Summer 5.6 30.9 0.003 0.465 -2.0 -0.366
Fall 9.8 100.4 0.042 0.524 -3.1 -0.312

Precipitations Winter 35.1 1939.8 0.364 4.626 22.6 0.644
(mm) Spring 100.3 13630.6 0.263 3.866 59.1 0.589

Summer 77.7 8095.5 0.255 0.761 -10.6 -0.136
Fall 46.0 3253.4 0.350 0.944 -1.3 -0.029

Relative Winter 18.2 346.8 0.044 0.370 -8.4 -0.459
Humidity Spring 28.0 804.9 0.025 1.621 6.6 0.237
(perc.) Summer 12.0 165.6 0.137 0.444 -4.6 -0.385

Fall 12.6 161.4 0.023 0.983 -0.1 -0.009
Wind speed Winter 1.30 1.7 0.024 1.887 0.400 0.307
(m/s) Spring 1.21 1.5 0.019 1.175 0.097 0.081

Summer 1.00 1.0 0.026 0.991 -0.004 -0.004
Fall 1.23 1.6 0.041 1.694 0.318 0.258

Looking at the box-plots in Fig. 7, it is interesting to comment the "skewness" of the qfs dis-
tribution of the Precipitations in the Spring: the half of the qfs, under the Median qf, show a
small variability of lower values of the precipitations, proper of this season in the less rainy
regions, while the most rainy regions present a higher variability of the milliliters of precipita-
tion values during the season.

The Tab. 1 shows the interquartile index (IQR, IQR2) values in the first two columns; the
third column contains the relative importance of the IQR2 due to the variability of the distri-
butions (histogram data) (according to the `2 Wasserstein distance decomposition as showed
above) of the several variables in the different seasons recorded in the 60 meteo-stations. It is
easy to note that the stronger effect of the variability of the distributions (histogram data) is
observed for the Precipitations, especially in the coldest seasons (Fall and Winter). This result
is consistent with the considerations expressed about the box-plots of the Precipitations in the
Fall and in the Winter. Moreover, we observe the highest positive values of the A2 skewness
index and of the normalized A3 one (in the last columns of the table) for the qf distributions of
the Precipitations in the Winter and Spring compared with the all other ones. That corresponds
to the highest variability of the distributions of milliliters of Precipitations in the most rainy
regions with respect to the less rainy areas like in the Winter and in the Spring.

Figure 9 shows, for each variable the different A2(`) skewness normalized functions as-
sociated with each season. The last discussed results about the skewness of the precipitations
distributions in Winter and in Spring, expressed by the high values of A1, A2 and A3 indexes
(positive for A2 and A3) can be better read on the graphics of the A2(`) curves that highlights
the growing of the A2(`) step-wise functions of the Precipitations in the Winter and in the
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FIG. 9 – The skew functions A2(`) for the China dataset.

Spring. In opposite the A2(`) step-wise function of the Relative Humidity in Winter presents
always negative values for each quantile level, that is synthesized by the negative values of A2

index, as well as by the normalized A3 index.

6 Conclusions

In this paper we have proposed order statistics for histogram variables based on the repre-
sentation of the histograms (realization of the histogram variable) through their corresponding
quantile functions. In particular, with the aim of defining an ordering between quantile func-
tion values we have used the "`1" norm Wasserstein distance. Starting from the main order
statistics: the median, the first and third quartiles and the upper and lower quartile function, we
have also presented a new graphical representation, like box plot, which permits to visualize
the characteristics of the distribution of a quantile functions set. Due to the particular nature
of the histogram data, realizations of a histogram variable, that are described by a sequence of
pairs (interval and frequency), it is very hard to define an order relation among them. Our main
contribute consists in proposing a way to define the median (and then, the other quartiles) as
the sequence of those values of a quantile function which minimize the `1 Wasserstein. This
corresponds to find an order relation between the quantile function in correspondence of all
the values of their common support [0, 1]. However, we propose an algorithm which reduces
the computational cost because it looks for the median function values on a reduced number of
values of the quantile functions support: the elements of the setw. Other approaches which find
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an order relation among histogram data are difficult to get. In any way, working on the quantile
functions associated to histograms, the nearest research area is the functional data analysis. In
such context, depth function based on a concept of internality of the observed curves, rather
than on the centrality one, has been proposed. It presents, as main advantage, to be an ob-
served function, the most internal to the other ones but it does not guarantee to be the Median
function for all the values of the domain, due to the intersection that it can present with the
other functions. Instead, our proposed approach allows to have a piece-wise median quantile
function which is always at half-way position with respect to all the others. In prospective,
further comparisons between the two approach could be interesting to put in evidence some
advantages of each other, especially when the number of functions is very high.
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