
Generalization Method when Manipulating Relational
Databases

V. Cariou∗,∗∗ L. Billard∗∗∗

∗LUNAM University, Oniris, Sensometrics and Chemometrics Laboratory,
Nantes Cedex F-44322 France

veronique.cariou@oniris-nantes.fr
∗∗INRA, Nantes, F-44307, France

∗∗∗Department of Statistics, University of Georgia, Athens, GA 30602, USA
lynne@stat.uga.edu

Abstract. Contemporary computers generate massive datasets. One way to
handle these data is to aggregate them into smaller datasets (with the aggrega-
tion criteria dictated by meaningful scientific questions of interest). This paper
focuses on aggregations that produce interval datasets. Algorithms are intro-
duced both to build intervals which are typically homogeneous, and to test that
such homogeneity pertains. They also test whether or not observations across
the resulting intervals are mixtures of uniform distributions rather than the de-
sired single distribution. These include consideration of outlier observations.
The methods are illustrated on two datasets.

1 Introduction

Contemporary datasets can be enormous, too large for standard analytic methods to be used
directly on the very same computers generating the datasets themselves. Thus, some form of
data manipulation is needed in order to transform the original dataset into one that is more
manageable for appropriate analyses.

There are many approaches that have been proposed to address this issue. Most have
different strengths, most are more applicable to some settings and data types than others; all
are useful. Data mining as a broadly based methodology identifies patterns in the dataset, and
then delves more deeply into the part of the data responsible for those patterns, perhaps as one
operation or perhaps by pattern type. See, e.g., Hand et al. (2001). Another approach is to
take a sample of the dataset. One such technique is data squashing whereby the original data
are sorted into clusters of like characteristics, with a “representative" pseudo-sample drawn
from each cluster. The analysis is conducted on this scaled down sampled dataset. See, e.g.,
DuMouchel et al. (1999).

A third broad approach developed in the literature deals with aggregating data points, where
the criteria for any particular aggregation vary depending on the nature of the scientific ques-
tions being asked. The resultant dataset then consists of lists, intervals, histograms, and the
like, and fall under the general heading of symbolic data. See, e.g., Bock and Diday (2000)
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and Billard and Diday (2006). While data squashing and symbolic data both arise from ag-
gregation of an original dataset as a method to obtain one of a more manageable size, in data
squashing a sample is drawn which hopefully is representative while for symbolic data typi-
cally all the data are retained.

The focus of this paper is on aggregating a large dataset into interval data, and how to
handle rare events. Let us consider a classical data table, denoted byX , where xij corresponds
to the value observed on the unit i for the variable Xj . Thus, for given aggregation criteria,
observations for each variable Xj , say, for each category k, become intervals dk = [ak, bk]
where

ak = min
i
{xij}, bk = max

i
{xij}

where i = 1, . . . , nk are the individual observations making up that kth category. Consider
the particular case that a variable Xj takes values {17, 86, 82, 88, 90}. The usual aggregation
into intervals gives dk = [17, 90]. Even for only five observations, this interval is not as
representative of the data as desired; if there are hundreds or thousands or, . . . observations in
the 80 to 90 range along with the outlier 17 value, then a more representative interval might be
[80,90] rather than [17,90]. Similar arguments apply when aggregating categorical values.

The present work proposes to apply a generalization operator g and an associated reduction
algorithm which formalize the process so as to aggregate into intervals which more closely
reflect the original dataset. Criteria for selecting the bounds are established. In the example
above for thousands of observations, intuition may confirm the selection of the [80,90] interval;
but what about the case in which the value 17 is replaced by a value of 77? Statistical tests
to affirm the validity of the resulting intervals are also considered. That is, we establish a
formal process to tell us how and when are we justified in taking the [80, 90] interval instead
of the [17, 90] interval. This work is presented in the context of the formulation of interval
data. Since histogram data are in effect a weighted mixture of (sub)intervals, the same ideas
can be extended to these data; likewise for categorical data. Note this generalization operator
has been widely used within the symbolic data analysis area (see, e.g., Ichino and Yagushi,
1994, or Esposito, Malerba and Tamma, 2000, for the computation of dissimilarity measures
between symbolic objects).

The first approach is primarily concerned with data aggregation where the notion of being
cognizant of counter-examples is not relevant; see, e.g., Han et al. (1997). An example is when
summarizing data in the presence of taxonomies. The second approach is more useful when
interpreting the results of an analysis of the data, such as when factorial analyses or partitioning
methodologies are applied.

In an unsupervised framework, we provide a specialized method which provides for the
removal of atypical (rare) values with what is called the reduction algorithm.

The generalization and associated criteria are introduced in Section 2. In Section 3, the spe-
cialization method is developed; this section includes statistical tests relating to the adequacy
or not of the method. It consists of making a balance between a concise description associated
with the symbolic object and its capability to cover a great amount of the corresponding obser-
vations (coverage measure). The coverage measure has also been applied within a hierarchical
agglomerative clustering (Esposito and d’Amato, 2007). Dealing with continuous data, a dis-
cretization based on a divisive partitioning is proposed. The underlying hypothesis considers
the distribution of observations within each interval as a uniform one. We note that discretiza-
tion issues have also been discussed in the scope of association rules mining in a number of

- 60 -



V. Cariou, L. Billard

outlets, e.g., Ludl and Widner (2000), Srikant and Agrawal (1996), Miller and Yang (1997)
with a review and extensive bibliography in Bay (2001). Unlike our approach, the latter au-
thor proposes a multivariate discretization taking account of the multivariate distribution of the
data. Then, in Section 4, the discretization approach is presented while the reduction algorithm
is considered in Section 5. An application is given in Section 6. More details can be found
in Stéphan (1998). Generalization and reduction were discussed in Stéphan et al. (2000); this
paper goes deeply into the details of the way intervals are discretized and how reduction is
performed on the basis of this discretization.

2 The Generalization Process

2.1 The Basic Generalization Operator
Suppose a dataset contains p random variablesX = (X1, · · · , Xp). Suppose for a specific

individual i in Ω = {1, · · · , n} and variable Xj , the observed value in Xj , j = 1, · · · , p, is
xij , i = 1, · · · , n, j = 1, · · · , p. Note that xij = · is a missing value, and can occur; without
loss of generalization assume there are no missing values. After suitable use of appropriate
SQL (e.g.) components, these n individuals are grouped into K disjoint classes or categories,
where typically K � n. Basically, the class membership is built up according to the value
observed on one particular attribute of the SQL query. Let G1, · · · , GK be the K groups of
individuals and c1, · · · , cK be the K categories, respectively, associated with the K clusters.
Let the class Gk contain nk individuals with G1 ∪ · · · ∪ GK = Ω, and n1 + · · · + nK = n.
Let g = (g1, · · · , gp) be the generalization operator on the class Gk with gj representing the
coordinate-wise operator on the observations in Gk for the variable Xj .

Then, the generalization operator g on P (Ω) is defined by:

g : P(Ω)→ D = P(X1)× ...× P(Xp)
g(Gk) = dk = (dk1, · · · , dkj , · · · , dkp)

where for j = 1, · · · , p, dkj equals:

dkj =





[min
i∈Gk

(xij),max
i∈Gk

(xij)], Xj quantitative,

{v ∈ Xj |i, i′ ∈ Gk, xij ≤ v ≤ xi′j}, Xj ordinal,
{v ∈ Xj |i ∈ Gk, xij = v}, Xj qualitative.

(2.1)

If Xj is a taxonomy variable with a tree-structured range Xj and hierarchy Hj , the union
operator gj is

dkj = {v ∈ Xj |i ∈ Gk with xij = v; and no i′ ∈ Gk with xij � xi′j} (2.2)

where � is the partial ordering induced by Hj . This constraint ensures coherence relating to
the taxonomy tree structure is retained.

More formally, the family of operators g on P(Ω) produces a description D. A particular
vector dk = (dk1, · · · , dkp) ∈ D is the description of those observations {i ∈ Gk}. That is,
for Gk ∈ P(Ω) and dk = g(Gk),

dkj = ⊕({xij |i ∈ Gk}).
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Here, ⊕ is the union operator - also called a junction operator (see Michalski and Stepp, 1983,
Ichino and Yaguchi, 1994) -

⊕({xij |i ∈ Gk}) =

{
[min
i∈Gk

xij ,max
i∈Gk

xij ], Y quantitative,

∪i∈Gk
{xij}, otherwise.

If we consider that the data tableX is represented by a relational object called MyDataset
(which can be either a view or a table from the database), the values dkj from (2.1), or (2.2), can
be obtained by appropriate SQL usage. Here, we assume that the partitioning of the n tuples
into K groups is materialized into MyDataset through an attribute called C. To illustrate, if
Xj is for example a quantitative variable, the required dkj = gj(Gk) is found from:

select min(Xj), max(Xj)
from MyDataset
where C = ck

If Xj is a qualitative variable, this becomes:

select Xj, count (Xj)
from MyDataset
where C = ck
group by Xj

For other data types, there is no direct SQL instruction which leads to such a generalization.

2.2 Partial Order Over Generalizations
Considering the generalization process, we can define a partial order, denoted by �, over

the description space D. For the sake of simplicity, we assume here that each individual de-
scription (xi1, · · · , xip) may be rewritten as a vector of singletons, denoted by δi, from D,
such as: δi = ({xi1}, · · · , {xip}).

If we denote by d1 and d2 two generalizations from D, d1 � d2 if and only if, for all
j = 1, · · · , p, d1j ⊆ d2j . Then, d2 is called a generalization of d1 while d1 is a specialization
of d2. Thus, the generalization operator proposed above insures the following property:

for all i ∈ Gk, δi � g(Gk).

2.3 Improving the Generalization Operator
In some cases, the generalization performed may not be representative of the initial data

belonging to the group since some extreme or rare values may occur. To overcome this lim-
itation, there is a need to make a balance between a concise description and the fact that the
generalization covers all the descriptions of the individuals belonging to the group. In order to
perform this balance, we propose to introduce a criterion based on the coverage concept and a
quality criterion.
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Before introducing quality criteria, let us recall some notions of symbolic data analysis.
Our work fits into the scope of symbolic data analysis by generalizing sets of units by a set
of symbolic objects called assertions. In this context, assertions are based on the descriptions
obtained through the generalization operator g. Formally, an assertion, denoted by ak, refers
to the generalization dk of the class of units Gk and corresponds to the conceptual object:

ak = ∧j [Xj ∈ dkj ].

LetA the set of assertions. The extension of an assertion a ∈ A is defined over an element
of P(Ω) such that:

ext : A×P(Ω) → P(Ω)
ext(a;G) = {i ∈ G|δi � d}.

In the particular case of ak which is obtained through the generalization operator g over
Gk:

Gk ⊆ ext(ak,Ω) = {i ∈ Ω|δi � dk}.

Let us recall our first example presented in the introduction. We have seen that the aggrega-
tion of the five numerical values {17, 86, 82, 88, 90} gives dk = [17, 90]. More generally, ifGk
contains an extreme value or a rare event on one or several variables, the operator g produces
an interval which cannot sustain any homogeneous-type property, such as an assumption that
observations across the interval are (exactly, or approximately) uniformly distributed (which
assumption is required for statistical methodology developed thus far for analyses of interval
data). We seek a specialization step which improves the generalization process so that the
properties of the resultant interval(s) are more reflective of the true characteristics of the ob-
servations in the interval(s); likewise, for counts if Xj is a qualitative variable.

Let d′k represent the improved generalization of Gk; the description d′k is included in dk.
For example, given the previous example, the description of Gk is dkj = [17, 90], while
d′kj = [80, 90]. The nature of the improvement to the generalization, represented by d′k, will
depend on the quality criteria adopted to evaluate it.

One quality criterion is the capacity of covering. Thus, an assertion a is a good generaliza-
tion of a set of individuals G if it covers correctly those individuals, where we define coverage
as:

Rec(a,G) = card(ext(a;G))/card(G) (2.3)

where ext(a;G) is the extension of the assertion a on the set of units G and consists of those
elements in G for which d generalizes their description.

Another criterion deals with homogeneity of the individuals in G. As the name suggests,
a description d provides a good generalization of G if the individuals induced by d give a uni-
form hypercube datapoint. Here, the corresponding descriptions assume that there is a uniform
distribution across the values (xij) that make up Gk, and that Xj , Xj′ , j 6= j′ are independent.
Procedures to test this uniformity assumption are considered in Section 4 below.
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Figure 1 − Data HypercubesFIG. 1 – Application of specialization method over a data hypercube.

3 Specialization Method

3.1 Basics
Consider the example represented by Figure 1. Here, each point is a single data value based

on two random variables X1 and X2. The hypercube (rectangle since p = 2) H∗ is the result
of the generalization process used to aggregate values into intervals for some specific category
or class. The inner hypercube H contains most of the original datapoints for that class. The
object is to improve the generalization to produce a hypercube H that is more reflective of the
dataset. Whether the hypercube H or H ′ say (in Figure 1) is selected will depend on the level
of homogeneity desired; this will give us an α-generalization.

To achieve this reduction of virtual descriptions selected, we first introduce the notion of
the hypercube density.

Definition 1: Suppose G ∈ P(Ω) and a = ∧j [Xj ∈ dj ] is an assertion based on description d
such that d = (d1, · · · , dp) = g(G). The density of the assertion a in G is defined as:

dens(a) = card(ext(a;G))/vol(d) (3.1)

where vol(d) is the volume of the description d.

One measure of the volume is that given by Brito (1994); specifically,

vol(d) =

p∏

j=1

µ(dj) (3.2)

where

µ(dj) =

{
card(dj), if Xj is qualitative,
max
i∈G
{dj} −min

i∈G
{dj}, if Xj is quantitative. (3.3)
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card [ ext(a*;G)] / card(G) > α

FIG. 2 – Threshold α∗ associated with the specialization process.

The density corresponds to the ratio of the number of individuals satisfying the description
of the assertion and the volume. As the density increases in its uniformity, then the quality of
the generalization increases. The α-generalization method then is designed to find that hyper-
cube H which has an appropriate minimized volume.

Definition 2: An α-generalization of G is the hypercube represented by the assertion (aα)
belonging to the set of assertions denoted by A, which has a minimal volume such that:

aα = arg min
a∈A
{vol(d)|card(ext(a;G)) ≥ α ∗ card(G)}. (3.4)

The rationale of an α-generalization is to allow an assertion not to cover all the observa-
tions of G. More specifically, it makes it possible to tune α such that the assertion is a good
compromise in terms of the volume of the description and the coverage of G.

In order to obtain such a compromise, the goal is to define an optimal threshold α∗ which
offers the best compromise between reducing the volume and the loss of information (as ex-
pressed, e.g., by the deletion of rare data points). This optimal α∗ is that α value which pro-
duces a sharp bend in the curve of the plot of the inverse of the relative density dens(aα)/dens(a)
for assertion a producing the original hypercube (H∗ in Figure 1); see Figure 2. This is
achieved through the so-called reduction algorithm (presented in Section 5 below) and is based
on two criteria. One criterion calculates the covering and volume of the assertion, taking into
account whether variables are quantitative, qualitative or taxonomic. To account for differences
in scale for quantitative (continuous) variables, a coding of the data is proposed by discretizing
each interval during the original generalization step. The second criterion concerns the choice
of the optimal reduction assertion. In this case, a curve of disconsonance is constructed from
all admissible hypercubes and the one which offers the best compromise between the capacity
of the covering and a small volume is selected. That is, for the setAI ⊆ A of assertions which
correspond to the initial step, this criterion compares all the assertions in AI by their density,
to select the optimal assertion.
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3.2 Construction of Generalization Intervals

To account for differences in scale in quantitative (continuous) variables versus qualitative
variables, a coding or discretization process is constructed for each assertion and each interval.
This transformation also optimizes the decomposition of the original intervals into intervals
within which observations are uniformly distributed.

Suppose after aggregation (by, e.g., SQL query for a given assertion) the category or class
Gk had the nk individual description values {x1j , · · · , xnkj} for the random variable Xj .
These can be ordered to produce

aj = x(1) ≤ x(2) ≤ · · · ≤ x(nk) = bj . (3.5)

The goal is to subdivide the original interval I(1, nk) ≡ [aj , bj ] = [x(1), x(nk)] into r subin-
tervals [x(1), x(u1)], [x(u1+1), x(u2)], · · · , [x(ur−1+1), x(ur) = x(nk)], where the observations
in each subinterval [x(us−1+1), x(us)], s = 1, · · · , r, are uniformly distributed. The choice
of the cut point is discussed in Section 4.3. It aims to find the cut point which produces two
subintervals that are the closest to uniformity. We propose to perform a divisive partitioning
algorithm to split the interval. The use of recursive partitioning has been widely applied within
the context of the clustering of the variables (e.g., with VarClus) or more recently within the
scope of spectral clustering (Dasgupta et al., 2006). It is particularly well suited when, as in
our case, a stopping criterion is defined. The discretization procedure is done as follows:

Recursive Partitioning Algorithm:

Step 1: If the null hypothesis H0 : I(1, nk) is uniformly
distributed holds, then go to Step 5.

Step 2: Select the best cut point u from the (nk − 1)
possible cut points.

Step 3: Apply this algorithm to the new intervals I(1, u)
and I(u+ 1, nk) (Step 1 and 2).

Step 4: Repeat Steps 1-3 until Step 5 is reached.

Step 5: End.

This algorithm utilizes a test of uniformity across the subinterval I(us−1 + 1, us). It also
involves the determination of a cut point us between x(us) and x(us+1), on an interval which is
not uniformly distributed; it aims to find that us which produces two subintervals that are the
closest (of all possible us values) to uniformity but which are not necessarily yet sufficiently
uniform; hence the need for further divisions. See Section 4 below.

4 Tests of Uniformity

Three tests of uniformity are utilized, specifically, the goodness of fit test, the test of dis-
tance distributions, and the gap test. These are considered in turn.
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4.1 Goodness of Fit Tests
Goodness of fit tests compare a theoretical distribution for the population with an empirical

distribution based on the sample data. Many such tests exist. We focus on the Kolmogorov-
Smirnov statistic for testing a theoretical uniform distribution.

For each X ≡ Xj , consider the n ordered observations {x(1) ≤ · · · ≤ x(n)} in the interval
[a, b]. Then, if [a, b] /∈ [0, 1], the observations are transformed linearly by:

z(i) = (x(i+1) − x(1))/(x(n) − x(1)), i = 1, · · · , n− 1, (4.1)

to produce a sample of size (n− 1).

Then, under the hypothesis of uniformity, the theoretical cumulative distribution function
is simply F0(z) = z, 0 ≤ z ≤ 1, while the empirical cumulative distribution function equals

F̂ (z) = card({i ∈ G|z(i) ≤ z})/card(G). (4.2)

From Saporta (1990), the largest absolute Kolmogorov-Smirnov distance,

ksn = sup
z
|F̂ (z)− F (z)|, (4.3)

is asymptotically distributed as

P{ksn
√
n < y} →

∞∑

q=−∞
(−1)qexp(−2q2y2). (4.4)

Hence, we can test

H0 : F (z) = F0(z) against H1 : F (z) 6= F0(z),

which has critical region c(n, α) where P{ksn > c(n, α)} = α. Note that from (4.1) and
(4.3), the Kolmogorov-Smirnov distance (ks) is

ks = sup
i
|z(i) − i/(n− 1)|. (4.5)

The Kolmogorov-Smirnov (KS) uniformity test algorithm, of complexity of order O(n), for
this test is simply:

KS uniformity test over [a,b]:

Initialize ks = 0

Step i, i = 1, · · · , n− 2,

If |z(i) − i/(n− 1)| > ks,

then ks = z(i) and u = i

If ks ≥ c(n − 1, α), then partition recursively [a, zu] and
[zu+1, b] constructed from the cut point u.
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Suppose now that the observations are those from two samples each with a different sup-
port. When there is a clear distinction between these supports, this test will not always reject
the null hypothesis, since the empirical distribution based on the mixture of two distributions
can indeed approach that of a uniform distribution. The null hypothesis of uniformity needs
now to be compared with the alternative hypothesis that the distribution F (z) is a mixture dis-
tribution. The gap test presented in Section 4.3 addresses this.

In order to improve the power of the test, the values

{y1 = z(1), yi = z(i) − z(i−1), i = 2, · · · , n− 1} (4.6)

are used instead of the ordered observations {z(1), · · · , z(n−1)}. The values yi are exponen-
tially distributed with mean β = 1/(n− 1), conditional on the constraint that Σyi = 1. Then,
the cumulative distribution function of the distances between observations is:

F (x) = 1− exp(−x/β).

If we denote the ordered distances by {y(i), i = 1, · · · , n − 1; y(0) = 0}, we can construct
new distance variables

y′r = (n− r)(y(r) − y(r−1)), r = 1, · · · , n− 1. (4.7)

The observations {y′r, r = 1, · · · , n − 1} constitute a random sample from the uniform
distribution on [0, 1] without regard to ordering (Sukhatme, 1937). We can then construct an
ordered statistic (see Karr, 1986):

z′(j) =

j∑

r=1

y′r, j = 1, · · · , n− 1. (4.8)

Durbin (1961) also showed that by using transformations that maximized (or minimized) col-
lectively the distances between observations, the risks of error were reduced and hence the
power of the test improved.

To accommodate this situation, we propose that the basic test for uniformity on the given
sample of observation be first performed. If this is not rejected, then these transformed values
can be found, and the basic hypothesis test can be performed on these transformed data.

4.2 Distance Tests

The distance test utilizes the conditional uniform test developed by Karr (1986) for Pois-
son point processes. This avoids the problem of finding an estimate of β in the (conditional on
uniformity) exponential distribution, Exp(0, β) of the distances y′r of (4.7).

Therefore, the statistics,

Vi = y(i)/y(n), i = 1, · · · , n− 1,
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where y(i) is the ordered distance (from y1, · · · , yn), under the null hypothesis are statistics
from a uniform distribution on [0, 1] independently of β.

Distance distributions have arisen often in the literature in the context of validation in clas-
sification analysis; see, e.g., Bock (1996) for a good review. The null hypothesis is that the
distribution is uniform on the subspace of <p containing the objects of G. If G is not known, it
is estimated by the convex envelope of the observations using the maximum likelihood method.

The test is used by comparing the empirical distribution of the initial distances

dkj =‖ xk − xj ‖ (4.9)

to the theoretical distribution of the
(
n
2

)
distances between pairs of observations (yk, yj).

Let
D

(1)
(k) = min

j 6=k
dkj . (4.10)

Then, under the assumption that these observations occur according to a Poisson process P (λ)

with mean λ, the {D(1)
k , k = 1, · · · , n} are realizations from an exponential distribution

Exp(0, λ × HVp) where HVp is the volume of a unit hypersphere in p-dimensional space,
i.e.,

HVp = πp/2/Γ(1 + p/2). (4.11)

A goodness of fit test can then be applied comparing the resulting empirical distribution with
this theoretical exponential distribution.

As pointed out by Bock (1996), nearest neighbors need not be independent observations.
When they are dependent, this test is unable to measure homogeneity directly. However, by
modifying the test to one based on distances

D̃j = min
k
‖ x′k − x′j ‖ (4.12)

where {x′j , j = 1, · · · ,m} are sampled with replacement from G, this problem is circum-

vented (see Bock, 1996, for details). In this case, instead of the distances D(1)
(k) of (4.9) and

(4.10), we use the distances D̃j of (4.12).

4.3 The Gap Tests
Gap tests were developed in the context of classification and cluster analyses. We utilize

this approach to compare the null hypothesis that the observations in the interval are uniformly
distributed with the alternative hypothesis that the interval observations arise from a mixture of
distributions. Intuitively, if there are “gaps" within the interval, then the uniformity hypothesis
cannot hold. The origins of the test evolve from stationary Poisson processes P (λ) where the
observations are times at which events occurred. These times are by definition ordered time
values. The times or distances between events are independent variables from an exponential
distribution Exp(0, β).

For each variable X ≡ Xj with ordered realizations x(i), i = 1, · · · , n, we are testing:
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H0: {x(1), · · · , x(n)} has uniform distribution F0 = U(0, 1), against
H1: {x(1), · · · , x(k)}, {x(k+1), · · · , x(n)} are ordered samples from F1(y) and

F2(y), respectively.
Under H1, the break point is at x(k) where

k = arg max
1≤i<n

{x(i+1) − x(i)} (4.13)

defines those observations x(k), x(k+1) which have the greatest distance between consecutive
values.

Let M1 = max
i=1,··· ,n−1

{x(i+1) − x(i)} be the maximum distance. Then, from Cox and

Hinkley (1974), the test statistic becomes

Q(y) = {1−M1/(x(n) − x(1))}n. (4.14)

It follows therefore that the hypothesis of uniformity (H0) is rejected if

PH0{M1/(x(n) − x(1)) ≥ t(n, α)} = α

where t(n, α) is some function of n and α. More details of this derivation can be found in
Stéphan (1998); and more details of the test as applied to Poisson processes in general are in
Kibushishi (1996).

Kibushishi (1996) has shown that, as n→∞, the distribution of

X∗ = (nM1)/(x(n) − x(1))− log(n)

converges to a Gumbel distribution with F (y∗) = exp(−exp(−y∗)). Therefore, the critical
region for H0, for n sufficiently large, becomes:

P{M1/(x(n) − x(1)) > t(n, α)|H0} = α (4.15)

where
t(n, α) = (−log{−log(1− α)}+ log(n))/n. (4.16)

At the end of the discretization process, each quantitative description of the set of asser-
tions is transformed so that the split of the initial interval is taken into account.

In order to simplify the following formula with regard to the specialization step, we propose
to associate a new ordinal variable with individual quantitative observations. Let us consider
the initial variable Xj and let Vj = {v1, · · · , vm} be the output of the discretization process
over the interval dj . We define the recoded variable X1

j based on Xj and Vj as follows :

X1
j : Ω→ Vj

X1
j (i) = v such that xij ∈ v.

For the sake of simplicity, we will denote identically the variable Xj and X1
j . Similarly,

the result of the split of an interval dj is also denoted dj . For each sub-interval v of dj , the
minimum value of v is written v while the maximum is denoted v.
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FIG. 3 – Empirical distribution function over Sample 1.

4.4 Illustration

The process is illustrated by the following two examples.

Sample 1
Suppose there are 150 observations in G; and suppose these were in fact aggregated from

three separate simulated samples each of size 50 uniformly distribution populations U(0, 1),
U(2, 3) and U(3.5, 4.5), respectively. The plot of the resultant empirical distribution is shown
in Figure 3. The Kolmogorov-Smirnov distance from (4.5) is ks = 0.12. The gap test, that
these 150 observations arise from one uniform distribution against the alternative hypothesis
that they are from a mixture distribution, is rejected (p = 0.02). The x(u) value at which the
maximum distance occurs is u = 50. Therefore, the observations P1 = {x(1), · · · , x(50)}
form one partition and the other observations P2 = {x(51), · · · , x(150)} form the second parti-
tion. The cut criterion is: If x(i) ≤ 1, then x(i) ∈ P1; otherwise, x(i) ∈ P2.

The uniformity test is then performed on each of P1 and P2. The plots of the resulting
empirical distributions are shown in Figure 4 and Figure 5, respectively. Here (see the left-side
plots), from Figure 4 for P1, Test 1 gives ks = 0.08 and p = 0.88; and so the hypothesis that
these data are uniformly distributed on U(0, 1) is not rejected. For those data in P2 (in Figure
5), Test 1 gives ks = 0.11 and p = 0.17 which also does not reject the uniformity hypothesis.
However, if the transformed data {z′(j), j = 1, · · · , n} of (4.8) (where here n = 50, 100 in
P1, P2, respectively) are used instead of the {z(j), j = 1, · · · , n}, then the corresponding em-
pirical distributions are as shown in the Test 2 (right-side) plots of Figure 4 and Figure 5, and
the Kolmogorov-Smirnov distances become ks = 0.16 (with p = 0.07) for P1, and ks = 0.18
(with p = 0.02) for P2. Therefore, the more powerful test based on the transformed values
(i.e., Test 2), is able to identify the fact that the partition P2 is not a single set of uniformly dis-
tributed observations but a mixture of distributions. The process is then repeated on P2. In this
case, P2 is partitioned into P (1)

2 = {x(51), · · · , x(100)} and P (2)
2 = {x(101), · · · , x(150)}. The

- 71 -



Generalization Method when Manipulating Relational Databases

FIG. 4 – Tests associated with the left leaf of Sample 1.

FIG. 5 – Tests associated with the right node of Sample 1.

Kolmogorov-Smirnov distances are ks = 0.07 with p = 0.91 (and ks = 0.13 with p = 0.34

for the transformed statistics) for P (1)
2 , and ks = 0.11 with p = 0.50 (and ks = 0.10 with

p = 0.59 for the transformed statistics) for P (2)
2 . The cut point was x(j) ≤ 3 for x(j) ∈ P (1)

2 .
More details are in Stéphan (1998). For this partition, the Kolmogorov-Smirnov statistics and
tests based on the original {z(j)} are confirmed by the transformed values {z′(j)}. In this way,
the three uniformly distributed partitions have been correctly identified.

Sample 2
The second example consists of observations drawn from four different uniform distri-

butions, two each with large support and two with small supports. Suppose the full sample
produces the empirical function as shown in Figure 6. The testing procedure elicited four uni-
formly distributed intervals U(0, 0.96), U(1.23, 2.17), U(2.27, 3.3) and U(3.41, 3.97) which
compares favorably with the actual distributions (U(0, 0.96), U(1.23, 1.97), U(2.13, 3.45) and
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FIG. 6 – Density function associated with Sample 2.

U(3.71, 3.97)) from which the sample was drawn.

Henceforth, if the null hypothesis that the interval is homogeneous is not rejected, the gap
test is applied, instead of subsequently testing the uniformity hypothesis using the transformed
statistics.

5 The Reduction Algorithm

5.1 Some Terminology

In Section 3, the specialization method was outlined as one which provides for the pos-
sibility of removing outliers whereby a percentage α of the observations in the intervals (or
hypercube) G are retained; the set G was obtained by the generalization process described in
Section 2, based on the assertions which describe the classes or categories of interest. See
Definition 2 and (3.4). This algorithm proceeds as follows.

Let the assertion a = ∧j [Xj ∈ dj ] and let the maximum threshold reduction be α. Let S
be the set of modalities resulting from d, with S = ∪pj=1dj . We recall that dj corresponds to
a set of intervals when dealing with a quantitative variable Xj . For each modality v ∈ S, let
I(v) = j be the indicator that v ∈ dj .

Then, ifM ∈ P(S) is a set of modalities, the extension ofM in the support ofG is defined
as

ext(M ;G) = {i ∈ G|v ∈M, I(v) = j, xij = v}. (5.1)
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In order to be conformed to the generalization process, the sets M of P(S) are restricted
by the following constraint:

for all M ∈ P(S), v ∈M ⇒
(for all v1 ∈ dj , v1 < v ⇒ v1 ∈M) or

(
for all v1 ∈ dj , v1 > v ⇒ v1 ∈M

)
.

Proposition 1: Let M ∈ P(s) and let a be an assertion of description d obtained from the
generalization G. It follows that if

card(ext(M ;G))/card(G) = β,

then
card(ext(ah;G))/card(G) = 1− β (5.2)

where assertion ah corresponds to descriptions dh = (dh1 , · · · , dhj , · · · , dhp) with

dhj = ⊕({xij | i ∈ G \ ext(G;M)}, j = 1, · · · , p) (5.3)

where A\B is the set of elements of A which do not belong to B. Thus, if dhj is a discretized
interval built-up from the set of Vj intervals, then

⊕({xij |i ∈ G}) = {v ∈ Vj | for all i ∈ G, v ≥ xij and v ≤ xij}. (5.4)

The proof is outlined in the Appendix.

It then follows that for all M ∈ P(S),

card(ext(M ;G))/card(G) ≤ α if and only if card(ext(ah;G))/card(G) ≥ 1− α

where ah has a description dh such that dhj = ⊕({xij | i ∈ G \ ext(M ;G)}, j = 1, . . . , p.

The principle is to find those particular assertions which correspond to elements, generated
by the generalization G, but not belonging to the extension of the complete set of modalities
M ∈ P(S). It can be shown (by Proposition 2) that this is equivalent to constructing the asser-
tion corresponding to the removal from the description the set of modalities M . This has the
effect of reducing the number of operations needed, i.e., the complexity is decreased.

Let us define M ∈ P(S) to be a complete set of modalities if and only if the addition of a
new modality not in M modifies the extension of M so that, for all

v ∈ S, v /∈M ⇔ ext(M ∪ {v};G) 6= ext(M ;G). (5.5)

Proposition 2: Let a = ∧j [Xj ∈ dj ] be an initial assertion and let M be a complete set of
modalities satisfying (5.5). Then, the assertion constructed by the generalization process G
of those observations not in the extension of M has the same extension modalities of M in
(d1, · · · , dp). This gives, for all j ∈ {1, · · · , p},

⊕({xij | i ∈ G \ ext(M ;G)}) = dj \ {v ∈M |I(v) = j}. (5.6)

The proof is outlined in the Appendix.
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5.2 The Algorithm

After initiating the algorithm, an iteration stage constitutes the core. The set of solutions
at stage k is denoted by Lk. Three subroutines (macros) are also involved. These procedures
are related to the Apriori algorithm in the scope of mining association rules (Agrawal and
Srikant, 1994). As for the Apriori algorithm, at each step, we seek sets of modalities which are
candidates to be removed. The way we determine these sets is closely related to the Apriori
strategy, achieved by taking advantage of its computation efficiency.

Step 1: Construction of L1:
The first set of solutions, L1, is defined as the set of singletons

L1 = {{m} | m ∈ S and ext({m};G) ≤ α ∗ card(G)}

To construct L1:

(i) Set L1 = φ

(ii) For j = 1, · · · , p, do
if Xj is qualitative or taxonomic

L← L ∪ {v ∈ dj | ext({v};G) ≤ α ∗ card(G)}

else if Yj is quantitative

L← L ∪ {[dj , v] | v ∈ dj and ext([dj , v];G) ≤ α ∗ card(G)}

L← L ∪ {[v, dj ] | v ∈ dj and ext([v, dj ];G) ≤ α ∗ card(G)}

(iii) end j; return to (ii) for j = j + 1

(iv) return L1

(v) End.

Step 2: Construction of L2:
The set L2 consists of the set M2 of pairs of elements from L1. Each pair
M2 = {m1,m2} with {mi} ∈ L1, i = 1, ..., card(L1), is admissible pro-
vided that:

(a) m1 6= m2

(b) card[ext(M2;G)] ≤ α ∗ card(G)

(c) card[ext(M2;G)] > card[ext({mi};G)] for both i = 1 and
i = 2.
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The condition (a) is used to guard against deleting the same element twice
from a modality. Condition (b) ensures that the cardinality of the resulting
set does not exceed the maximal reduction threshold α.
Condition (c) states that, if the elements covered by {mi} are also covered
by {mi′} (i′ 6= i), we deduce that the assertion generated by the elimination
of elements in the extension of {mi} is equivalent to the assertion generated
by the elimination of elements from the extension of {m1,m2}. Thus, the
solution M2 = {m1,m2} is not possible. Suppose we have

card[ext(M2;G)] = card[ext({m1};G)].

Then it follows that if G contains m2, it also contains m1.

Let mC
1 be the set of modalities which are complete in m1. Initially, mC

1 =
{m1}. Then, mC

1 can be updated by merging it with {m2}, viz.,

mC
1 ← mC

1 ∪ {m2}.

A consequence of this stage is that now all the elements M1 ∈ L1 are com-
plete modalities.

Step 3: Construction of L3:
The third step constructs L3 by combining elements from each of M2 and
L1. That is, for M2 ∈ L2 and {m} ∈ L1, L3 = {M3 = m2 ∪ {m}} subject
to

(d) for all v ∈M3,M3\{v} ∈ L2

(e) card[ext(M3;G)] ≤ α ∗ card(G)

(f) for all v ∈M3, card[ext(M3;G)] > card[ext(M3\{v};G)].

These conditions parallel those ((a), (b), and (c)) for constructing L2. This
step constructs sets M3 such that, for all v ∈ M3, M3\{v} ∈ L2. This
verifies that pairs of elements in L2 unite with a new element to produce
a triplet M3. For example, suppose M3 = {m1,m2,m3}. Then adding
this M3 to L3 necessitates the inclusion of the pairs {m1,m2}, {m1,m3},
{m2,m3} in L2. If one of these, {mi,mj} say, is not in L2, it follows that

card[ext({mi,mj};G)] > α ∗ card(G).

Therefore, the triplet M3 cannot be added to L3 since to do so has the con-
sequence that card[ext(M3;G)] > α ∗ card(G) which violates condition
(e). Further, if this pair {mi,mj} is already not in L2, there is no need to
consider it again as its presence or otherwise was accounted for at the L2

stage.
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This last condition (f) is a general condition for sets with two or more el-
ements, and protects against redundancy in L2. This makes it possible to
update all sets of modalities of L2. If all conditions ((d)-(f)) are satisfied,
then M3 can be added to L3. Therefore, if the complete set is initialized as
MC

3 , MC
3 ← ∪M2∈L2,M2⊆M3

MC
2 where MC

2 is the complete set deduced
from M2.

Step k+1: Construction of Lk+1 from Lk:
Step 3 can be generalized to give a recursive construction of Lk+1, k =
3, 4, · · · . The elements of Lk+1 are {Mk+1} such that for all v ∈ Mk+1,
Mk+1\{v} ∈ Lk and subject to:
(k1) for all v ∈Mk+1,Mk+1\{v} ∈ Lk
(k2) card[ext(Mk+1;G)] ≤ α ∗ card(G)

(k3) for all v ∈Mk+1, card[ext(Mk+1;G)] > card[ext(Mk+1\{v};G)].
These modalities are found as follows:

A. Initialize a set J from Lk,
J ← {Mk+1| for all v ∈Mk+1,Mk+1\{v} ∈ Lk}
= AutoJoin (Lk).

B. Initialize Lk+1 ← 0.

C. For each Mk+1 ∈ J, calculate ext(Mk+1;G).

D. (Macro: CompleteUpdate (Lk,Mk+1) of Reduction
Algorithm)

(i) If card[ext(Mk+1;G)]/card(G) > α, then Mk+1

is not included in Lk+1.

(ii) If there exists a modality v ∈Mk+1 such
that
ext(Mk+1;G) = ext(Mk+1\{v};G), then Mk+1 is
not included in Lk+1, and the complete modality
of Mk is updated, i.e.,
M c
k ←M c

k ∪ {v};
(iii) Otherwise,
Lk+1 ← Lk+1 ∪ {Mk+1},
M c
k+1 ← ∪Mk∈Lk,Mk⊆Mk+1

M c
k.

E. Return to Step A with k = k + 1.

That this calculation is determined automatically is a consequence of the
property of complete modality (see Proposition 2).

The elimination of a set of modalities (observations) is a consequence of the calculation of
complete modalities. This is executed by reducing the volume of an assertion. For a complete
set of modalities M , let Vj = {m ∈M |I(m) = j} where M is deduced from dj .

Then, the volume reduction algorithm for modality in M and assertion a, is
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Reduction Volume (a,M)
(macro component of Reduction Algorithm):

Start

1. volume ← 1

2. For each j ∈ {1, · · · , p}, do

3. If Xj is qualitative or quantitative, volume ←
volume×(µ(dj)− µ(Vj))

4. Else (if Yj is taxonomic), volume ← volume×µ(dj\Vj)
5. End

6. Return to j = j + 1

7. If j = p, then output volume

End

In step 4/3, the µ(·) are as defined in (3.3).

This volume reduction stage makes it possible to choose from all possible assertions, thus
optimizing the density of the final hypercube (see Definition 2). There are two possible op-
timality selection criteria. One is to use the scree test, in the density curve, as suggested in
Section 3; see Figure 2. The optimal α is that value at which a change in sign of the second
derivative occurs. Another criterion is to find that assertion which gives M∗ for which

F (M∗) = min
M∈RF

{F (M)}

where
F (M) = {card(G)− card[ext(M ;G)]}/ Volume (a,M),

RF is the final reduction set Lk, and Volume (a,M) is the volume calculated by the Reduc-
tion Volume algorithm. This stage is thence incorporated into the reduction algorithm. The
complete reduction algorithm is given in Section 5.3.

5.3 Reduction Algorithm
For (a,G, α), the reduction algorithm is:

1. Calculate L1 from {dj}J as a function of G and α

2. EnsAdm ← L1

3. k ← 2

4. As long as (Lk−1 6= φ), do

5. J ← autojoin (Lk−1)

6. Lk ← φ

7. For (Mk ∈ J), do

8. if {card[ext(Mk;G)]/card(G)} ≤ α, then
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9. if (for all v ∈Mk, ext(Mk;G)\{v}) 6= ext(Mk;G),
then

10. Lk ← Lk ∪Mk

11. else

MiseaJourComplete (Lk−1,Mk)

end

end

12. EnsAdm ← EnsAdm ∪Lk
13. k ← k + 1

14. RedFinal ← φ

15. For (M ∈ EnsAdm), do

16. Vol (a\M) = Reduction Volume (a,M)

17. If (for all M ′ ∈ RedFinal, card[ext(M ′;G)] >

card[ext(M ;G)]⇒ V ol(a\M ′) > V ol(a\M)) then

18. For (M ′ ∈ RedFinal) such that

(card[ext(M ′;G)] ≥ card[ext(M ;G)]∧V ol(a\M ′) ≤ V ol(a\M))
do

19. RedFinal ← RedFinal \{M ′}
else

RedFinal ← RedFinal U{M}
20. end

21. choose the best a∗ from

A = ∪M∈RedFinal{a = ∧j [Xj ∈ dj\{m ∈M}|I(m) = j]}.

5.4 Complexity associated with the reduction algorithm
As already said, the reduction step is related to the Apriori algorithm in the scope of min-

ing association rules. Specifically, the first step consists of determining the set of singletons
L1 which verify the maximum threshold reduction criterion α. Among these singletons, those
having an extension greater than (1 − α)card(ext(a)) are discarded from L1. This step only
requires one scan over the set of the observations belonging to the current assertion a. At
the end of the first step, let us suppose that L1 contains l singletons. If we do not consider a
pruning strategy as proposed in the Aprioi algorithm, the number of solutions M (i.e. a set of
modalities) to be generated equals 2l−1.

One originality of our work is the use of the Apriori pruning strategy by removing solutions
M which do not verify the maximum threshold criterion α. This strategy has been detailed in
the previous paragraph. Let us consider step Lk+1. The elements of Lk+1 are determined
by merging a pair of elements of Lk. For this step, card(Lk)2 merging operations are done
over Lk to produce Lk+1. Then, the set of the n observations belonging to a is scanned in
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order to update card[ext(Mk+1;G)] for each Mk+1 belonging to Lk+1. As previously, the
elements Mk+1 which do not verify the criterion α are discarded from Lk+1. With regard to
the complexity, the generation of the sets of elements L1, ..., Lk associated with a scan of the
observations is an NP-complete task.

6 Application
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FIG. 7 – Example of reduction with a dataset having 3 variables.
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Figure 7 represents the three pairwise plots of a dataset of 500 observations in three vari-
ables X = (X1, X2, X3). The goal is to find the assertion(s) which describes the data as
uniformly and as well as possible. Applying the generalization process directly to all the data
and so finding the minimum and maximum values for each Xj , j = 1, 2, 3, (in effect α = 1
with card [ext(a;G)] = 500) the assertion that results is

a = [X1 ∈ [1.10, 8.93]] ∧ [X2 ∈ [0.06, 7.99]] ∧ [X3 ∈ [2.12, 7.99]] .

When the coverage is reduced to α = 0.97, the assertion as it pertains to X3 is X3 ∈
[2.9, 7.99] and when α = 0.94, this assertion becomes X3 ∈ [3.21, 7.99]. There is no change
in the coverage space for X1 or X2. The lines marking “inner” rectangles in the top panel of
Figure 7 shows the complete assertion for this 94% coverage.

However, when the focus shifts to X1, coverage is reduced to α = 0.81 (see the middle
panel of Figure 7) with still no change in X2 and no further change in X3, the assertion as it
relates to X1 produces a more homogeneous region, with an overall assertion of

a = [X1 ∈ [1.10, 6.99]] ∧ [X2 ∈ [0.06, 7.99]] ∧ [X3 ∈ [3.21, 7.99]] .

The final reduction is shown in the bottom panel of Figure 7, and was achieved at only five
iterations. The coverage is α = 0.64 with card[ext(a;G)] = 320; and the assertion is

a = [X1 ∈ [3.82, 6.99]] ∧ [X2 ∈ [3.02, 7.99]] ∧ [X3 ∈ [3.21, 7.99]] .

This coverage space satisfies the hypothesis of uniformity. The progression from clearly a
nonuniform scatter of observations in the top panel of Figure 7 to the homogeneous regions in
the bottom panel of Figure 7 is evident.
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FIG. 8 – Disconsonance curve associated with Figure 7.

The disconsonance curve is shown in Figure 8. The elbow occurs at the second iteration
concerned with X3 with coverage α = 0.94. That is, the assertion is, as shown in the top panel
of Figure 7,

a = [X1 ∈ [1.10, 8.93]] ∧ [X2 ∈ [0.06, 7.99]] ∧ [X3 ∈ [3.21, 7.99]] .
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Generalization Method when Manipulating Relational Databases

To illustrate that the reduction algorithm works well on a mixture of two distinct popula-
tions, consider the bivariate observations plotted in Figure 9. These are samples each of size
500 from two different bivariate normal distributions N (µ,Σ) with

µ1 = (5, 8) and Σ1 =

[
1.5 0.6
0.6 1.5

]

and

µ2 = (9, 14) and Σ2 =

[
1.5 −0.6
−0.6 1.5

]
.
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FIG. 9 – Reduction on Example 2.

The generalization process produces two hypercubes defined by the assertions,

for (µ1,Σ1) : a1 = [X1 ∈ [1.26, 9.12]] ∧ [X2 ∈ [4.44, 12.13]] ,

for (µ2,Σ2) : a2 = [X1 ∈ [4.84, 12.5]] ∧ [X2 ∈ [9.54, 17.44]] .

The first stage of the reduction process results in a discretization of theX1 andX2 intervals
in a1 according to

a1 = [X1 ∈ (1.26, [2.29, 3.53], [3.55, 6.27], [6.28, 6.96], [6.96, 7.6], [7.71, 9.12])]

∧[X2 ∈ ([4.44, 5.8], [5.83, 6.43], [6.44, 9.5], [9.55, 10.39], [10.42, 12.13])].

The reduction algorithm gave the α-generalization on the first sample the assertion, with
coverage 0.95,

a1(α = 0.95) = [X1 ∈ [3.2, 7.7]] ∧ [X2 ∈ [4.4, 10.4]],
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FIG. 10 – Disconsonance curve associated with Figure 9.

and for the second sample the α-generalization gave the assertion, with coverage 0.98,

a2(α = 0.98) = [X1 ∈ [6.3, 12.5]] ∧ [X2 ∈ [11.2, 17.4]].

The scree plots are shown in Figure 10. It is seen that the elbow in the plot for assertion
a1 occurs at the fourth (and fifth) iteration with coverage 0.95. For assertion a2, there is an
elbow at the third iteration with α = 0.989, and at the fourth iteration for assertion a1 where
α = 0.95.

7 Conclusion
In this paper, we advocate the use of a generalization and a specialization method to in-

vestigate in particular whether or not an aggregation of quantitative observations into intervals
with those observations uniformly spread across those intervals. This is particularly important
since so far methodologies for interval data have an underlying assumption that this uniformity
feature pertains. If uniformity does not hold, then those methodologies can produce analytic
results that are distorted; consider, e.g., how the example (in Section 1) of the interval [17, 90]
rather than the more representative interval [80, 90] would distort the outputs of a symbolic
principal component analysis. The analysts should be alert to the possibility that observations
may not be necessarily homogeneous across the intervals, and that maybe two subintervals,
e.g., should be used instead. The approach proposed herein helps to answer such questions.
This has been undertaken with Georges Hébrail and Yves Lechevallier (Stéphan et al., 2000,
Hébrail and Lechevallier, 2007) within the context of the European project SODAS (Diday
and Noirhomme-Fraiture, 2008). To our knowledge further applications in symbolic data anal-
ysis do not take advantage of this specialization step, while it has been integrated in SODAS
software. Nevertheless, differences can emerge when building symbolic objects from classical
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clustering approaches rather than from rational databases as here. These issues are important;
and our work is just a beginning on these issues.

There are a number of questions that arise. In this work, we have considered the case where
rare or extreme observations arise. Another key problem is whether heterogeneity may lead
to the determination of several assertions associated with the same group. In this context, we
should stress the contributions of ElGolli (2004). We hope these two approaches to tackling
the problem of over-generalization by either dividing or reducing an assertion can be more
intensively used when generating symbolic objects.
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A APPENDIX

A.1 Proof of Proposition 1:
Let ah = ∧j [Xj ∈ ⊕({xij | i ∈ G and i /∈ ext(M ;G)})]. From the generalization

property, we have
for all i ∈ G\ext(M ;G), ω ∈ ext(ah;G).

Therefore,
card(ext(ah;G))/card(G) ≥ 1− β. (*1)

We now show that
for all i ∈ ext(M ;G), i /∈ ext(ah;G).

We prove this by contradiction. Suppose that there exists i∗ ∈ G,

i∗ ∈ ext(M ;G) ∧ ω∗ ∈ ext(ah;G).

Then, i∗ ∈ ext(M ;G) implies there exists a j ∈ {1, · · · , p} with xi∗j ∈M .

First, suppose thatXj is not a quantitative variable. Since the modality xi∗j = v ∈M tells
us that, for all i ∈ G, xij = v implies that i ∈ ext(M ;G) or, equivalently, i /∈ G\ext(M ;G).
By the generalization property, it follows that

v /∈ {xij |i ∈ G\ext(M ;G)},

or,
v /∈ ⊕({xij |i ∈ G\ext(M ;G)}).

Therefore, i∗ /∈ ext(ah;G).

Second, suppose that Xj is a quantitative variable. Then, xi∗jv ∈M implies

I1 ∨ I2 ≡ (for all v′ ∈ dj , v′ < v implies v′ ∈M) or
(for all v′ ∈ dj , v′ > v implies v′ ∈M)

where v and v denote the smallest and largest v value, i.e., v = [v, v].

Consider the first of these two implications, I1. It follows from I1 that, for all i ∈ G,

xij ≤ v implies i ∈ ext(M ;G),

and hence, for all v′ ∈M ,

v′ ≤ v implies v′ /∈ ⊕({xij | i ∈ G\ext(M ;G)});
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then
i∗ /∈ ext(ah;G).

The same argument carries through for the second implication I2, where we replace the largest
by the smallest values (e.g., replace v by v, etc.)

Together I1 and I2 tell us that, for all i ∈ G,

i ∈ ext(M ;G) implies i /∈ ext(ah;G).

Hence, we deduce that
card(ext(ah;G))/card(G) ≤ 1− β. (*2)

The two inequalities (*1) and (*2) give us

card(ext(ah;G))/card(G) = 1− β. (*3)

This completes the proof.

A.2 Proof of Proposition 2:
Let M be the set of modalities. If M is complete, then, for all v ∈ S,

ext(M ∪ {v};G) 6= ext(M ;G)

and vice versa. Let
d′j = ⊕({xij | i ∈ G\ext(M ;G)}).

First suppose that Xj is not a quantitative variable. Then, for all v ∈ d′j , there exists
i ∈ G\ext(M ;G) where xij = v. It follows that there exists

i ∈ G\ext({v};G) ∧ i /∈ ext(M ;G)

and vice versa, which in turn implies

ext({v};G) * ext(M ;G)

and vice versa. This in turn implies

ext(M ∪ {v};G) 6= ext(M ;G)

and conversely. However, M was assumed to be complete; so therefore, v /∈M . Therefore,

⊕({Yj(ω)|ω ∈ G\ext(M ;G)}) = dj\{v ∈M |I(v) = j}.

Secondly suppose that Xj is a quantitative variable. Now, for all v ∈ d′j ,

I1 ∨ I2 ≡ (there exists i ∈ G\ext(M ;G), xij > v) or
(there exist i1, i2 ∈ G\ext(M ;G), xi1j < v and xi2j > v).
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If I1 is true, then it is equivalent to the qualitative variable case. In contrast, the contradiction
is supposed to be true and that

v ∈ d′j and v ∈M.

This means that
for all ω ∈ G\ext(M ;G), xij 6= v.

Also,
for all i1, i2 ∈ G\ext(M ;G), xi1j < v and xi2j > v.

Or, we suppose v ∈M . To construct M , we know that v ∈M implies that

(for all v′ ∈ dj , v′ < v implies v′ ∈M)and (v′ > v implies v′ ∈M).

If
v′ ∈ dj , v′ < v,

if follows that
for all i ∈ G, xij < v implies i ∈ ext(M ;G).

This contradicts the condition that there exist

i1, i2 ∈ G\ext(M ;G), xi1j < v and xi2j > v.

Therefore, the hypothesis that v /∈M is false. In a similar way, we can show that the condition
I2 also contradicts the hypothesis that v /∈M .

We then can conclude that

⊕({xij | i ∈ G\ext(M ;G)}) = dj\{v ∈M | I(v) = j}. (*4)

Thus, equivalence has been proven for both qualitative and quantitative variables. Therefore,
(*4) holds for all j ∈ {1, · · · , p}. This completes the proof.
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