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Abstract. The problem of analyzing the dispersion of a set of objects described
by ordinal modal symbolic data is addressed in order to obtain homogeneous
groups, which are evaluated by a consensus measure. Based on a generalized
ϕ function a consensus measure for objects and for sets of objects described by
modal ordinal data is defined. A variability measure for sets of subsets of objects
based in the consensus measure of their members is proposed. A dissimilarity
measure between objects and between set of objects based on this consensus
variability measure is also given. It is proven that the Leik consensus measure is
a ϕ function. An ascending hierarchical clustering algorithm is presented. The
criterion to be minimized in each step is based on the decrease of the consen-
sus variability. An example with modal ordinal data of 34 teachers that were
evaluated by their students is presented.

Introduction
This paper proposes an ascending hierarchical clustering algorithm for modal ordinal sym-

bolic data using a dissimilarity measure based on consensus variability. One common meaning
of consensus is a general agreement among the members of a given group and can be seen as a
function of shared team feelings towards an issue. A common way to analyse it is to use con-
sensus measures to evaluate the strength of consensus in a class of individuals. As introduced
by Leik (1966) the conception of consensus is simply a lack of dispersion, and a consensus
measure provides a way to measure the dispersion in ordinal scales. In García-Santesmases
and Bravo (2010) and García-Santesmases et al. (2010), three specific consensus measures for
groups of individuals based on a single issue are given and are proved that satisfy the require-
ments given by Tastle (2005). They are extended to several issues and to symbolic data. In this
paper our main contribution is to give a characterization of a consensus measure for a group of
individuals based on a single issue through the introduction of a ϕ function with some proper-
ties. This characterization covers all the requirements given by Tastle (2005) for a consensus
measure to be considered viable. It can be used to build consensus measures for symbolic data
objects and sets, variability consensus measures and distances based on these variabilities. The
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present work does not make any assumptions regarding the ordinal scale. Related work on hi-
erarchical clustering for modal symbolic categorical data, although not modal ordinal data, can
be found in Kim and Billard (2012). Chavent (2000) proposes a divisive clustering algorithm
considering the ordinal property of modal ordinal symbolic variables to split a partition at each
step. Nevertheless, variability for modal ordinal variables is not addressed.

In section 1 basic concepts and notation are introduced, including the definition of the ϕ
function. Section 2 introduces consensus measures for a single object as well as for a set of
objects described by modal ordinal data. This section gives also the variability of a partition of
a set of modal ordinal symbolic data objects and introduces consensus variability. In section 3 it
is proven that the Leik measure is a ϕ function. Section 4 gives and agglomerative hierarchical
clustering based on the minimum decrease of consensus variability. Some indexes for cluster
and partition interpretation are also introduced. Section 5 gives an example.

1 Basic concepts and notation
In this section we present the input data and give the definition of the ϕ function with

specific properties to build from it consensus measures for modal ordinal symbolic data objects
and for sets of modal ordinal symbolic data objects.

1.1 Input data
Let S be a set of objects described by symbolic modal ordinal variables yj with domain

on an ordinal scale Yj =
{
rj1, r

j
2, ..., r

j
kj

}
, j = 1, ..., p and let S = {s1, s2, ..., sm} ⊂ S

be a subset of elements of S. The description of si is given by (D1
i , ..., D

p
i ) with Djᵀ

i =

(rj1(w
j
1i), r

j
2(w

j
2i), ..., r

j
kj
(wj

kji
)), where wjᵀ

i = (wj
1i, w

j
2i, ..., w

j
kji

) (
∑

l=1,...,kj

wj
li = 1) are

the probability or weight values associated to rj1, r
j
2, ..., r

j
kj

. These values may represent the
distribution of the ratings of individual preferences of a group of individuals (see Bock and
Diday, 2000).

Let qsi be the relative weight of si in S,
∑
i

qsi = 1, and

W =




w1
11 ... w1

k11
... ... wp

11 ... wp
kp1

w1
12 ... w1

k12
... ... wp

12 ... wp
kp2

... ... ... ... ... ... ... ...
w1

1m ... w1
k1m

... ... wp
1m ... wp

kpm




the associated symbolic data table and wi = (w1ᵀ
i ,w2ᵀ

i , ...,wpᵀ
i ), the i-th row of W , the

complete si description.

1.2 The ϕ function
A general ϕ function that captures the properties given by Tastle et al. (2005) for consensus

measures is defined.
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Definition 1.1. The ϕ function is defined on the set of all l-tuples p
ᵀ
= (p1, p2, ..., pl), with

pj ≥ 0 and
∑

j pj = 1, each one representing a probability distribution of a set of ordered
categories. This function satisfies the following properties:

1. The ϕ function is maximum only for the l-tuples: (1, 0, ..., 0), (0, 1, ..., 0), ...,
(0, 0, ..., 1).

2. The ϕ function is minimum only for the l-tuple ( 12 , 0, ..., 0,
1
2 ).

3. ϕ(p1, p2, ..., pl) = ϕ(pl, pl−1, ..., p1), ∀p
ᵀ
= (p1, p2, ..., pl).

4. The ϕ function is convex: ϕ(αp
ᵀ
1 +(1−α)pᵀ

2) ≤ αϕ(p
ᵀ
1)+(1−α)ϕ(pᵀ

2), ∀α ∈ [0, 1].

This ϕ function should measure the dispersion of categories, being the complementary of
a variability measure. For normalization, in this paper it will be considered that the image of
ϕ is the [0, 1] interval. The ϕ function could be defined for whatever l dimension.

2 Consensus measures for modal ordinal data

In this section we define consensus measures for objects described by modal ordinal data
and also for set of them, based on the ϕ function. We also define the variability for subsets of
S and a dissimilarity measure for elements of S and for subsets of S, both of them based on
the consensus measures and consequently on the ϕ function.

Given that for a set of individuals described by mono-evaluated data, consensus measures
are defined on empirical probability distributions of ordinal categories, they are easily extended
to modal ordinal symbolic data.

2.1 Consensus measure for objects described by symbolic data

A consensus measure for an object s ∈ S described by wjᵀ = (wj
1, w

j
2, ..., w

j
kj
) for issue

yj is defined as ϕ(wj
1, w

j
2, ..., w

j
kj
). This value may measure the consensus of a set of individ-

uals described by mono-evaluated data on Yj with empirical probability distribution given by
wjᵀ . This measure is extended to p issues by:

cϕ(s) =
1

p

p∑

j=1

ϕ(wj
1, w

j
2, ..., w

j
kj
) (1)

2.2 Consensus measure for sets of objects described by symbolic data

Given a set G ⊆ S of modal ordinal data objects, the consensus of G is based on the ϕ
function and it is defined as:

Cϕ(G) = 1− (
∑

sl∈G

qs
l

qG
cϕ(sl)− cϕ(g)) (2)

- 17 -



Hierarchical clustering of modal ordinal symbolic data objects

where qG =
∑

s
l
∈G

qs
l

and g =
∑

s
l
∈G

qs
l

qG
sl is the centroid of G. The symbolic description

of g is given by
∑

s
l
∈G

qs
l

qG
wl. This consensus measure defines a variability measure as the

complementary of Cϕ(G), which is given by:

Qϕ(G) =
∑

sl∈G

qs
l

qG
cϕ(sl)− cϕ(g) (3)

The Qϕ(G) value measures the weighted average of G element consensus values with respect
to the consensus value of the G centroid. It is verified that 0 ≤ Cϕ(G), Qϕ(G) ≤ 1,∀G ⊆ S
given that ϕ is convex and because of ϕ normalization in the [0, 1] interval. It is also verified
that Cϕ({si}) = 1, Qϕ({si}) = 0, ∀si ∈ S.

2.3 Consensus variability for sets of symbolic data objects
Given that our approach to the clustering problem is based on partitions, the functions de-

fined in this paper for sets of subsets of S will consider that these subsets are disjoint. These
considerations are made for the variability function Uϕ and for the distance function Dϕ de-
fined below. Even though, extensions for non-disjoint subsets can be easily done.

Let P = {G1, G2, ..., Gk} be a set of disjoint subsets Gk ⊆ S with weights q1, q2, ..., qk
(qr =

∑
s
l
∈Gr

qs
l
) and centroids g1, g2, ..., gk. The consensus variability of P based on the ϕ

function is defined by:

Uϕ(P) = Qϕ(

k⋃

r=1

Gr)−
k∑

r=1

qr
qP
Qϕ(Gr) (4)

with qP =
k∑

r=1
qr. The consensus variability of P is the

k⋃
r=1

Gr consensus variability minus

the weighted average consensus variability of the Gr. It is easily deduced that:

Uϕ(P) =
k∑

r=1

qr
qP
Cϕ(Gr)− Cϕ(

k⋃

r=1

Gr) (5)

Thus, the Uϕ(P) value is the weighted average of Gr consensus values minus the consensus

value of
k⋃

r=1
Gr.

Proposition 2.1. The value Uϕ(P) can be expressed by:

Uϕ(P) = Qϕ({g1, g2, ..., gk}) =
k∑

r=1

qr
qP
cϕ(gr)− cϕ(g) (6)

where g is the centroid of
k⋃

r=1
Gr and also the centroid of {g1, g2, ..., gk}.
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Proof. Uϕ(P) = Qϕ(
k⋃

r=1
Gr)−

k∑
r=1

qr
qP
Qϕ(Gr) =

∑

sl∈
k⋃

r=1
Gr

qs
l

qP
cϕ(sl)− cϕ(g)−

k∑
r=1

qr
qP

[
∑

sl∈Gr

qs
l

qr
cϕ(sl)− cϕ(gr)

]
=

k∑
r=1

qr
qP
cϕ(gr)− cϕ(g) = Qϕ({g1, g2, ..., gk})

Thus, the consensus variability ofP is the consensus variability of theGr centroid set. This
suggests that the centroid of a set of symbolic data objects is a suitable representative of the set.
The Uϕ(P) value is in the interval [0, Qϕ(S)]. This value is minimum for P = S (Uϕ(P) = 0)
and maximum for the trivial partition P = {{s1} , {s2} , ..., {sm}} (Uϕ(P) = Qϕ(S)).

In particular, if P is a partition of S applying proposition 2.1 to equation (4) the decompo-
sition of S consensus variability in terms of the Qϕ(.) function is:

Qϕ(S) = Qϕ({g1, g2, ..., gk}) +
k∑

r=1

qrQϕ(Gr) (7)

showing that consensus variability of S is the sum of between consensus variability of Gr and
the weighted within consensus variabilities of the Gr.

Proposition 2.2. For any partition P = {G1, G2, ..., Gk−1, Gk} of S it is verified that:

Uϕ(P) = Uϕ({G1, G2, ..., Gk−1 ∪Gk}) + qk−1,kUϕ({Gk−1, Gk}) (8)

where qk−1,k = qk−1 + qk. This result is valid for whatever pair of sets union.

Proof. For notation, it will be considered that k1 = k − 1 and qk1k = qk−1 + qk. Let gk1k, g
be the centroids of {sk−1, sk}, S.

Uϕ({G1, G2, ..., Gk−1 ∪Gk}) =
k−2∑
r=1

qrcϕ(gr) + qk1kcϕ(gk1k)− cϕ(g) =
k−2∑
r=1

qrcϕ(gr)

+qk1k

[
cϕ(gk1k) +

qk−1

qk1k
cϕ(gk−1)− qk−1

qk1k
cϕ(gk−1) +

qk
qk1k

cϕ(gk) − qk
qk1k

cϕ(gk)
]
− cϕ(g)

=
k∑

r=1
qrcϕ(gr)− cϕ(g) + qk1k

[
cϕ(gk1k)− qk−1

qk1k
cϕ(gk−1) − qk

qk1k
cϕ(gk)

]
=

Uϕ(P)− qk1kUϕ({Gk−1, Gk})

2.4 Dissimilarity measures for symbolic data objects
We introduce here a dissimilarity measure that is based on the ϕ function. Let sl, st ∈ S be

two modal ordinal symbolic data objects, the dissimilarity between these two objects is defined
by:

dϕ(sl, st) = Qϕ({sl, st}) =
qs

l

qs
l
st

cϕ(sl) +
qst
qs

l
st

cϕ(st)− cϕ(gs
l
st) (9)

with qs
l
st = qs

l
+ qst and gs

l
st the centroid of {sl, st}. This dϕ function is a dissimilarity

given that the ϕ function is convex. The dissimilarity between two elements sl, st of S is the
consensus variability of {sl, st} set and it takes values in the [0, 1] interval.
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This dissimilarity function can be easily extended to sets of modal ordinal symbolic data
objects. Let A = {a1, a2, ..., aka

}, B = {b1, b2, ..., bkb
} be two disjoint subsets of S. The

dissimilarity between A and B is defined by:

Dϕ(A,B) = Uϕ({A,B}) (10)

The dissimilarity between two subsets A, B of S is the consensus variability of {A,B} set.
Let a, b be the centroids of A, B. As it is verified that Uϕ({A,B}) = Qϕ({a, b}) = dϕ(a, b),
then:

Dϕ(A,B) = dϕ(a, b) (11)

Thus, the dissimilarity between two subsets of S is the dissimilarity between their centroids.
For any partition P = {G1, G2, ..., Gk−1, Gk} of S, it is deduced from proposition 2.2

that:

Uϕ({G1, G2, ..., Gk−1, Gk})− Uϕ({G1, G2, ..., Gk−1 ∪Gk})
= qk−1,kUϕ({Gk−1, Gk}) = qk−1,kDϕ(Gk−1, Gk) (12)

The decreasing consensus variability of a partition P of S, when two of its members are joined
to form a new subset, is proportional to the dissimilarity between the two sets joined.

The cϕ and dϕ functions, defined above on S, are actually defined on S. The Qϕ function
defined below for subsets of S, is actually defined for countable subsets of S.

3 The Leik measure
In this section we select a specific ϕ function to be used in the clustering method that we

propose in section 4. Among the different consensus measures in the literature (see García-
Santesmases et al., 2010) we focus our attention into the Leik measure because it does not
make any assumptions on ordinal categories and can be applied to any ordinal scale.

Let p
ᵀ

= (p1, p2, ..., pl) be a probability distribution associated to a set of increasing
ordered categories, let F

ᵀ
= (F1, F2, ..., Fl) be the cumulative distribution associated to p

ᵀ

distribution and

dj = Fj if Fj ≤ 0.5

dj = 1− Fj otherwise

The sum
∑

j dj (see Leik, 1966) is a dispersion index. Standardizing this sum by the value
max{∑j dj |pj ≥ 0,

∑
j pj = 1} = l−1

2 , and taking its complementary to one, then the Leik
measure of p

ᵀ
is:

lk(p
ᵀ
) := 1−

2
∑

j dj

l − 1
(13)

Proposition 3.1. The lk function is a ϕ function.

Proof. The four properties of definition 1.1 are proven:

1. max lk(p
ᵀ
) = 1 ⇔ ∑

j dj = 0 ⇔ ∀j, Fj = 0 or Fj = 1 ⇔ ∃ j′|pj′ = 1 and
∀j 6= j′, pj = 0.
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2. min lk(p
ᵀ
) = 0⇔∑

j dj = l−1
2 ⇔ dj = 1

2 , for j = 1, ..., l − 1 and dl = 0 ⇔ p
ᵀ
=

( 12 , 0, ..., 0,
1
2 ).

3. lk(p1, p2, ..., pl) = lk(pl, pl−1, ..., p1), ∀p
ᵀ
= (p1, p2, ..., pl). Let p2j = pl−j+1 be the

j − th position of p2ᵀ
= (pl, pl−1, ..., p1) and F

ᵀ
= (F1, ..., Fl), F 2ᵀ = (F 2

1 , ..., F
2
l )

be the cumulative distributions associated to p
ᵀ

, p2ᵀ
. For notation F0 = F 2

0 = 0. We
are going to demonstrate that F 2

j = 1−Fl−j , ∀j. The equality p2j = pl−j+1 = Fl−j+1−
Fl−j is true ∀j, in particular F 2

1 = p21 = pl = Fl − Fl−1 = 1− Fl−1, thus F 2
1 = 1−

Fl−1. If for j − 1 is verified that F 2
j−1 = 1− Fl−(j−1) then we demonstrate that this is

true for j: F 2
j = F 2

j−1+p
2
j = 1−Fl−(j−1)+Fl−j+1−Fl−j = 1−Fl−j . We demonstrate

that dj = d2l−j for j = 1, ..., l − 1 and trivially dl = d2l = 0. For j = 1, ..., l − 1, if
dj = Fj ≤ 0.5, then F 2

l−j = 1−Fj ≥ 0.5, and d2l−j = 1−F 2
l−j = Fj = dj ; in a similar

way it is demonstrated that if dj = 1 − Fj , then d2l−j = dj . Thus,
l∑

j=1

dj =
l∑

j=1

d2j and

consequently, lk(p
ᵀ
) = lk(p2ᵀ).

4. lk is convex. Let p1ᵀ = (p11, p
1
2, ..., p

1
l ), p

2ᵀ = (p21, p
2
2, ..., p

2
l ) and d1j , F 1

j , d
2
j , F 2

j

defined as above. Let α ∈ [0, 1] and p
ᵀ
= αp1ᵀ +(1−α)p2ᵀ . The F

ᵀ
associated to p

ᵀ

is F
ᵀ
= αF 1ᵀ + (1− α)F 2ᵀ . To evaluate dj (j = 1, ..., l) associated to F

ᵀ
, four cases

are distinguished:

(a) If F 1
j ≤ 0.5 and F 2

j ≤ 0.5 then dj = Fj = αF 1
j +(1−α)F 2

j = αd1j+(1−α)d2j (≤
0, 5).

(b) If F 1
j ≥ 0.5 and F 2

j ≥ 0.5 then Fj ≥ 0.5 and dj = 1 − Fj = 1 − (αF 1
j + (1 −

α)F 2
j ) = α(1− F 1

j ) + (1− α)(1− F 2
j ) = αd1j + (1− α)d2j (≥ 0.5).

(c) When F 1
j ≥ 0.5 and F 2

j ≤ 0.5 we again distinguish two cases:

i. If Fj ≤ 0.5 then dj = Fj = αF 1
j + (1− α)F 2

j = α(1− d1j ) + (1− α)d2j ≥
αd1j + (1− α)d2j .

ii. If Fj ≥ 0.5 then dj = 1−Fj = 1− (αF 1
j +(1−α)F 2

j ) = α(1−F 1
j )+ (1−

α)(1− F 2
j ) = αd1j + (1− α)(1− d2j ) ≥ αd1j + (1− α)d2j .

(d) For F 1
j ≤ 0.5 and F 2

j ≥ 0.5 it is proven that dj ≥ αd1j + (1 − α)d2j in a similar
way as in case 4c.

Thus, ∀j ∈ {1, ..., l}, dj ≥ αd1j + (1 − α)d2j and then 1 − 2
∑

j dj

l−1 ≤ α(1 − 2
∑

j d1
j

l−1 ) +

(1− α)(1− 2
∑

j d2
j

l−1 ). Therefore, lk(p
ᵀ
) ≤ αlk(p1ᵀ) + (1− α)lk(p2ᵀ).

Corollary 3.2. lk(p
ᵀ
) = α lk(p1ᵀ)+ (1−α)lk(p2ᵀ)⇔ p

ᵀ
,p1ᵀ ,p2ᵀ have the same median.

Proof. The sufficient condition is almost trivial. With respect to the necessary condition, let
suppose that the medians are not equal. This is only possible if the median associated to p1ᵀ

is different from the median associated to p2ᵀ . This is only possible in the following case:
∃j ∈ {1, ..., l} for which F 1

j ≥ 0.5, F 2
j < 0.5 or F 1

j > 0.5, F 2
j ≤ 0.5 or F 1

j ≤ 0.5, F 2
j > 0.5

or F 1
j < 0.5, F 2

j ≥ 0.5. In those cases then it is verified that dj > αd1j + (1 − α)d2j and
consequently lk(p

ᵀ
) > α lk(p1ᵀ) + (1− α)lk(p2ᵀ).
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Corollary 3.3. When theϕ function is the lk function then the derived dϕ dissimilarity function
satisfies the following: If dϕ(sl, st) = 0 for sl, st ∈ S , then sl, st have the same median for
each yj issue, j = 1, ..., p.

Proof. This result is a consequence of the corollary 3.2.

4 Hierarchical clustering algorithm
An ascending hierarchical clustering procedure (see Ward, 1963) is proposed to build a

sequence of partitions Pm, Pm−1, ..., P1 of S in the following way: Pm = {{s1}, ..., {sm}}
is the trivial partition, Pk−1 is derived from the Pk partition by joining the pair of its members
that minimizes the decrease of consensus variability when going from the Pk partition to the
Pk−1 partition.

In each step, when Pk = {G1, G2, ..., Gk} the union of every possible pair of sets is
considered. The pair of sets Gj1and Gj2 , with j1, j2 ∈ {1, ..., k} that are finally merged are
those whose union results in the minimum decrease of consensus variability. This decrease of
consensus variability (proposition 2.2) is:

Uϕ(Pk)− Uϕ(Pk−1) = qj1j2Uϕ({Gj1 , Gj2}) = qj1j2Dϕ(Gj1 , Gj2)

with qj1j2 the sum of Gj1 , Gj2 weights. Thus, in each step the most similar pair of sets are
merged to form the new partition. Given thatDϕ(Gj1 , Gj2) is non-negative the non-increasing
monotonicity of between cluster consensus variabilities is assured.

4.1 Interpretation of clusters
Let Pk = {G1, G2, ..., Gk} be a partition of S in k classes, the quality of a cluster Gr is

given by:

Qϕ(Gr) =
∑

s
l
∈Gr

qs
l

qr
cϕ(sl)− cϕ(gr)

where qr =
∑

s
l
∈Gr

qs
l

and gr is the centroid ofGr cluster. As told before,Qϕ(Gr) is a measure

of consensus variability that measures the within-cluster consensus variability. The lower this
measure is, the higher the quality of Gr cluster is. The quality of Gr cluster is minimum when
Qϕ(Gr) takes its maximum value. The Gr cluster quality is maximum when Qϕ(Gr) = 0.
When the ϕ function is the lk function, the value Qϕ(Gr) is null when all the elements of Gr

have the same median for each issue yj .
The quality of a cluster regarding issue yj is:

Qj
ϕ(Gr) =

∑

s
l
∈Gr

qs
l

qr
ϕ(wjᵀ

l )− ϕ(
∑

s
l
∈Gr

qs
l

qr
wjᵀ

l )

where wj
l is the modal ordinal data description of s

l
∈ Gr regarding issue yj .

An useful criterion to interpret a cluster regarding a variable yj is given by:

Qj
ϕ(Gr)

Qj
ϕ(S)

≤ Qϕ(Gr)

Qϕ(S)
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in the sense that those issues yj of Gr cluster that verify this inequality are the issues that char-

acterize the cluster. The lower the
Qj

ϕ(Gr)

Qj
ϕ(S) ratio value is for a variable yj , the more homogenous

in consensus variability this variable is in Gr cluster.

4.2 Interpretation of the partition

Let P = {G1, G2, ..., Gk} be a partition of S in k clusters with weights q1, q2, ..., qk and
centroids g1, g2, ..., gk. The quality of a partition is given by:

Uϕ(P) =
k∑

r=1

qrcϕ(gr)− cϕ(g) = Qϕ({g1, g2, ..., gk})

with g the centroid of S. The value of Uϕ(P) measures the consensus variability of the Gr

centroid set and it is a measure of the between-cluster consensus variability. The higher this
measure is, the higher the quality of P is.

The quality of a partition regarding issue yj is:

U j
ϕ(P) =

k∑

r=1

qrϕ(w
jᵀ
gr )− ϕ(

k∑

r=1

qrw
jᵀ
gr )

where wj
gr =

∑
s
l
∈Gr

qs
l

qr
wj

l is the modal ordinal data description of gr regarding issue yj .

These measures can be normalized into the [0, 1] interval by using the Uϕ(P)
Qϕ(S) and

Uj
ϕ(P)

Qj
ϕ(S)

ratios. These ratios measure the proportions of consensus variabilities of S that are explained
by the P partition globally and for a yj issue, respectively.

5 Example
To illustrate the proposed method we apply it to a data set S composed of 34 teachers de-

scribed by modal ordinal symbolic data. They were rated by their students (1350) on 12 items
on the ordinal scale: poor, average, good, excellent. The items were: y1, initial subject presen-
tation; y2, teacher setting to course syllabus; y3, well time management; y4, evoking interest
in the students about the subject; y5, use of practical examples; y6, stimulating students to be
active in class and readiness to clear their doubts; y7, readiness to give advice in academic
development; y8, degree of respect between students and teacher; y9, subject knowledge; y10,
stimulating students to read books, journals and magazines; y11, communications skills; and,
y12, ability to clear students’ doubts. Figure 1 represents the teachers’ modal ordinal sym-
bolic data: for each teacher, empirical probability distributions of yj issues are represented by
vertical bar charts.

For the first step (the trivial partition with k = 34) and for the last four steps of the ascend-
ing hierarchical clustering algorithm, the values of the proportion of consensus variability of
S explained by each partition are shown in table 1 as well as the between-cluster consensus
variabilities of partitions. The solution chosen is P3 = {G1, G2, G3} for k = 3, that explains
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FIG. 1 – Representation of teachers’ modal ordinal symbolic data
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71, 2% of S consensus variability. This step is also chosen because there is not a big difference
when taking k = 4 clusters (75%).

To evaluate the quality of the partitions obtained, we have randomly generated 1000 par-
titions of size 2, 3, 4, respectively and measured their consensus variabilities. The generated
partitions have the same cluster sizes that those obtained by our method. Table 1 shows mean
and standard deviations of these consensus variabilities as well as the p-values of the permuta-
tion tests that evaluates the significance of the partitions obtained by our method. For size 3 we
have also generated 1000 partitions with no restrictions on cluster sizes. Their consensus vari-
ability mean value was 0.00283 and their standard deviation 0.0022. All partition consensus
variabilities were lower than 0.037.

k
Uϕ(Pk)

Qϕ(S)
Uϕ(Pk) Mean Uϕ(.) Std Uϕ(.) p− value

34 1 0.052
... ... ... ... ... ...
... ... ... ... ... ...
4 0.75 0.039 0.0045 0.0033 < 0.001
3 0.712 0.037 0.00288 0.00243 < 0.001
2 0.596 0.031 0.00156 0.00756 < 0.001
1 0 0

TAB. 1 – Quality of partitions in algorithm steps. Consensus variability mean and standard
deviation values of the simulated partitions. P-values of permutation tests.

The G1, G2, G3 clusters are composed of 23, 4 and 7 teachers, respectively. The clus-
ter members are G1 = {s26, s7, s33, s14, s8, s21, s16, s2, s23, s3, s6, s24, s29, s32, s11, s34, s18,
s20, s15, s19, s1, s13, s22}, G2 = {s4, s31, s10, s27} and G3 = {s5, s9, s12, s17, s25, s28, s30}.
Figure 2 represents the modal ordinal symbolic data of the Gr cluster centroids of the P3 par-
tition. Generally speaking, G3 is composed of teachers with the highest evaluations and G2

with the lowest evaluations whilst cluster G1 is composed of the teachers with intermediate
evaluations.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 global
Qj

ϕ(S) 0.044 0.035 0.085 0.1 0.053 0.09 0.043 0.005 0.02 0.016 0.064 0.062 0.052
Qj

ϕ(G1) 0.01 0.015 0.049 0.015 0.013 0.015 0.004 0 0.007 0.019 0.001 0.037 0.015
Qj

ϕ(G2) 0 0 0 0.08 0.01 0.053 0.01 0.05 0.04 0.026 0.06 0 0.027
Qj

ϕ(G3) 0 0 0.007 0.005 0.01 0 0 0 0 0.003 0 0 0.002
U j
ϕ(P3) 0.037 0.025 0.05 0.08 0.04 0.07 0.04 0 0.01 0 0.05 0.03 0.037

Uj
ϕ(P3)

Qj
ϕ(S) 0.841 0.714 0.588 0.8 0.755 0.778 0.93 0 0.5 0 0.781 0.484 0.712

TAB. 2 – Consensus variability values of S,Gr and P3. Proportion of S consensus variability
values explained by the P3 partition

In table 2 the consensus variability values of S, Gr clusters and P3 partition are shown for
yj issues and for all issues globally. There are also included the values of the proportion of S
consensus variability explained by the partition for yj and for all issues globally. The issues
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FIG. 2 – Representation of the P3 partition cluster centroids

that better explain the partition are those whose
Uj

ϕ(P3)

Qj
ϕ(S) values are bigger than 0.712. These

issues are y1, y4 to y7 and y11.

In table 3, the
Qj

ϕ(Gr)

Qj
ϕ(S) and Qϕ(Gr)

Qϕ(S) ratios are shown. Those values for which
Qj

ϕ(Gr)

Qj
ϕ(S) ≤

Qϕ(Gr)
Qϕ(S) are in bold type. These values correspond to the issues of each cluster that characterize

the cluster in the sense that for these issues within consensus variabilities are lower. Looking
at this table to the ratios relating to the issues that best explain the partition (y1, y4 to y7, y11)
we can summarize that y1 and y7 are the variables that better explain the partition, that is,
the initial subject presentation and the readiness to give advice in academic development are
the most discriminant properties among the groups. Stimulating students to be active in class
and readiness to clear their doubts and the communication skills (y6, y11) discriminate well
the best teachers from the intermediate teachers (G1 and G3 clusters) and the use of practical
examples (y5) discriminates well the worst teachers from the intermediate teachers (G1 andG2

clusters).

We can also observe in table 3 an outlier in ratios that corresponds to cluster G2 and issue
y8. This issue has very little consensus variability values in the original set (Q8

ϕ(S) = 0.005,
table 2), null within-G1 and G3 consensus variabilities (Q8

ϕ(Gk) = 0, k = 1, 3, table 3 and all
consensus variability is in cluster G2 (Q8

ϕ(G2) = 0.05, table 3). This is due to teacher 4 who
receives the lowest rates for degree of respect between students and teacher.
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y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 global
Qj

ϕ(G1)

Qj
ϕ(S) 0.23 0.42 0.58 0.15 0.24 0.17 0.09 0 0.33 1.13 0.02 0.6 0.30

Qj
ϕ(G2)

Qj
ϕ(S) 0 0 0 0.8 0.18 0.59 0.23 8.5 1.92 1.58 0.92 0 0.53

Qj
ϕ(G3)

Qj
ϕ(S) 0 0 0.093 0.059 0.25 0 0 0 0 0.23 0 0 0.049

TAB. 3 – Quality of clusters for the P3 partition

Conclusion
In this paper we have introduced a general ϕ function to characterize a consensus measure

defined for probability distributions for a set of ordinal categories. We extend this measure to
sets of modal ordinal symbolic data objects and define a dissimilarity measure for these sets
based in the consensus variability of their centroids.

We have presented an ascending hierarchical clustering algorithm for modal ordinal data.
In each step, the two clusters joined are those with the minimum distance between their cen-
troids, the same criterion applied in the Ward algorithm who used the Euclidean distance for
continuous mono-evaluated data (see Ward, 1963). As an example of a ϕ function we have
chosen the Leik measure that is suitable for any ordinal scale and we have applied the pro-
posed method to analyze data coming from the evaluation of a set of teachers by their students.
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