
A benchmark for assessing OLAP exploration assistants

Mahfoud Djedaini∗, Nicolas Labroche∗, Patrick Marcel∗, Veronika Peralta∗

∗University of Tours, Tours, France

firstname.lastname@univ-tours.fr,

Abstract. In this demonstration paper, we present InDExBench, a benchmark

designed and developed for evaluating and comparing Interactive Database Ex-

ploration (IDE) assistant systems in the context of OLAP. We briefly recall how

InDExBench works behind the scenes. Then, we explain how it can be used

in practice by considering the case of Sam, an OLAP IDE assistant author who

wants to evaluate how her system performs, and how it compares to competitors.

1 Introduction

Supporting Interactive Database Exploration (IDE) is a problem that attracts lots of atten-

tion these days. Exploratory OLAP (On-Line Analytical Processing) is an important use case

where tools support navigation and analysis of the most interesting data, using the best possi-

ble perspectives. While many approaches were proposed, a recurrent problem is how to assess

the effectiveness of an exploratory OLAP approach. In this paper, we describe InDExBench,

a benchmark for evaluating IDE approaches, referred to as SUTs (for Systems Under Test),

relying on an extensible set of user-centric metrics that relate to the main dimensions of ex-

ploratory analysis. Basically, SUTs are evaluated by assessing the quality of explorations they

help the user to produce. An OLAP exploration (Aligon et al., 2014) is technically a sequence

of OLAP queries over a database instance issued by a given user. InDExBench achieves its

goal by first simulating a complete OLAP system (DB instance, cube schema, users, ...) and

then by giving the SUT the opportunity to play wihtin the system. In this paper, we review

InDExBench features through a realistic use case. Thorough details can be found in (Djedaini

et al.).

2 Benchmark overview

In this section, we describe more precisely the metrics, how InDExBench generates the

OLAP system, and finally how it simulates and scores explorations.

Metrics InDExBench scores explorations using five categories of user-centric metrics bor-

rowed from Exploratory search (White and Roth, 2009). Each category is implemented with a

primary metric and a secondary to counterbalance it.

User engagement measures how engaged and invested is a user on a system. For this

category, we borrow from web search two popular and intuitive metrics. Query Depth (QD)

✲ ✽✶ ✲



A benchmark for assessing OLAP exploration assistants

as primary metric, represents the number of queries. Query Focus (QF) as secondary metric,

measures the degree to which an exploration is focused around a zone of the cube. Informa-

tion Novelty measures the quantity of Relevant New Information (RNI). We use a normalized

entropy as primary metric to measure the quantity of interesting information contained in the

data retrieved by each query of the exploration. The secondary metric measures the Increase

in View Area (IVA), i.e. the increase in the number of viewed cells. Intuitively, information

about a group of cells can be obtained by exploring a cube area around it. Task completeness

is reached when the whole neighborhood around a cell, in the sense of OLAP operation, has

been explored. A simple way of measuring it is with recall and precision. Recall (R) is the

primary metric since, consistently with exploratory search, we consider OLAP navigation as

a recall oriented activity. Precision (P) is then the secondary metric. Measuring task time is

done by adapting metrics of existing TPC benchmarks. The primary metric comes from the

TPC-DS benchmark ((TPC), 2012) and measures the query frequency, i.e. number of queries

per second (QPS). The secondary metric simply measures the elapsed time (TET) between the

beginning and the end of an exploration. Learning and cognition aims at evaluating the user

knowledge. Knowledge Tracing (KT) (Corbett and Anderson, 1995) has been proposed origi-

nally in e-learning to evaluate students knowledge, based on a sequence of exercises that they

have to solve. We adapt KT by considering as an exercise finding OLAP queries with high

Information Novelty. The primary metric Learning (L) is then the knowledge level estimated

by KT. The secondary metric measures the Learning Growth Rate (LGR).

OLAP environment generation InDExBench is capable of generating a complete OLAP

database (schema and instance), with users and user explorations over it. A realistic database

instance is generated with PDGF (Rabl et al., 2013), a data generator that supports generation

of skewed data. By default, InDExBench uses the Star Schema Benchmark (SSB) (O’Neil

et al., 2009), but the benchmark can be initialized with any other OLAP schema. CubeLoad

(Rizzi and Gallinucci, 2014) is used for automatically generating realistic OLAP workloads,

taking as input a cube schema and the desired number of sessions. Sessions are then clustered

using a metric tailored for OLAP sessions (Aligon et al., 2014). Finally, a Markov inspired

generative model is learned from each cluster to simulate a particular user. Sessions of this

cluster are considered as the user’s past sessions.

Generating and scoring OLAP explorations The evaluation protocol first provides a seed

session, which is a set of seed queries representing part of a navigation of a given user, as a

context for continuation of the navigation. Then, the simulated user and the SUT play in turn.

The simulated user smartly issues new queries using his/her generative model. The SUT uses

its internal intelligence and the context (current query, query logs, . . . ) to propose new queries.

Like in real cases, SUT propositions may or may not be included in the exploration, depending

on the simulated user choice. A SUT is allowed to play a given number of times, after which

the process is stopped. The obtained exploration is then scored using the metrics described

above. The same process is repeated a large number of times for a given SUT. Finally a SUT

obtains a global score for each metric, by averaging the scores for all the explorations for the

given metric.

✲ ✽✷ ✲



M. Djedaini et al.

3 Scenario

The demonstration scenario will consider the case of Sam, a researcher who is thinking

about a very interesting idea for implementing a new IDE assistant dedicated to OLAP. Sam

wants to quickly have detailed information about how her prototype performs. She also would

like to compare with competitor algorithms, as well as with baseline algorithms such as a

random algorithm or a naive one. We will then describe how Sam will use InDExBench and

how she can benefit from it.

InDExBench installation InDExBench is developed in Java, a portable language, as per

benchmarks portability requirement and so is mainly distributed as a java library. So, basically,

Sam creates a Java project, and imports the InDExBench jar file. Sam may now have a look at

the InDExBench API documentation 1. Sam’s next step is to let InDExBench know about her

algorithm.

Interfacing SUT with InDExBench Within InDExBench, SUTs are recognized as being

classes implementing an interface called I_SUT . To evaluate her SUT, Sam writes a class that

implements I_SUT . Her class represents her algorithm within InDExBench. Sam can write

her whole code withing her new class. If her algorithm is already developed independently, she

can just import her library into the project, and call her library features within her class. In the

live demo, we will mostly focus on SUTs comparison by showing how to compare different

SUTs provided by InDExBench.

Evaluation and feedback At this point, Sam has installed InDExBench, and she has plugged

her SUT to it. However, she does not have an OLAP system within easy reach. Provided a

JDBC connection string and an OLAP cube schema, InDExBench can generate for Sam a

simulated OLAP system. Sam can configure how the OLAP system will be generated. For

instance, she can configure how data are generated to populate the database, how many past

sessions should be present in the log, how many users the system must have, etc.

To set a comparison with a random algorithm, Sam only has to create a RandomSUT

instance. Indeed, InDExBench provides by default implementation for different SUTs, among

which a random algorithm called RandomSUT . For comparing with SUTs from the litera-

ture, Sam will have to interface the SUTs she wants to challenge with InDExBench. So far,

InDExBench provides interfaces for two SUTs from the literature, namely Falseto (Aligon

et al.) and Cinecube (Gkesoulis et al., 2015).

As Sam wants to compare with other SUTs, she has to clearly ask this to InDExBench.

When a comparison is performed, InDExBench ensures that each SUT is provided under the

exactly same circumstances. When the evaluation is completed, Sam gets a detailed informa-

tion of how each SUT performed by means of a score for each metric. She can for instance

notice that her algorithm takes more time to execute than RandomSUT , but that it performs

better in terms of precision, user engagement, etc. Sam can also get a detailed score per ex-

ploration, for example if she wants to analyze how her SUT’s performance evolves with time.

InDExBench provides a very rich feedback, usable at will by evaluators.

1. http://www.info.univ-tours.fr/~marcel/benchmark.html

✲ ✽✸ ✲



A benchmark for assessing OLAP exploration assistants

4 Conclusion

In this paper we described several features of InDExBench by using a concrete example.

We showed how Sam can benefit from InDExBench features to quickly set up and compare her

algorithm from other algorithms from the literature. Actually, InDExBench has a lot more fea-

tures than exposed in this scenario, that could not be detailed here. We created a specific web-

site for InDExBench http://www.info.univ-tours.fr/~marcel/benchmark.

html where we regularly publish material. In this website, can be found InDExBench Java

library, API documentation, as well as references to published papers.

References

Aligon, J., K. Boulil, P. Marcel, and V. Peralta. A holistic approach to OLAP sessions compo-

sition: The falseto experience. In DOLAP 2014, pp. 37–46.

Aligon, J., M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia (2014). Similarity measures

for olap sessions. KAIS 39(2), 463–489.

Corbett, A. T. and J. R. Anderson (1995). Knowledge tracing: Modelling the acquisition of

procedural knowledge. UMUAI 4(4), 253–278.

Djedaini, M., P. Furtado, N. Labroche, P. Marcel, and V. Peralta. In TPCTC (2016). LNCS

10080 proceedings.

Gkesoulis, D., P. Vassiliadis, and P. Manousis (2015). Cinecubes: Aiding data workers gain

insights from OLAP queries. IS 53, 60–86.

O’Neil, P. E., E. J. O’Neil, X. Chen, and S. Revilak (2009). The star schema benchmark and

augmented fact table indexing. In TPCTC, pp. 237–252.

Rabl, T., M. Poess, H. Jacobsen, P. E. O’Neil, and E. J. O’Neil (2013). Variations of the star

schema benchmark to test the effects of data skew on query performance. In ICPE’13, pp.

361–372.

Rizzi, S. and E. Gallinucci (2014). Cubeload: A parametric generator of realistic OLAP work-

loads. In CAiSE 2014, pp. 610–624.

(TPC), T. T. P. P. C. (2012). Tpc benchmark ds (tpc-ds): The new decision support benchmark

standard. http://www.tpc.org/tpcds/.

White, R. W. and R. A. Roth (2009). Exploratory Search: Beyond the Query-Response

Paradigm. Morgan & Claypool Publishers.

Résumé

Dans ce papier de démonstration, nous présentons InDExBench, un Benchmark conçu et

développé pour comparer des assistants à l’Exploration Interactive des Données (EDI) dans un

contexte OLAP. Nous rappelons brièvement comment InDExBench fonctionne en coulisses.

Ensuite, nous expliquons comment il peut être utilisé en pratique en considérant le cas de Sam,

une chercheuse qui a une nouvelle idée d’algorithme d’EDI pour OLAP dont elle souhaite

évaluer les performances et comparer avec des algorithmes conccurrents.

✲ ✽✹ ✲


