
Recommendation-based Keyword Search over Relational
Databases

Haithem Ghorbel∗, Nouha Othman∗ and Rim Faiz∗∗∗,

∗Université de Tunis, Institut Supérieur de Gestion de Tunis, LARODEC, Tunisia
gho.haithem,othmannouha@gmail.com

∗∗∗Université de Carthage IHEC Carthage, LARODEC, Tunisia
rim.faiz@ihec.rnu.tn

Abstract. Recently, there has been a burgeoning interest in keyword search in rela-
tional databases owing to its ease of use. Although extensive research has been lately
done within this context, most of this research not only requires a prior access to data
which severely restricts their applicability if this condition is not verified, but also
returns very generic answers. However, providing users with personalized answers
has become more than ever necessary due to the overabundance of data which can
be annoying for the user. The challenge to return personalized and relevant answers
that satisfy users’ information needs remains. Inspired by the successful application
of the collaborative filtering technique in recommender systems, we propose a novel
keyword-based approach to provide users with personalized results based on the hy-
pothesis that only information on the database schema is available.

1 Introduction
Over the decades, an explosive amount of structured data has been stored in Relational Databases

(RDB)s. These latter have been widely used owing to the rich information they provide including
relationships between the different entities in the DB. Developing effective query methods for users
to easily query huge and complex repositories without the need of technical expertise has become
one of the biggest challenges of the database community (Agrawal et al., 2002; Aditya et al., 2002).
The emergence of web search engines has made keyword search the most commonly used search
technique. The strength of this latter is that it enables users to easily express their information needs
by a few keywords without needing to know the database schema or structured query languages.
Nevertheless, such a technique requires a prior access to the database content in order to build the
indices that will pinpoint the different tuples associated with the keywords at run time (Bergamaschi
et al., 2011). This is a considerable shortcoming since it limits its applicability if a prior access to
data is not possible. Another significant limitation is that the inter-dependencies among the query
keywords were ignored. Actually, the meaning of each keyword in a user’s query also depends on the
meaning of the others. On the other hand, with the tremendous development of information technol-
ogy, the amount of data has been growing exponentially. Thus, finding the desired information in a
massive database has become a crucial but also a challenging task. Recommendation Systems (RSs)
are powerful tools to filter data, providing only what the user is most likely looking for. In this paper,
we propose a successful attempt to combine RSs techniques and RDB to overcome the limitation of
the keyword search. Our proposed approach aims at returning personalized answers when we have
no prior access to the actual data stored in the database. The remainder of the paper is structured as
follows: In Section 2, we review the main existing work on querying RDBs. Then, we describe our

- 347 -



Recommendation-based Keyword Search over Relational DBs

approach in Section 3. Subsequently, we present in Section 4, we report our experimental evaluation
and results. Towards the end, we conclude and outline our perspectives.

2 Related work on Querying Relational Databases

Arguably, keyword search has become the standard for seeking information on the Web as it
allows the user to easily formulate queries with a few keywords. However, its simplicity comes
with a price; keywords are fraught with ambiguity and their intended meaning needs to be explored
further (Wang et al., 2008). Over the years, advanced approaches for keyword search over docu-
ments have been proposed to return relevant answers to the user. These approaches, though, don’t
return good results with RDB systems (RDBs), as IR-style search considers tuples as unstructured
data, while in RDBs, the retrieved information is spread among tables. Unlike textual documents,
the tuples are linked through the foreign-primary key constraints. Thus, foreign-primary key paths
connecting tuples that contain keywords, represent an essential ingredient for solving a keyword
query over a database. Defining representation models for databases to retrieve these paths is cru-
cial. For these reasons, the direct application of keyword-based approaches to relational databases,
where information is fragmented in numerous tables, is neither efficient nor effective (Bergamaschi
et al., 2014). Indeed, multiple systems were proposed in the literature, where the most popular
ones are BANKS (Aditya et al., 2002), BANKSII (Kacholia et al., 2005), DBXplorer (Agrawal
et al., 2002), DISCOVER (Hristidis and Papakonstantinou, 2002) and SQAK (Tata and Lohman,
2008) and the most recent one are KEYMANTIC (Bergamaschi, Domnori, Guerra, Trillo Lado, and
Velegrakis, 2011), KEYRY (Bergamaschi, Guerra, Rota, and Velegrakis, 2011) and SEMINDEX
(Chbeir et al., 2014). The objective of these systems is to better cover a keyword query, in order
to return answers that matches the user’s intent. These approaches can be classified into two broad
categories: schema based and tuple-based approaches. The Schema-based approaches model the
database schema as a graph, in which the nodes express database relations and edges express in-
terdependence between primary and foreign keys. Such approaches can fulfill a keyword query by
the use of the schema information to generate SQL queries in RDBs, such as in DBXPLORER,
DISCOVER, PRECIS, SQAK, KEYMANTIC, and KEYRY systems. Tuple-based approaches such
as BANKS and BANKS II, model the database as a data graph, wherein nodes represent the tuples
and edges denote the relationships between a pair of tuples, such as foreign key or primary key de-
pendencies. The particularity of a data graph is that nodes and edges are typically weighted, which
provides users with more information on how the objects are interconnected. KEYMANTIC and
KEYRY tackled the issue of keyword search over RDBs differently; they can provide answers to the
user’s query without the necessity of a prior access to the data stored in the database to build indices
that will locate the tuples.

3 Proposed Solution

The core idea of our approach, called DeepRec, is to combine the keyword search over RDB with
some techniques used in recommender systems. DeepRec aims at integrating some recommendation
and databases concepts to get better personalized answers to a simple keyword-based query posted
by a user. It provides recommendations and serendipitous answers even when no prior access to the
database is allowed, relying on both schema and users information. The different components of the
given approach are detailed below.

- 348 -



H. Ghorbel et al.

3.1 Schema Terms Matching
The first phase named Schema Weight Computation consists in determining which keywords

match with schema terms (attributes, relations) starting from a query and the schema information of
the database. Attributes and relations are considered as metadata. In order to estimate the keyword-
attribute/relation distance, we opted for the Levenshtein measure which computes the minimal num-
ber of insertions, deletions and replacements needed for transforming a string X into a string Y .
However, a simple string similarity between the keyword and the schema term is not enough due to
the heterogeneity of the user’s vocabulary. In fact, a user may use different words that do not figure
in the schema information of the database. For tis purpose, we employ WordNet for Word Sense
Disambiguation (WSD), so that each used keyword is compared to all the synonyms, hyponyms and
hypernyms of every schema term to keep the one having the highest similarity.

The second phase named Schema Weight Personalization consists in updating the Schema Weight
(SW) Matrix by making use of the information gathered from the users’ profiles. The main idea here
is to add the concept of Collaborative Filtering (CF) of the RSs; build profiles for users and use their
search history as well as similar users’ history to personalize results.

We compute the Personalized Schema Weight (PSW) that uses sessions information to update
the SW matrix. Similar sessions are indexed in a table. Then, we calculate how many times every
schema term had the maximum value, for all the queries in the similar sessions. We store the result
of this computation in its specific column in the SW matrix. Each value of this column is combined
with each one in its analogue column in the SW to get the new PSW values in their corresponding
cells. In other words, we weight the values of the SW of each column by a variable that affects the
first values depending on the number of times this column had the maximum value.

Computing the best possible matching of keywords to database terms is known as the assignment
problem. The popular Munkres, a.k.a. Hungarian, algorithm (Munkres, 1957), is a possible solution
to this problem but, it provides only the best matching. Bergamaschi, Domnori, Guerra, Trillo Lado,
and Velegrakis (2011) adapted this algorithm to our context, to not stop after the generation of the top
one mapping, but continue to generate the other best ones. Besides, the weight matrix is dynamically
updated every time a mapping of a keyword to a database term is decided during the calculation.

3.2 Value Weight Contextualization
The Value Weight (VW) matrix computation is performed in the same way as in (Bergamaschi,

Domnori, Guerra, Trillo Lado, and Velegrakis, 2011). The computation is mainly done within the
domain information of attributes. KEYMANTIC used a semantic distance to estimate the relatedness
of two concepts. Thus, every matrix cell in the VW contains a value as an indicator of the eligibility
and suitability of the keyword with the attribute domain. The keywords that have already been
mapped to schema in the previous step will get assigned 0 in every cell of their lines to ensure that
they won’t be recomputed in the VW.

After the computation of the best mapping to schema terms Mi and the value weight matrix, the
VW matrix is updated according the the terms mapped to schema. In keywords queries, a keyword
may refer either to a schema term or to a value in a schema term. We contextualize the value weight
matrix according to terms mapped as schema terms from the PSW, taking into consideration the
keywords positions in the query. The user can use more than one term to describe one concept. The
basic intuition behind our method is to check for each keyword k if it corresponds to any schema
term x from the mapped ones. Then, if k corresponds to a keyword mapped to a schema term x,
two situations may arise: If x is a relation R, we add a weight Ω to all the attributes of R for every
adjacent keywords A(k) ∪ B(k), otherwise, if x is an attribute A of a relation R, we increase the
weights of this attribute and the related attributes (with functional dependencies) by Ω for all A(k)
∪ B(k) keywords neighboring k.

- 349 -



Recommendation-based Keyword Search over Relational DBs

A(k) and B(k) are two functions that retrieve the following and preceding keywords neighboring k
respectively. Ω is a variable, its value is proportional to the distance between keywords. The output
of this step is a contextualized Value Weight Matrix Vj(Mi). Again, we will use the extension of the
Hungarian Algorithm, this time over Vj(Mi), to get the best assignments.

3.3 Generation of the personalized query answers:
The Vj(Mi) with its related Mi is a full matching of the keywords to DB terms, producing

together a new combination named Aij. The score of each combination is the sum of weights of the
Vj(Mi) and its associated Mi.

SQL queries can be achieved with the possession of the first-score combinations. Yet, this latter
just reside on the keywords match to their adequate database terms, without defining the relations
between the terms. Works that process under the same assumption of no prior access to data such
as (Bergamaschi et al., 2011) only consider the similarity between keywords-attributes/domain of
attributes’ similarities, which is not always appropriate. To cope with this limitation, we take advan-
tage of the profiles built by our approach, to personalize the answers. Giving a current user making
a query in his current session, we compute the similarity of this query with all previous queries in all
the sessions using the cosine similarity. The answer that gained interest of the user is credited even
its associated query is fairly similar to the user’s current query.

4 Experimental Evaluation

4.1 Experimental Setup
In our experiments, we used MySQL 5 as the relational database management system and Word-

Net 3.0 1 as a lexical database. We explained the content of the Database to no technical users
without exposing its schema information. We asked them to propose keywords queries and describe
what they expect as answers for their queries. Then, an expert formulates an SQL query for this
purpose. We compared the results generated by our approach with those obtained by the expert. We
used a fraction of the MovieLens 2 100K database. In our tests, 18 users were involved, we group
each user’s queries in a single session. The number of sessions is between 1 and 3 for each user. We
used 105 queries distributed among the users sessions. To evaluate DeepRec, we were based on the
number of keywords and that of sessions. For the initialization, we used the Information_schema
views provided by MySQL which allows to retrieve metadata about objects in the DB.

4.2 Experimental Results and Discussion
Figure 1 shows a comparison between KEYMANTIC and DeepRec in terms of the percentage

of the 1st position answers, the percentage of the not in first position answers and the percentage of
the not found answers which denotes the relevant answers that the system fails to return.

Experiments showed an amelioration in the percentage of the 1st position answers over the not
in first position answers. However, the percentages of the not found answers for both approaches
are quite similar. The results of success rate according to the number of sessions are given in Figure
2. For the number of keywords and its impact on the success rate, we computed the percentage of
answers that were considered as relevant to the users and returned as the first answer while changing
the number of keywords in the query as shown in Figure 2.

1. www.wordnet.princeton.edu
2. www.MovieLens.com

- 350 -



H. Ghorbel et al.

FIG. 1 – Generated Success Rate for DeepRec and KEYMANTIC

We remarked that no changes have been noticed for the not found answers. Some queries can
generate the expected answer, but mostly, not in the first position, except for the ones that have been
‘liked’ before by the user. The variability of the processing times depends on the number of tables
related to the queries. Interesting results are presented for users’ interactions including sessions and
queries. The number of answers responding to users’ expectations has increased. As any CF based

FIG. 2 – Generated Success Rate according to Sessions and Keywords Number

system, the more users we have and the more interactions they make with the system, the better its
performance is. Experiments show that there isn’t an optimal number of keywords. However, the
number of keywords may increase either accuracy or serendipity depending on the terms employed
by the user. The cold start problem of the CF technique is resolved by DeepRec. Furthermore, the
personalization step allows to take into account every result that fits the user’s request. This is very
useful when a user searches an information that has previously sought. However, with KEYMAN-
TIC, regardless the number of times the user interacted with the system, it always recomputes the
answers ignoring what the user is probably expecting.

5 Conclusion

This paper addressed the problem of processing keyword queries over RDBs under the assump-
tion that no prior access to data is possible. Our contribution consists in providing users with per-
sonalized results in this specific context by extending an existing approach with new components
and resources namely, the personalization of the schema weight matrix and the answers, as well as
users and information related to their interactions with the system. Beyond simply returning generic
answers, our findings indicate that DeepRec provides personalized results that better fit the users’
intent. Before the generation of the answers, we took advantage of the current user profile to further
personalize answers based on the CF technique of RSs; favoring an answer already liked by the user.
Providing personalized answers when no prior access to data is possible, makes DeepRec usable in
Web databases and certain systems where building specialized indexes is not a possible option.

- 351 -



Recommendation-based Keyword Search over Relational DBs

References
Aditya, B., G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag, and S. Sudarshan (2002).

Banks: Browsing and keyword searching in relational databases. In Proceedings of the 28th
international conference on Very Large Data Bases, pp. 1083–1086.

Agrawal, S., S. Chaudhuri, and G. Das (2002). Dbxplorer: A system for keyword-based search over
relational databases. In ICDE, pp. 5–16.

Bergamaschi, S., E. Domnori, F. Guerra, R. Trillo Lado, and Y. Velegrakis (2011). Keyword search
over relational databases: A metadata approach. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, pp. 565–576.

Bergamaschi, S., F. Guerra, S. Rota, and Y. Velegrakis (2011). A hidden markov model approach to
keyword-based search over relational databases. In Conceptual Modeling ER 2011, pp. 411–420.

Bergamaschi, S., F. Guerra, and G. Simonini (2014). Keyword search over relational databases: Is-
sues, approaches and open challenges. In Bridging Between Information Retrieval and Databases,
pp. 54–73.

Chbeir, R., Y. Luo, J. Tekli, K. Yetongnon, C. R. Ibanez, A. J. Traina, C. Traina Jr, and M. Al Assad
(2014). Semindex: Semantic-aware inverted index. In Advances in Databases and Information
Systems, pp. 290–307.

Hristidis, V. and Y. Papakonstantinou (2002). Discover: Keyword search in relational databases. In
Proceedings of the 28th international conference on Very Large Data Bases, pp. 670–681.

Kacholia, V., S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar (2005). Bidirec-
tional expansion for keyword search on graph databases. In Proceedings of the 31st international
conference on Very large data bases, pp. 505–516.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the
Society of Industrial and Applied Mathematics (1), 32–38.

Tata, S. and G. M. Lohman (2008). Sqak: doing more with keywords. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp. 889–902.

Wang, H., K. Zhang, Q. Liu, T. Tran, and Y. Yu (2008). Q2semantic: A lightweight keyword
interface to semantic search. In The Semantic Web: Research and Applications, pp. 584–598.

Résumé
Récemment, la recherche par mots-clés dans les bases de données relationnelles a suscité un in-

térêt grandissant en raison de sa facilité d’utilisation. Bien que des recherches approfondies fussent
dernièrement effectuées dans ce contexte, la plupart de ces recherches non seulement nécessitent un
accès préalable aux données, ce qui restreint leur applicabilité si cette condition n’est pas vérifiée,
mais aussi renvoient des réponses très génériques. Cependant, fournir aux utilisateurs des réponses
personnalisées est devenu plus que jamais nécessaire en raison de la surabondance de données qui
peut déranger l’utilisateur. Le défi de retourner des réponses pertinentes et personnalisées qui satis-
font les besoins des utilisateurs demeure. Inspiré par l’application réussie de la technique de filtrage
collaboratif dans les systèmes de recommandation, nous proposons une nouvelle approche basée
sur les mots-clés pour fournir aux utilisateurs des résultats personnalisés basés sur l’hypothèse que
seulement une information sur le schéma de la base de données est disponible.

- 352 -


