Dynamic User-Oriented Role Based Access Control Model
(DUO-RBAC)

Hazem Kiwan * and Rashid Jayousi **

* Department of Computer Science, Al-Quds University
roone.hazem @ gmail.com

** Department of Computer Science, Al-Quds University
rjayousi @staff.alquds.edu

Abstract. Most researchers use role mining to generate role-based access con-
trol model from the existing user-permission assignments. User-oriented role-
based access control model is a type of role-based access control model, which
aims to use role mining from an end-user perspective to generate an RBAC
model. This research is the first for generating a dynamic user-oriented role-
based access control model for inserting a new user-permission assignments to
the existing model re-generating roles, with a constraint that there are no changes
in the number of role assignments for each user in the system after the insertion
process, since the user will be conflicted if he has different number of roles
from time to time. Also, we have developed a new algorithm, which based on
user-oriented role mining to find the way to insert the new U P A to the existing
model. Our experiments applied on benchmark "Access Control" real datasets
to evaluate the results.

1 Introduction

Role Based Access Control (RBAC) is a type of access control models (permission models)
that allows authorized users to do their tasks and perform their actions while they are browsing
their system. The permissions of users in the RBAC model are fetched through role mining
to generate roles based on existing user permission assignments. Then, the permissions are
assigned to corresponding roles and roles are mapped to the users of the system.

The key idea of role mining is to utilize the data mining technologies to discover a good
role set of permissions which are existing in user-permission assignments of the old access
control system. The discovered roles are then applied to the system through the activities
of the corresponding users (Lu et al. (2015)). In short, the existing studies investigate the
concept of role mining in different objectives, such as minimization the administrative cost,
minimization of the number of roles, minimization of the complexity of the role hierarchy
structure introduced by Molloy et al. (2008), security administration like (Kuhlmann et al.
(2003)), and user-oriented role mining.

There are different algorithms that use role mining to generate user-oriented role-based
access control model (UO-RBAC) from existing user-permission assignments in the system.

-281-

Dynamic User-Oriented RBAC Model

But there aren’t any dynamic algorithms that take into account whether we have new users with
new permissions (new user-permission assignments U P A) that join the system after the model
is generated (Don’t have a dynamic model which depends on a dynamic algorithm to insert
those new U P A to the generated model in the system). However, the only two ways to insert
the new user-permission assignments U PA to the generated model in the system without a
dynamic algorithm are:

1. Add the new U PA to the original dataset which contains the existing user-permission
assignments before generating the model, then rerun the algorithm to the dataset (af-
ter adding the new U P A) to generate a new optimal user-oriented RBAC model. The
problem of this solution is when the model is regenerated, we would have a new user-
role assignments for each user and a different number of role assignments for some
users, in this case, the user will be conflicted when the number of his/her role assign-
ments change from time to time. So, the main concept of generating the model from
perspective will not be available.

2. Assign all the permissions for each new user to a new role, then assign this role for the
user that contains his/her permissions (each user from the new users will be assigned
to one role which contains his/her permissions). The problem with this solution is that
the total number of roles and the total number of user-role assignments are not optimal.
So, in this case, we do not have an optimal user-oriented RBAC model.

In this work we aim to build a dynamic user-oriented RBAC model to insert the new users
with their permissions (new U PA) to the existing user-oriented RBAC model by a dynamic
algorithm with Making sure that after the insertion process we will still have the following:

— A user-oriented role-based access control model.

— There are no changes in the number of role assignments for each user in the system
after the insertion process, since the user will be conflicted if he has different number
of roles from time to time.

This research is conducted through the following: Chapter 2 a quick through about pre-
vious works on role engineering, role mining, role-based access control, and user-oriented
role-based access control. Chapter 3 describes our proposed dynamic user-oriented RBAC
model (DUO-RBAC) and dynamic user-oriented RMP algorithm. Chapter 4 experiments on
access control data sets and analysis of results. Chapter 5 concludes the work.

2 Related Work

"Role Engineering is a security-critical task for systems using role-based access control
(RBAC)" (Frank et al. (2008)). Coyne (1996) introduced role engineering concept to find a
correct and a complete architecture structure to generate a business function and organization’s
security policies. They used a top-down process-oriented strategy to produce and generate
roles. They also introduced role engineering which is used for role-based access control as the
process of defining roles, permissions, constraints, and role-hierarchies (Frank et al. (2008)). In
this research, the authors applied a novel scenario-driven role engineering process to introduce
and generate roles in different case studies. The bottom-up approach for role engineering was
used in (Ene et al. (2008)) to find a set of roles (R), with a set of user-role assignments (U)A
and role-permission assignments (PA).

-282-

H. Kiwan and R. Jayousi

Le et al. (2012), introduced the concept of role mining to enhance one of the existing
access control models. The authors use an existing algorithm and apply it to the RBAC model.
This algorithm depends on the data mining concept. It also studies the behavior of the end-user
to determine the perfect algorithm they used. However, Ene et al. (2008), the authors used a
Lattice algorithm to minimize the number of the roles that each user has with the same per-
missions. The authors formulate several role engineering problems that introduced by Vaidya
et al. (2007) to develop an optimal algorithm. Ma et al. (2010), added a weight to the role
mining process. The focus of their research was given a weight for permissions to reflect their
importance to the system, they assigned each permission to a weight in feasible ways. They
also used a matrix to present the relationships between the user and the permissions within
the system, then they calculated the similarities and found out how to define the weight for
permissions based on this similarities. There are two limitations to these researches. The first
limitation is to generate a role-based access control model by using role mining for the exist-
ing user-permission assignments without taking into account if there are new users with new
permission needed to insert to the system after generating the model. Second, they focused
on generating the model with a minimum number of role and role-permission assignments to
reduce the complexity of role hierarchy and reduce the administrative cost on the system. On
the other hand, our study focuses on implementing a new dynamic role-based access control
model based on the user-oriented concept and role mining concept. Also, this research is using
a new dynamic algorithm to insert the new users with their new permissions to the system after
generating the model.

The concept of user-oriented role-based access control was introduced by Kuhlmann et al.
(2003). This research was the first and only research (as they mentioned) that used user-
oriented role mining to define role mining from a user’s perspective. Their study depends on
generating a user-oriented RBAC model by assigning each user in the system to as few as
possible roles; since the user does not prefer to being overwhelmed by assuming too many
roles. In the fact, each user would wish to have only one role assign to him/her, and it provides
the all necessary access privileges related to his/her work and function smoothly. Actually,
the most organization’s systems had been designed that way. For example, in a healthcare
system, each employee carry only one role, either MANAGER, ACCOUNTANT, PATIENT
or DOCTOR. So, user-oriented role mining is characterized by the fact that the maximum role
assignments for each user (defined as ¢) should be constrained. The authors used the concept
of role mining to sparse user-role assignments, then they developed a user-oriented exact role
mining problem (RMP) algorithm to generate a user-oriented role-based access control model
from the existing user-permission assignments U PA in the system. They defined constraints
to their algorithm while generating the model such as: using user-oriented role mining problem
to finding the minimum number of roles from the candidate roles, completely reconstruct the
existing user-permission assignments, and no user can have more than ¢ roles (¢ defined at the
beginning of their algorithm). Their experiment is conducted on a benchmark access control
datasets. Then, the generated model contains total number of roles | R|, total number of role-
permission assignments |PA|, and the total number of user-role assignments |U A| for each
dataset, the number of direct user-permission assignments |UPA|, and the number of edges
in the reduced role hierarchy |t,.educe(RH)|. Those five main factors can be used to evaluate
the feasibility of an RBAC model as mentioned in (Neumann and Strembeck (2002)). But
in the case of user-oriented RBAC model, they used the first three factors to evaluate their

-283-

Dynamic User-Oriented RBAC Model

model since no further exposition is needed on them. Also, they applied a weighted structural
complexity measure introduced in (Neumann and Strembeck (2002)) added extra evaluative
criteria to evaluate the model.

minw, * |[R| + MUA| — A xt

1

This objective function was developed by Kuhlmann et al. (2003) depends on using user-
oriented exact role mining problem (RMP). It can be affected by a number of roles, a number
of user-role assignments and the weight for each role in the model. We must get the optimal
number of roles and user-role assignments to make the objective function minimized. Now,
the question here is "how did they get this objective function?’. Suppose we have n permis-
sion, m users, user-permission assignments U P A,,,..,,, and positive number ¢, and we will use
all these data to discover user role assignments and role set P Ay, and user-role assignment
U A,z under constraints that total number of roles & minimized, user-role assignments and
role-permission assignments completely reconstruct the existing user-permission assignments,
and no user has more than ¢ roles. Kuhlmann et al. (2003) Described those constraints mathe-
matically by the following functions:

min k

. . 2
UA <tV
s.t. Zj (Za]) >, Ve
UA € {0, 1}mxk7PA c {0) 1}kacn
min [R|+ > Xi(D UAG,j) - t)
i J 3

Where is A; the Lagrange multiplier for the constraint of ;U A, j) <t

Further, we could assume that all Lagrange multipliers have the same value of A (Kuhlmann
et al. (2003)). Then we will have the objective function as shown in the equationl. More de-
tails in (Kuhlmann et al. (2003)). However, the only one limitation in this research is withered
we need to add new users with their permissions (new user-permission assignments) to the
system which already has a generated user-oriented RBAC model. In this research, there are
only two existing solutions. Compare to our approach, our solution is dynamic user-oriented
role-based access control. We developed a dynamic algorithm depends on user-oriented role
mining to add these new user-permission assignments to the existing model without using any
of the two previous solutions. In this case, we will make sure that the total number of roles and
the total number of user-role assignments in the model after the insertion process minimized,
no user have roles more than ¢ that predefined in the existing model, and we also keep the
RBAC model suitable for user’s perspective.

-284-

H. Kiwan and R. Jayousi

3 DUO-RBAC Model

This chapter describes our proposed dynamic user-oriented role-based access control
model (DUO-RBAC) and dynamic user-oriented RMP algorithm. DUO-RBAC is a model
for inserting new users with their permissions to the system which already has a generated
user-oriented RBAC model. Our model uses dynamic RMP algorithm to insert those new
users with their permissions to the system.

3.1 DUO-RBAC Model Overview

The first step for or generating a dynamic user-oriented role-based access control model
is having an existing generated user-oriented RBAC model and a list of new users with their
permissions U PA that needs to be added to the model. Then, those two sections will enter
into a dynamic user-oriented RMP algorithm. Finally, a new user-oriented RBAC model will
be generated which contains the new users and their permissions.

After the model is generated, each user in the system is assigned a number of roles that
don’t exceed t (Lu et al. (2015)). Also, each role is assigned to one or more permission in
the system. The result is that the new users with their permissions are in the system without
changing any existing assignments in the existing model before running our model. Through
this method, each old user in the system still has the same role assignments and each new user
joining the system has new assignments to an existing role or to a new role which is generated
through the insertion process.

3.2 Dynamic User-Oriented RMP Overview

The algorithm that we use in DUO-RBAC Model is called dynamic user-oriented RMP.
Our dynamic algorithm is the first algorithm to insert new users with their permissions to an
existing user-oriented RBAC model. It introduces an optimal way to insert all users and their
permissions to the existing user-oriented RBAC model. It also covers all possible cases when
we add those new users. Our dynamic algorithm depends on the concept of dynamic role
generation (Vaidya et al. (2006)). It focuses on the new U P A dataset (users with their per-
missions) and the existing user-oriented RBAC model. It inserts user one by one to the system
with an optimal way to keep the increasing number of roles and user-role assignments U A
perfectly. It also makes sure that the constraint of users not being assigned roles that doesn’t
exceed ¢ is achieved (Lu et al. (2015)). The dynamic user-oriented RMP, is an algorithm to
insert a new U P A dataset to the existing user-oriented RBAC model that is generated from
running user-oriented exact RMP algorithm on the old dataset, and finding the optimal final
number of roles and user-role assignments the constraint of not having users assigned to roles
that don’t exceed ¢ (Lu et al. (2015)).

3.3 Dynamic User-Oriented RMP Structure

In the beginning, and before describing our algorithm, we apply a preprocessing step to
remove the all users that have the same permissions, then replace them by one user to reduce
the size of the new dataset that will enter the model. This step is applied to other role mining

-285-

Dynamic User-Oriented RBAC Model

algorithm, such as (Molloy et al. (2010)). The following example shows how to apply the
first preprocessing step on the new dataset.

Algorithm 1: Preprocessing step algorithm

1 Input: UPA
2 Output: UPA’
3 ifYUPA, € UPAs.t.UPA; ¢ UPA’ then
4 | UPDATE UPA’ by adding UPA;;
5 end

pl p2 p3 p4 p5 pb
ul 1 0 1 0 1 1 pl p2 p3 p4 p5 pb
w2 1 1 0O 0 0 0 w2 1 1 0 0 0 O
ul3 1 1 0 1 0 0 ud 1 1 1 0 1 0
ud 1 1 1 0 1 0 us 1 1 0 1 0O O
us 1 1 0 1 0 0 u6 1 0 0 0 0 1
u6 1 0 0 0 0 1 u7 0 1 0 0 1 1
u7 0 1 0 0 1 1 ug§ 1 0 1 0 1 1
u8 1 0 1 0 1 1

TAB. 2: Remaining (UPA)
TAB. 1: Existing (UPA)

If we take a look on tablel, we will note that u1 has the same permissions that u8 has and u3
has the same permissions that u5 has. So, in this state, we will replace the two users in each
case by one user, in this way we reduced the size of the dataset by deleting two users. table2
shown the remaining U P A.

The structure of our dynamic algorithm depends on entering the new users one by one
to the model, then finding the optimal way to assign this user to an existing role or generate
a new role then assigns this user to it. In the process of our algorithm we are making sure
that all user-role assignments for each user in the existing user-oriented RBAC model do not
change, have an optimal final number of roles (R), user-roles assignments (U A), and achieve
the constraint that there aren’t any users assigned roles that don’t exceed ¢ (Lu et al. (2015)).
In our algorithm, the new users with their permissions are entering one by one. The inputs of
our algorithm are: UPA, UPA;, t, UA and PA. And the outputs of our algorithm are: U A
and PA.

The first step of our algorithm is to compare user’s permissions with role-permission
assignments and check if the user has a permission that is not covered by any role. In this
case, the algorithm creates a role which contains those all permissions and assigns this role
to a user, this step also applied in (Lu et al. (2015)). If all user’s permissions are covered by
roles, then our algorithm creates a combination of candidate roles. It focuses on the existing
role-permission assignments and checks if there is a role assigned to permissions and the new
user partially or entirely has those permissions (role is not assigned to any other permissions),
then add these role-permission assignments to a combination as a candidate role.

-286-

H. Kiwan and R. Jayousi

Algorithm 2: Dynamic user-oriented RMP algorithm

1 Input: UPA,UPA;, PA,UA,t
2 Qutput: PA,UA

3ifdp’ € UPA; s.it.p' ¢ (Pin PA) then
4 Vp' € UPA;, r+ {r,p};

5 UPDATE P A by adding r;
6
7
8
9

UPDATE U A4;

end

else

VPA; sit. PA;JUPA; = ¢, CRoles < {CRoles, PA;};
10 YV CRoleSet = {CRoles; TO CRoles;}

s.t. CRoles; N CRoleso N..NCRoles; = ¢,
Combinations < {Combinations, CRoleSet};

1 if 3 Combinations; s.t. UPA;/Combinations; = ¢
AND |Combinations;| < t then

12 | UPDATE U A by adding Combinations;;

13 end

14 else

15 YUPA; € UPA, s.t. UPA;/Combinations;;

16 CRoles < {Combinations;,UPA} in UPA;/Combinations;
s.t.|P|is min AND |CRoles| < t;

17 UPDATE P A by adding r;

18 UPDATE U A by adding C Roles;

19 end

20 end

After that, we will have a combination of candidate roles which the new user may be assigned.
After we have a combination of candidate roles, the algorithm checks if we can create a set
of candidate roles from the combination. In this case, we have two constraints: The num-
ber of candidate roles that doesn’t exceed ¢, and those candidate roles cover completely all
permissions for the new users. If those two constraints are applied, the algorithm assigns the
new user to this candidate role without creating any new roles for the new user. The last step
is applied if none of the previous steps cover the current user. This step is applied if one of
the following two cases is valid. First, if we cannot find a set of candidate roles from the
combination to completely cover all new user’s permissions (the user still has uncovered per-
missions). Second, if the number of candidate roles in the set that completely cover all new
user’s permissions that don’t exceed ¢. In these two cases, the algorithm creates a new role to
include the uncovered permissions, the user should be assigned to some of the candidate roles
in the set, but the question here: What candidate roles the algorithm will choose? To answer
this question, first, we studied some of the strategies that are used to choose a candidate role
such as, (Lu et al. (2015)), (Ene et al. (2008)), and (Molloy et al. (2010)). After we have tried
each strategy separately on our algorithm, we found that all of them do not work well in our
case. So, we used an alternative strategy: we choose to make the selection of candidate roles
dynamically, it depends on what uncovered permissions will be left to utilize the created role
which includes these left permissions on the assignments for the remaining users. Using this

- 287-

Dynamic User-Oriented RBAC Model

method, the new user is guaranteed to have all the uncovered permissions, and we reduce the
amount of role creation in the system. Finally, we will assign the user to the created roles and
to the candidate roles that have been chosen from the list.

4 Experiments and Results

Our experiments applied on benchmark "Access Control" real datasets, those datasets are
apj, domino, cassmall, healthcare, firewalll and firewall2. All those datasets are col-
lected by (Ene et al. (2008)). Table 3 shows the data description for each dataset that includes
number of users, number of permissions and number of user-permission assignments.

Dataset |U| | P| |[UPA|
apj 2,044 1,164 6,841
domino 79 231 730
cas_small 3,477 1,587 105,205
healthcare 46 46 1,486
firewalll 365 709 31,951
firewall2 325 590 36,428

TAB. 3: Datasets Description

To validate the results after the experiments, we depend on an objective function. Because we
are working on generating the model from an end-user perspective, the final RBAC model that
generated after inserting new users with their permissions must be user-oriented.

Our experiment divided into three major steps. The first step we running user-oriented
exact RMP on the existing real datasets to generate user-oriented RBAC model which contains
roles, user-role assignments and role permission assignments as in (Lu et al. (2015)). After that,
use these components to get the optimal results by using the objective function. The second
step, we removed some users and their permissions from those datasets to have remaining
data less than the original, then running user-oriented exact RMP on those remaining data to
generate its user-oriented RBAC model and get the value from the objective function. The
result of the objective function in this step should be optimal in case user-oriented, because
we used user-oriented exact RMP, after that, we are now having a user-oriented RBAC model,
and also we have new users and their permission (the removed users from datasets). The final
step, inserting the new users (removed users) and their permissions to the existing user-oriented
RBAC model to generate the final model. Note that, the number of roles, user-role assignments
in the final model should be approximately the same as in the model that generated in the first
step (before removing users), also, the roles assignments for each existing user in the model
must not change (still the same as before inserting users).

Tables below show the results that we got after running user-oriented exact RMP algo-
rithm on benchmark.

t R UA UA+PA
2 18 46 545
3 18 53 468

t R UA UA+PA
2 23 79 716

TAB. 4: Domino TAB. 5: healthcare

- 288-

H. Kiwan and R. Jayousi

R UA UA+PA
90 365 7100
85 454 6890
84 600 6879
80 1516 6638

R UA UA+PA
564 2044 5565
497 2218 5221
485 2277 5096

W N -
0 O\ B |+

TAB. 6: apj TAB. 7: firel

After deleted a random number of users from each dataset and generated a user-oriented RBAC
model without the deleted users by running user-oriented exact RMP algorithm. Tables below
show the results that we got when running dynamic user-oriented RMP algorithm to insert the
deleted to the existing user-oriented RBAC Model. Also, the tables show that the number of
roles (R) inversely proportional with the value of ¢, since the minimum number of R was in a
case that ¢ is maximized, and the maximum number of R was in a case that ¢ minimized. On
the other hand, the number of user-role-assignments (U A) directly proportional with the value
of ¢, since the minimum number of U A was in a case that is minimized and the maximum
number of U A was in a case that ¢ is maximized.

t DU R UA UA+PA
t DU R UA UA+PA 2 10 18 46 545
2 15 23 79 716 3 10 16 53 481
2 22 23 79 716 2 14 18 46 545
3 14 15 58 490
TAB. 8: Domino
TAB. 9: healthcare
i DU R UA UA+PA t DU R UA UA+PA
2 25 90 365 7100
2 50 563 2050 5596
6 25 80 605 6936
3 50 495 2221 5240
4 50 480 2284 5149 2 36 90 366 7102
6 36 82 605 6938

TAB. 10: apj TaB. 11: firel

5 Conclusion

In this work, a dynamic user-oriented role-based access control model (DUO-RBAC) was
designed, and a dynamic user-oriented RMP algorithm was developed. The DUO-RBAC is a
complete model aimed to insert the new user-permission assignments (new U P A) to the exist-
ing model by using the dynamic algorithm to the existing model under two constraints which
make our designed model more efficient than the existing ways. Also, we discussed the only
two ways to insert the new user-permission assignments (U PA) to the generated model and
introduced the limitations for each one in a different case. Compare to our work, the devel-
oped algorithm achieved the optimal total number of roles and total user-role assignments in
the generated model after the insertion process. Our experiments based on using a benchmark
access control datasets. To validate our returned results, we can make a comparison between
them and the results in (Lu et al. (2015)). The number of user-role assignments in the dynamic

-289-

Dynamic User-Oriented RBAC Model

model at each dataset was less than the original one, and the number of roles is equal to or more
than the original one. By using this method, the evaluating function still has the same value in
each case which is the optimal value in case user-oriented. Also, our experiment makes sure
that each user in the system still has the same number of role assignments which achieve and
keep the model in the system user-oriented.

References

Coyne, E. J. (1996). Role engineering. In Proceedings of the first ACM Workshop on Role-
based access control, pp. 4. ACM.

Ene, A., W. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan (2008). Fast exact
and heuristic methods for role minimization problems. In Proceedings of the 13th ACM
symposium on Access control models and technologies, pp. 1-10. ACM.

Frank, M., D. Basin, and J. M. Buhmann (2008). A class of probabilistic models for role en-
gineering. In Proceedings of the 15th ACM conference on Computer and communications
security, pp. 299-310. ACM.

Kuhlmann, M., D. Shohat, and G. Schimpf (2003). Role mining-revealing business roles for
security administration using data mining technology. In Proceedings of the eighth ACM
symposium on Access control models and technologies, pp. 179-186. ACM.

Le, X. H., T. Doll, M. Barbosu, A. Luque, and D. Wang (2012). An enhancement of the role-

based access control model to facilitate information access management in context of team
collaboration and workflow. Journal of biomedical informatics 45(6), 1084—1107.

Lu, H, Y. Hong, Y. Yang, L. Duan, and N. Badar (2015). Towards user-oriented rbac model.
Journal of Computer Security 23(1), 107-129.

Ma, X., R. Li, and Z. Lu (2010). Role mining based on weights. In Proceedings of the 15th
ACM symposium on Access control models and technologies, pp. 65-74. ACM.

Molloy, I., H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo (2008). Mining
roles with semantic meanings. In Proceedings of the 13th ACM symposium on Access
control models and technologies, pp. 21-30. ACM.

Molloy, I., H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo (2010). Mining
roles with multiple objectives. ACM Transactions on Information and System Security
(TISSEC) 13(4), 36.

Neumann, G. and M. Strembeck (2002). A scenario-driven role engineering process for func-
tional rbac roles. In Proceedings of the seventh ACM symposium on Access control models
and technologies, pp. 33-42. ACM.

Vaidya, J., V. Atluri, and Q. Guo (2007). The role mining problem: finding a minimal de-
scriptive set of roles. In Proceedings of the 12th ACM symposium on Access control mod-
els and technologies, pp. 175-184. ACM.

Vaidya, J., V. Atluri, and J. Warner (2006). Roleminer: mining roles using subset enumera-
tion. In Proceedings of the 13th ACM conference on Computer and communications secu-
rity, pp. 144-153. ACM.

-290-

