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Abstract. In this paper we consider the k-minimum spanning tree problem that
generalizes the famous minimum weight spanning tree problem which is one of
the major classes of combinatorial optimization problems. We propose an ap-
proach for solving this problem based on the Simulated Annealing algorithm.
The performance of the proposed method is compared with existing metaheuris-
tics using the well-known benchmark instances KCTLIB.

1 Introduction
In this paper we are interested in solving one of the well known combinatorial optimization

problems: The k-minimum spanning tree problem (k-MST). The objective is to find a subtree
with exactly k edges in an edge-weighted graph G = (V,E), such that the sum of the weights
is minimal. The combinatorial optimization model was introduced at first by Hamacher et al.
(1991) for the relinquishment of petroleum licenses. It was demonstrated that the k-MST prob-
lem is NP-hard and it is very difficult to solve problems that can be formulated as a k-MST
within a reasonable time (Fischetti et al., 1994; Ravi et al., 1996). In the literature, there have
been several local search methods based on metaheuristic algorithms proposed for solving the
k-MST problem. In 2005 Blum and Blesa (2005) suggested three metaheuristics: evolutionary
computation (EC), ant colony optimization (ACO) and tabu search (TS). They compared their
performances through benchmark instances KCTLIB and showed that an ACO approach is the
best for small cardinality, whereas TS is the best for large cardinality. In 2012, a new hybrid
algorithm that combines TS and ACO is provided by Katagiri et al. (2012). The purpose of
the present paper is to offer new method for solving the k-MST problem. We propose an ap-
proximate approach to solve the problem of k-MST based on the simulated annealing (SA)
algorithm. We were motivated by the fact that the SA algorithm was proposed to solve the
problem of the generalized minimum spanning tree problem (Pop et al., 2007).However, to our
knoledge, there is no previous work using SA algorithm to tackle the k-MST. Our primary fo-
cus was on developing an algorithm capable of producing solutions of high quality. Results of
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numerical experiments through the same benchmark instances show that the proposed method
updates some of the best known values with a very short time and that the proposed method
provides a better performance with solution accuracy over existing algorithms. The paper is
divided as follow: In the next section we present the problem statement. The components
and outline of the SA algorithm is described in Section 3. In Section 4 we report results of
the computational experiments on the benchmark instances KCTLIB, a library for the k-MST
maintained by C. Blum and M. Blesa, which was obtained directly by contacting via e-mail
with the author M.J Blesa (Blum and Blesa, 2005) and we compare the results of our approach
with those of existing methods. Finally, some concluding remarks and future work are given
in Section 5.

2 Problem definition
Given a graph G = (V,E), where V is the set of vertices and E is the set of edges. A

subgraph T of G is called a spanning tree (ST) if it covers all the vertices of the graph, is
connected and has no cycle. A k-spanning tree (k ≤ |V | − 1), denoted by Tk,is a connected
subgraph of G with k edge and has no cycle. When k ≤ |V | − 1, we get a spanning tree. The
set of all possible k-spanning trees is denoted byXk. Then a k-MST problem can be expressed
as:

Minimize
∑

e∈E(Tk)
w(e)

subject to Tk ∈ Xk

where E(Tk) denotes the set of edges of Tk and w(e) is the weight of the edge e. The problem
is to seek a k-spanning tree with the minimum sum of weights. In case of small problem size an
optimal solution can be found after enumerating all possible k-spanning trees in a given graph.
If the size of the problem is not so large, some exact solution algorithm such as a branch and
bound method (Cheung and Kumar, 1994) and a branch and cut algorithm (Freitag, 1993) can
solve the problem. However, it has been shown that the k-MST problem is NP-hard even if
the edge weight is in 1, 2, 3 for all edges, or if a graph is fully connected. The problem is
also NP-hard for planar graphs and for points in the plane (Ravi et al., 1996). Therefore, it is
necessary to build efficient approximate solution methods based on metaheuristic approaches
that are very useful to find an approximate optimal solution in a reasonable time.

3 Proposed approach

3.1 Simulated annealing
SA is a metaheuristic algorithm inspired by thermodynamics which was described for the

first time by Scott Kirkpatrick et al. (Kirkpatrick et al., 1983) in 1983, to solve a huge number
of combinatorial optimization problems. SA algorithm is a local search algorithm which has
been widely used in discrete and continuous optimization problems. At first, SA algorithm was
mainly used in combinatorial optimization fields, such as the problem of the travelling sales-
man (Lam et al., 2013), quadratic assignment problem (Ghandeshtani et al., 2010) and vehicle
routing problem (Alrefaei et al., 2013) etc. Recently, researchers apply it in constrained and
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multi-criteria optimization problems (Robini and Reissman, 2013; Liu et al., 2014). The basic
concept of SA, which is a neighborhood search method, is to explore the space of solutions
by moving, at each iteration, from a solution x to the best solution in its neighborhood N(x).
First, we begin by describing the structure of the neighborhood of a fusible solution used in
our approach, and subsequently we will describe the main component of this approach.

3.2 The neighbourhood structure
In order to move systematically through the search space, the possible move from one

solution to another is restricted by the neighborhood structure chosen. The neighborhood of
a solution Tk is the set of k-ST formed by removing one edge from Tk and changing it by
another edge of G which does not belong to Tk. To illustration the neighborhood structure, we
consider an example of a tree with 7 edges in figure 1. The 7-ST is represented by the set of
edges: (1,2),(2,3),(3,6),(6,5),(5,4),(6,9),(9,8). Figure 2 shows an element of the neighborhood
of the 7-ST in figure 1, where the edge (3,6) is changed by the edge (2,5). In our move we
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FIG. 1: A 7-ST in a graph of 12 vertices.
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FIG. 2: A neighborhood element of the original 7-ST.

randomly choose an element from the neighborhood of the k-ST as follows: first, we randomly
select an edge from the current k-ST to be deleted from Tk, then we randomly select an edge
from the graph G which is part from the current k-ST, to be added to Tk.

3.3 The SA component
The algorithm is a single-solution algorithm based on the hill climbing method, that to

avoid the problem of stagnating in local optima. SA accepts with a certain probability worse
solutions. The algorithm begins with an initial solution generated using a constructive method
such as the Prim algorithm. In each iteration, a solution from the neighborhood is chosen
depending on a predefined neighborhood structure and evaluated using a fitness function. If
the move improves the current solution, that is the selected solution is better than the cur-
rent one, so it is accepted; otherwise it is accepted with a certain probability determined by
the Boltzmann probability P = exp(θ/T ), where θ is the difference between the fitness of
the current solution and the selected one, and T is a controller parameter called the tempera-
ture, which periodically decreases during the search process according to the cooling sched-
ule chosen. We have chosen to use the geometric cooling schedule method because it is the
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most common(Dreo et al., 2003). The temperature is decreased as follow: T = α ∗ T (with
0.8 < α < 1), where α is the cooling factor. The cooling process should be carried out cau-
tiously(A. Dowsland, 1995). The temperature is decreased during the search process not at
each move but after a certain number of moves, we denote TEMP_RANGE the number of
iterations that the search performs at a particular temperature. The algorithm stops only if the
best found solution does not improve during a certain number of levels of temperature that we
noteMAX_TEMP_LEV EL. In the absence of general theoretical results that can be really
exploited, the user cannot escape from an empirical adjustment of SA parameters, so there are
no choices of SA parameters that will be good for all problems, and there is no general way to
find the best choices for a given problem.

3.4 Restart strategy
In the literature authors suggested many implementations for the restarting strategy, see

for instanceYu et al. (2017) . The restart mechanism used in our approach is very simple and
effective. The algorithm restarts only if the current best solution has not been improved for
a fixed limit time given as a parameter that we note MAX_TIME_RESTART . Once the
algorithm restarts, the current temperature is reset to the same temperature recorded when the
best solution was found, and the current solution is replaced by the best one.

3.5 Proposed SA algorithm
The outline of the proposed algorithm is as follows:
— Step 1: Initialization of parameters

1. Set the cooling factor α,

2. Set the initial temperature T0,

3. Set the number of iterations per temperature level TEMP_RANGE,

4. Set MAX_TEMP_LEV EL,

5. Set MAX_TIME_RESTART .

— Step 2: Generate the initial solution Select a vertex in a random way, and then contin-
uously apply the well-known Prim method until a k-subtree is built.

— Step 3: Local search procedure
- Repeat until MAX_TEMP_LEV EL,

1. Repeat TEMP_RANGE times the following instructions:
- Randomly generate a neighbor solution using the neighbor structure as previously
described.
- Calculate the fitness of the current solution θ1.
- Calculate the fitness of the random selected solution θ2.
- Calculate the acceptance probability (Boltzmann probability): θ = θ2 - θ1
If θ<0 then the selected solution becomes the current solution;
Otherwise, the selected solution becomes the current solution with a probability
equal to exp(−θ/T ), where T is the current temperature.

2. If MAX_TIME_RESTART is reached then launch the restart strategy as described
above, otherwise decrease the temperature using the geometric cooling schedule.
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3.6 Computational results

In this section, experiments were carried out by using two kinds of graphs from the well-
known benchmark instances KCTLIB, in order to compare our results with those obtained
from different methods available in the literature. To show the competitiveness of the proposed
approach, we compare the results obtained with:

— Two solution algorithms proposed by Blum and Blesa (2005), namely TS algorithm
and ACO algorithm that we denote TSB and ACOB, respectively;

— The hybrid solution algorithm proposed by Katagiri et al. (2012) , that we denote Hy-
bridK.

The proposed algorithm are coded in C programming language and tested on a computer with
a processor Intel(R)Core(TM)i5 − 2450M, 2.5 ∗ 2.5gigahertz and 4 gigabyte of RAM.
The parameter settings of TS and ACO used in our approach are the same as ones provided by
Blum-Blesa and Katagiri et al. for all the experiments. We have run our algorithm ten times
on four graphs taken from the well-known benchark instances KCTLIB used by the authors in
Blum and Blesa (2005). Table 1 shows the characteristics of these four graphs. We compute

Graph Name Type Vertices number Edges number Average vertex degree
1 bb45x5_1.gg grid 225 400 3.55
2 bb45x5_2.gg grid 225 400 3.55
3 1000_4_01.gg regular 1000 2000 4
4 g400_4_05.g regular 1000 2000 4

TAB. 1: Characteristics of the four graphs.

the best, mean and worst objective function values for each proposed approach. It should be
stressed that the parameter settings of SA has been adjusted empirically, and we give below
the list of these parameters:
- T0: initial temperature.
- Tf : minimal temperature, when it is reached the algorithm should be stopped.
- α: cooling factor set to 0.9.
- TEMP_RANGE: number of iterations per temperature level.
- MAX_TIME_RESTART : This parameter represents the maximum time after which the
algorithm should be restarted.
- MAX_TEMP_LEV EL: This parameter plays the role of a stopping criteria, if the best
found solution does not improve during a certain number of levels of temperature then the
process should be stopped.
Tables 2 and 3 describe the values of each SA parameter for tackling the grid graphs 1 and
2 and the regular graphs 3 and 4, respectively, for several cardinalities. This choice of cardi-
nality values was done in order to have a reasonable comparison between our algorithm and
the existing ones, and because we already have the values of the objective function of these
cardinalities in Katagiri et al. (2012). Tables 4- 7 show the results of the proposed approach
for grid graphs 1 and 2 and regular graphs 3 and 4, respectively. In this tables, SA denotes
our proposed algorithm; HybridK denotes the hybrid TS and SA algorithm of Katagiri et al.
(2012) ; TBS and ACOB denote, respectively, the AC and TS methods implemented by Blum
and Blesa (2005). Values of the objective function written in bold-faced means that are best
among all values obtained, so far, by the four algorithms. BNV represents the best new values
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k T0 Tf TEMP_RANGE MAX_TIME_RESTART(s) MAX_TEMP_LEVEL
40 10

2

40000 15 30
80 25 30000 25 25
120 20 15000 25 25
160 20 8000 25 25
200 20 2000 20 30

TAB. 2: SA parameter settings adopted to graphs 1 and 2 in Table 1.

k T0 Tf TEMP_RANGE MAX_TIME_RESTART(s) MAX_TEMP_LEVEL
200 15

0.01

10000

20

40
400 15 2000 30
600 15 5000 30
800 10 2000 30
900 10 4000 30

TAB. 3: SA parameter settings adopted to graphs 3 and 4 in Table 1.

which have been obtained by our approach. In case of grid graphs, our experiments have been
performed under the condition TimeLimit = 200s whereas TimeLimit = 300s in Katagiri
et al. (2012). In case of regular graph the parameter MAX_TEMP_LEV EL is used as a
stopping criteria, the average time needed by our approaches is given in the result tables.

k BNV SA HybridK TSB ACOB

40

Best 695 695 696 695
Mean 695 695 696 695.4
Worst 695 695 696 696

80

1551 Best 1551 1552 1579 1572
1560.4 Mean 1560.4 1565.1 1592.7 1581.2

Worst 1572 1572 1615 1593

120

Best 2444 2444 2546 2457
2455.3 Mean 2455.3 2457.9 2558.5 2520.3

Worst 2472 2465 2575 2601

160

Best 3688 3688 3724 3700
Mean 3698.8 3688 3724.9 3704.7
Worst 3705 3688 3729 3720

200

Best 5461 5461 5462 5461
Mean 5461.4 5461 5462.4 5469
Worst 5462 5461 5463 5485

TAB. 4: Comparison results for the grid graph 1.

Figures 3- 4 represents the order of the performance of the four methods for different cardinal-
ities. The higher order means the better performance. As may be observed in the Tables 4- 5
and clearly in the Figure 3, the results for grid graphs 1-2 show that for 2 out of 10 cardinalities
we improve the best known solutions. In the remaining 8 cardinalities our proposed algorithm
finds the same best solutions as was found by the HybridK. In term of mean and worst values,
the performance of the proposed SA is better than TSB and ACOB. But more importantly, the
results show that our algorithm finds for each cardinality the same best solution in a very short
amount of computation time. The results in Tables 6 (Figure 4) for regular graph 1 show that
the performance of our approach is better than ACOB for cardinalities higher than 400 and is
also better than HybridK and TSB for cardinalities equal to 200. For other cases of cardinality,
the performance of our approach is not high. The results in Table 7 for regular graph 2 show
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k BNV SA HybridK TSB ACOB

40

Best 654 654 654 654
Mean 654 654 654 654
Worst 654 654 654 654

80

Best 1617 1617 1617 1617
Mean 1624.1 1619.1 1617.1 1626.9
Worst 1638 1620 1619 1659

120

2631 Best 2631 2632 2651 2637
2637 Mean 2637 2641.3 2677.9 2664.6

Worst 2652 2648 2719 2706

160

Best 3757 3757 3815 3757
Mean 3776.7 3764.3 3815.0 3797.6
Worst 3808 3779 3815 3846

200

Best 5262 5262 5262 5262
Mean 5262 5262 5268.6 5272
Worst 5262 5262 5296 5288

TAB. 5: Comparison results for the grid graph 2.

k BNV SA HybridK TSB ACOB

200

Best 3372 3393 3438 3312
Mean 3450 3453.1 3461.4 3344.1
Worst 3514 3517 3517 3379

Mean time (s) 300 300 300

400

Best 7713 7659 7712 7661
Mean 7772.8 7764 7780.2 7703
Worst 7851 7819 7825 7751

Mean time (s) 974 300 300

600

Best 12858 12785 12801 12989
Mean 12908.1 12836.6 12821.8 13115.6
Worst 12971 13048 12869 13199

Mean time (s) 1948 300 300

800

Best 19114 19099 19093 19581
Mean 19213.7 19101.1 19112.6 19718.7
Worst 19275 19128 19135 19846

Mean time (s) 1948 300 300

900

Best 22865 22827 22843 23487
Mean 23052 22827 22859.2 23643
Worst 23165 22827 22886 23739

Mean time (s) 1029 300 300

TAB. 6: Comparison results for the regular graph 3.

that the performance of our approach is almost better than ACO and TSB, and also is better
than HybridK for cardinalities lower than 600 and bigger than 800. It should be stressed also
that the computational time of SA is fairly large in case of large graphs.
It is clear that the performance of SA approach is very high in case of small graph than other
already existing approaches. Our approach is competitive in case of large graph compared to
TSB and ACOB, but it is not so effective than the hybrid algorithm HybridK. In case of large
graphs, these results can be justified by the fact that SA algorithm is a local search method
which does not incorporate any strategies for expanding the search area and diversifying the
search in order to explore other regions from the space of the solutions. In addition to that, the
intensification ability of SA is not so high, so it can be also reviewed and improved given that
all the solutions found by the SA method are not the best ones.
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k BNV SA HybridK TSB ACOB

200

Best 3639 3667 3692 3632
Mean 3699.9 3697.5 3722.0 3670.1
Worst 3784 3738 3751 3710

Mean time (s) 2735 300 300

400

Best 8378 8323 8358 8376
Mean 8430 8357.1 8385.6 8408.3
Worst 8510 8424 8415 8442

Mean time (s) 1301 300 300

600

Best 13761 13807 13735 14085
Mean 13788.2 13824.3 13759.4 14164.5
Worst 13841 13900 13820 14235

Mean time (s) 2082 300 300

800

Best 20127 20110 20130 20661
Mean 20169 20129.9 20142.9 20811.3
Worst 20218 20143 20155 20940

Mean time (s) 3802 300 300

900

Best 24032 24035 24044 24782
Mean 24045.3 24035 24052.6 24916
Worst 24052 24035 24064 25037

Mean time 4339 300 300

TAB. 7: Comparison results for the regular graph 4.

FIG. 3: Performance comparison for the grid graph 2. FIG. 4: Performance comparison for the regular graph 4.

4 CONCLUSION AND FUTURE WORK

This paper studies the well-known k-MST problem. A new approach using SA with a
restart strategy is developed. In order to check the performance of the proposed method we
compare the results obtained with those of other metaheuristics, the computational experiments
show that the proposed algorithm is highly efficient in case of small graphs, and should be
improved in case of large graphs. In our future work we will incorporate the SA method by
intensification and diversification strategies and also we will couple it with other metaheuristics
in order to build a hybrid approach that can tackle large and other classes of graphs.
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Résumé

Dans ce papier nous considérons le problème d’Arbre Couvrant Minimal de cardinalité
k (k-MST) qui généralise le fameux problème de l’arbre couvrant minimal qui est l’un des
classes majeurs d’optimisation combinatoire. La modélisation de ce problème a été présentée
au début par Hamacher et al. (1991), et il a été démontré par la suite que le problème de k-MST
est un problème NP-complet, et c’est pourquoi il est nécessaire de développer des approches

- 329 -



Simulated annealing algorithm with restart strategy for optimizing k-MST problems

approximatives basées sur des métaheuristiques pour résoudre ce problème dans un temps po-
lynomial. Plusieurs approches ont été proposées dans la littérature pour aborder ce sujet. Blum
and Blesa (2005) ont proposés trois métaheuristiques: les algorithmes évolutionnaires, les al-
gorithmes de colonies de fourmis et la recherche tabou. Un algorithme hybride combinant TS
et ACO est fourni par Katagiri et al. (2012). Dans ce papier nous avons proposé une nouvelle
approche basée sur l’algorithme du recuit simulé. Les expérimentations numériques réalisées
sur des instances de graphes de la bibliothèque KCTLIB proposés par Blum and Blesa (2005),
comparés avec les résultats présentés dans Blum et Blesa (2005) et Katagiri et al. (2012), ont
montré l’efficacité de notre approche.
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