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Abstract. Social networks frequently feature complex structures such as two-
mode data expressed by bipartite graphs. Most research work on community de-
tection in bipartite graphs focus on either finding non-overlapping communities
or identifying overlapping ones by first projecting two-mode (bi-dimensional)
data into two one-mode tables which are further analyzed. However, this often
leads to a loss of information and produces inaccurate communities. Therefore,
efficiently detecting communities in such two-mode data networks often remains
a key challenge in social network analysis. In this paper, we introduce a novel
three-step strategy to detect overlapping as well as hierarchically nested com-
munities in bipartite graphs. First, we extract the formal concepts that represent
potential groups in the social network. Then, we rank and filter the obtained
groups to keep only core ones that have a high mean of stability and separation.
Finally, we detect communities by refining the core groups using a Silhouette
Analysis. Our experiments on real-world social networks show that our method
can accurately identify overlapping communities.

1 Introduction

Although numerous community detection methods have been proposed, relatively few ones
are designed for heterogeneous or multi-layer networks or even two-mode data ones (i.e., two
types of nodes and one type of links). The main focus is generally on homogeneous (commonly
called one-mode data) networks, which are extracted from real-world networks by considering
one type of nodes (objects) and one type of links. Moreover, most of the studies are concerned
with disjoint communities rather than overlapping and hierarchically nested ones which are
very common in real-life situations and applications. For the reasons cited above, the number
of research studies on identifying overlapping and nested communities in heterogeneous net-
works is growing up. This is an issue we seek to address in the following paper. Our method
is completely unsupervised and can automatically determine both the number of communities
and their description. It relies on the inherent structure discovered from data using Formal
Concept Analysis (FCA), and two relevancy metrics associated with formal concepts, namely
stability and separation. Finally, it makes use of Silhouette analysis to refine the process of
community detection.
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The rest of this paper is organized as follows: Section 2 provides background on social
network analysis (SNA) and FCA while Section 3 gives a brief overview of related work. In
Section 4 we describe and illustrate our approach. Section 5 presents the empirical study while
the conclusion and future work are given in Section 6.

2 Background

2.1 Social Network Analysis
There are many types of social networks. A particular one is the two-mode data network

with two types of nodes and one type of ties that are only established between two nodes
belonging to different sets. The first set represents objects (actors) while the second one repre-
sents attributes (characteristics, properties). Such a network is expressed by a bipartite graph
B = (U, V,E), where U and V are two independent/disjoint sets of vertices, and E is the set
of edges between one node in U and one node in V . For instance, a community in a social net-
work may represent researchers closely connected to publications according to a co-authorship
link.

The most studied topics in SNA are link prediction, influence maximization and propaga-
tion, position and role computation, network destabilization vs reinforcement, and community
detection. The latter topic (Fortunato, 2010) aims at finding clusters as sub-graphs within a
given network.

Communities can be either disjoint or overlapping (Wang and Fleury, 2013; Xie et al.,
2013). Partial or full nesting is an important aspect of real-world networks, and means that
communities are strongly hierarchical. For example, a community of graduate students having
the same supervisor is mainly a subset of a larger group of students enrolled in the same
program.

2.2 Formal Concept Analysis
Formal Concept Analysis is a branch of applied mathematics, which is based on a for-

malization of concept and concept hierarchy (Ganter and Wille, 1999; Ganter and Obiedkov,
2016). It uses a formal binary context to construct a concept (Galois) lattice whose nodes are
formal concepts.

A formal context is a triple K = (G,M, I), where G is a set of objects, M a set of
attributes, and I a binary relation between G and M with I ⊆ G × M. For g ∈ G and
m ∈M, (g,m) ∈ I holds (i.e., (g,m) = 1) iff the object g has the attribute m, and otherwise
(g,m) /∈ I (i.e., (g,m) = 0). Given arbitrary subsets A ⊆ G and B ⊆ M, the following
derivation operators are defined:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G

B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M
where A′ is the set of attributes common to all objects of A and B′ is the set of objects sharing
all attributes from B. The closure operator (.)′′ implies the double application of (.)′. The
subsets A and B are closed when A = A′′, and B = B′′.

- 190 -



A. Messaoudi et al.

A formal concept of the context K = (G,M, I), is a pair c = (A,B) ⊆ G ×M where
A′ = B and B′ = A. A is called the extent of c while B is its intent.

A partial order exists between two concepts c1 = (A1, B1) ≤ and c2 = (A2, B2) if A1 ⊆
A2 ⇐⇒ B1 ⊇ B2.

The set C of all concepts together with the partial order form a concept lattice.
The selection of the most relevant concepts from a possibly huge set of elements is a crucial

task. Stability and separation indices (Kuznetsov, 2007; Buzmakov et al., 2014; Kuznetsov and
Makhalova, 2018) are among the relevancy measures used for concept selection.

For a given formal concept c = (A,B), the intensional stability is defined as follows:

σ(c) =
| {e ∈ P(A)|e′ = B} |

2|A|
(1)

It measures the strength of dependency between the intent B and the objects of the extent A.
More precisely, it expresses the probability to maintainB closed when a subset of noisy objects
in A are deleted with equal probability. In fact, this measure quantifies the amount of noise in
the extent A and overfitting in the intent B. Obviously, the stability index highlights concepts
with high internal cohesion since most of the subsets in A have the intent B whenever the
stability is high. Such a feature can then be exploited to retrieve communities within networks.

The separation α(c) of a formal concept c = (A,B) (Klimushkin et al., 2010) is computed
as follows where g′ is the set of attributes of an object g while m′ gives the objects that have
the attribute m:

α(c) =
| A | · | B |∑

g∈A | g′ | +
∑
m∈B | m′ | − | A | · | B |

(2)

It expresses the proportion of cells in c among the area corresponding to the intent of each
element in A and the extent of every attribute in B. Therefore, it estimates the specificity of
the object-attribute relation of a concept with respect to the formal context, and assesses how
much noise exists in the concept.

Silhouette coefficient (S) is mainly used to capture the quality or goodness of a clustering
output (Rousseeuw, 1987). For a given object oi in the data set, let Ca denote the cluster
to which it has been assigned to, and a(oi) the average distance between oi and all other
objects within the same cluster Ca. Now, let us consider any cluster Cc different from Ca and
compute the average distance between oi and all other objects in Cc. Let b(oi) be the lowest
average distance of oi to all points in any other cluster, of which oi is not a member. Silhouette
coefficient for object oi is given by:

S (oi) =
b (oi)− a (oi)

max{a (oi) , b (oi)}
(3)

where S(oi) ∈ [−1, 1]. A negative value indicates that oi is assigned to the wrong cluster
while a positive value means that oi is in the right cluster and far away from its neighboring
clusters. When S(oi) = 0, it shows that oi is very close to the decision boundary between two
neighboring clusters.

The silhouette coefficient of a cluster is then computed as the average of the Silhouette
coefficient of its elements.
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3 Related work

Although numerous community detection methods have been developed for social network
analysis, most of them cannot be directly applied to mine two-mode data networks.

There are two main categories of work for community detection in two-mode data net-
works. The first one assumes a projection of the initial two-mode network into two one-mode
data networks where nodes of the same type are connected if they share links to the same nodes
of the second node type. One of these methods is “dual-projection” (Everett and Borgatti,
2013) that produces non overlapping biclusters expressing regular or structural equivalence.
However, the number of biclusters produced by this method must be set in advance by the user.

The second category, known as direct or combined approach, extends existing methods
to determine the community structure of both modes simultaneously. The related studies are
mainly based on modularity, clustering, biclustering, or block modelling. Modularity is defined
(Newman and Girvan, 2004), (Blondel et al., 2008) as a quality function that evaluates clusters
based on the idea that a cluster is a set of nodes connected based on sharing common properties
in the network. Concretely, starting from a node or a small set of nodes, a community can be
obtained by adding neighboring nodes that improve a given quality function. The choice of the
quality function depends on the context and application requirements.

Block modelling, which was generalized to two mode-data networks in (Borgatti, 2009)
consists to group nodes inside the same block whenever they are statistically equivalent in
terms of their connectivity to nodes within the block.

There are a few studies that exploit FCA for community identification in two-mode data
networks. (Roth et al., 2008) use FCA to consider only concepts whose support is over a given
threshold. Clearly, some interesting rare concepts may be discarded. In order to avoid this
flaw, (Jay et al., 2008) rely on concept stability and support measures to detect communities.
Computed concepts that exceed a given threshold of these measures are kept. In fact, the
proposed method retains the rare but stable concepts and the frequent but unstable concepts.
Another method was proposed in (Crampes and Plantié, 2012). It takes only the concepts of
the first two layers of the concept lattice, and computes cohesion, separation and autonomy of
concepts to identify communities. The cohesion of a given community is based on the Jaccard
coefficient, which is not the best adapted score for FCA (Kuznetsov and Makhalova, 2018).

4 Proposed Approach

At a conceptual level, our overall strategy contains the following key steps: (i) generate the
whole set of concepts - without the partial order - from the formal context that describes the
two-mode data network, (ii) compute the autonomy of concepts as the harmonic mean of its
stability and separation indices to further select the concepts with the highest autonomy scores
without relying on any threshold, and (iii) refine the core communities using the Silhouette
coefficient analysis to get the final overlapping communities.
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4.1 Generating Formal Concepts

At the beginning we build the formal context K (see Table 1) of the two-mode network B
by computing the incidence matrix as follows:

K = (G,M, I) =

{
(gi,mj) = 1 If gi ∈ G,mj ∈M,∃ (gi,mj) ∈ I,
(gi,mj) = 0 Otherwise.

(4)

Then, the set of concepts is computed. For instance, The concept c = ({6, 7}, {E,F}) is
highlighted in Table 1.

A B C D E F G
1 1 0 1 0 1 0 1
2 0 1 0 1 0 0 0
3 0 1 1 0 0 0 0
4 0 0 0 1 0 0 1
5 1 0 1 1 0 0 0
6 0 0 0 0 1 1 0
7 0 0 0 0 1 1 0
8 0 0 0 0 1 0 0

TAB. 1 – An example of formal context.

We used the In-Close algorithm (Andrews, 2011) to generate the set C of concepts from
the constructed formal context.

4.2 Selecting Cohesive and Separable Concepts

This step selects a relatively small set of concepts from C that can serve as core communi-
ties without relying on any threshold. We consider a concept c ∈ C as a core community if its
extent represents a cohesive group and the objects are separable from the rest of objects found
in other concepts. This means that this concept represents a very likely standalone community
or a portion of a larger potential community. Now, given a concept c = (A,B), how can we
measure the cohesion and separability of its objects? Here the stability and separation indices
come to play to quantify the strength of ties between objects inside c and the weakness of ties
between the objects in the extent of c and all other objects in other concepts. This in fact im-
plies that a high stability or separation index of a concept indicates that the objects inside this
concept are very cohesive (i.e., they have strong ties among each other) and are very separable
(i.e., they have weak ties with all other objects that exist outside their concept). Given a con-
cept c, we can compute the harmonic mean of its stability σ(c) and separation α(c) indices to

obtain a new score that we call autonomy: ζ(c) = 2×
(
σ(c)×α(c)
σ(c)+α(c)

)

For example, the concept c = ({6, 7}, {E,F}) in our example, has a stability value of
3
4 = 0.75 and a separation value of (2×2)

((2+2)+(4+2)−(2×2)) = 0.66. Thus, its autonomy score is
equal to 2× 0.75×0.66

0.75+0.66 = 0.70. This concept represents likely a core community.
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4.3 Refining Core Communities

This stage aims at identifying the final overlapping communities by refining the core com-
munities C̃ using the Silhouette coefficient. This helps us check that each object is in the proper
communities. If it is not the case, then the object is moved to the right community.

Algorithm 1 Community detection procedure
Input: Formal context K = (G,M, I)
Output: Set of overlapping communities (C̃)

1: Γ← D ← ∅
2: C ← Compute the concepts of K
3: for each concept c = (A,B) ∈ C do
4: tc ← Compute the autonomy ζ(c)
5: Γ← Γ ∪ {(c, tc)}
6: end for
// Sort the concepts in a descending order of tc in Γ

7: D ← Sort(Γ)
// Select the core communities

8: C̃ ← O ← ∅
9: while O 6= G do

10: (A,B)← D.pop()
11: if (A 6⊂ O) then
12: C̃ ← C̃ ∪ {(A,B)} // (A,B) is a core community
13: O ← O ∪ {A}
14: end if
15: end while

// Refine core communities in C̃ to detect the final ones.
16: for each core community c = (A,B) ∈ C̃ do
17: for e ∈ A do
18: se ← S(e) // Compute the Silhouette coefficient of e
19: if se < 0 then

//Move e from c = (A,B) to the nearest community
20: A← A \ {e}
21: (A1, B1)← Find the closest core community to e
22: A1 ← A1 ∪ {e}
23: else if se = 0 then

//Add e of c to the nearest community
24: c1(A1, B1)← Find the closest core community to e
25: A1 ← A1 ∪ {e}
26: end if
27: end for
28: end for
29: return(C̃)

Algorithm 1 gives the pseudo-code of our procedure in which the input is the formal context
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Core Autonomy
C̃1 ({6, 7}, {E, F}) 0.7
C̃2 ({1, 6, 7, 8}, {E}) 0.53
C̃3 ({2, 4, 5}, {D}) 0.46
C̃4 ({3}, {B, C}) 0.44

TAB. 2 – Core communities

C̃1 ({6, 7}, {E, F})
C̃2 ({6, 7, 8}, {E})
C̃3 ({4, 5}, {D})
C̃4 ({3,1,5}, {C})

TAB. 3 – Final communities

associated with the network. First, it computes the set of concepts. Then, it calculates the
autonomy score of all concepts (lines 3-6) to further sort the concepts in Γ in a descending order
of their autonomy value (line 7). Subsequently, it constructs the core community collection C̃
by selecting the concepts with the highest autonomy values until the set of selected concepts
cover all objects (and their attributes) in the formal context (lines 8-15). At a later step (lines
16-28), it refines the group of core communities by calculating the Silhouette coefficient S(e)
of each object e ∈ A in each core community c = (A,B) ∈ C̃. If the Silhouette coefficient
value is less than 0, then e is not in the correct community c and is then moved to the closest
core community. If the Silhouette coefficient value is equal to 0, then e will also appear in
another close core community. Otherwise, e is kept in its community c. After refining all core
communities, the algorithm outputs the final detected overlapping communities as given in
Tables 2 and 3. One can notice that two changes occurred at the last step (Silhouette analysis)
since object 1 is moved from C̃2 to C̃4 and object 5 is shifted from C̃3 to C̃4. Community C̃1

is nested into C̃2 while the other communities are now overlapping.

It is important to note that the description (i.e., the shared attributes) of communities is
given by the intent B of c = (A,B) whenever a core community is not altered by an object
insertion or elimination. Otherwise, it can be easily obtained by computing A′, i.e., the set of
attributes associated with the objects in A.

Complexity Analysis

The computation of formal concepts is O(|G|2 × |M| × |C|, where |G|, |M|, and |C|
represent the size of the set of objects, attributes, and concepts respectively. To calculate the
autonomy of a concept c = (A,B), we need to compute both the stability and the separation.
The first measure can be approximately computed using low-discrepancy sampling (Ibrahim
and Missaoui, 2018) in O(|S|), where |S| stands for the number of samples generated from
P(A). As the complexity of computing the separation for one concept is O(|G| × |M|), the
calculation of the autonomy for all concepts is then O(|C| × (|S| + (|G| × |M|)). The sort
of concepts is O(|C| × Log(|C|)). Finally, since the Silhouette analysis needs to compare
each element of a cluster with the objects of the other ones, its complexity is O(|C̃| × |M| ×
|G|2), where C̃ stands for the generated commmunity set. The overall complexity is therefore
dominated by the first and last steps of the algorithm.
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5 Experimental Evaluation
To evaluate the proposed approach, we analyze its performance and accuracy against four

other community detection algorithms using real-world networks with built-in nested commu-
nity structure. Algorithms are implemented in Python and the experiments were executed on
an Intel Core i7 with 3.4 GHz and a RAM of 16 GB.

The datasets are as follows (see Table 4) where the first three sets have ground-truth com-
munities: (1) Southern women Davis 1, which describes the participation of eighteen Southern
women to fourteen social events, (2) Zoo 2, which gives the description of different types of
animals in a zoo, (3) Customer-Product (C-P), which describes 1143 customers in terms of 865
products they ordered (see Gazelle.com), (4) senators x committees, which indicates the links
between the senators in the 124-th Maine State Legislature and the legislative committees, (5)
DBpedia languages which involves the semantic web of official languages spoken by people
living in different countries, and (6) Star Alliance, which captures a set of airline companies
and their flying destinations in Year 2000.

We then compare the accuracy and performance of our proposed approach with the fol-
lowing community detection algorithms (see Section 3): (i) Oslom (Lancichinetti et al., 2010),
(ii) (Crampes and Plantié, 2012), (iii) (Jay et al., 2008), and (iv) Bitector procedure (Du et al.,
2008) which exploits biclique computation.

Objects Attributes Links Density in %
Southern woman (S-W) 18 14 89 70

Zoo 101 17 746 43.4
Customer-Product (C-P) 1143 865 2008 0.4

Senators x Committees (Senat) 189 59 890 7.98
DBpediaLanguages (PL) 316 169 9022 16.8

Star alliance (Star) 28 58 579 35.6

TAB. 4 – A brief description of the tested social networks

Furthermore, we consider three metrics to assess the accuracy of the algorithms, namely
Omega index, Overlapping Normalized Mutual Information (NMI), and link-belonging mod-
ularity (Collins and Dent, 1988; Chakraborty et al., 2017; Nicosia et al., 2009). The latter is
used for networks without ground-truth communities.

5.1 Results and discussion
It can be observed from Figure 1 that our algorithm is tested under two variants: one in

which the third (refinement) step is included (i.e., the three steps), and one in which the third
step is excluded. One can see that it behaves well in terms of accuracy compared to the tested
methods for the two kinds of datasets (with or without ground-truth communities). This is
mainly the case when the third step of Silhouette analysis is used. Our algorithm is followed
by Bitector for the first kind of datasets (with ground-truth for Southern women, Zoo and C-P)

1. https://networkdata.ics.uci.edu/netdata/html/davis.html
2. http://archive.ics.uci.edu/ml/datasets/zoo
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FIG. 1 – Evaluation of the detected communities using NMI, OMEGA and link-belonging
modularity

and by Lancichinetti for the second kind. Indeed, the latter approach did not perform so well
on networks with ground-truth communities although it did better on datasets without ground-
truth. This may be due to the fact that the metric used to assess communities without ground
truth was based on modularity. The less accurate method seems to be Jay’s algorithm probably
because some objects may be ignored using a threshold on the used metrics. BiTector finds
small communities and works slightly better with sparse networks.

For our approach, the execution time is exhibited according to the two variants given earlier,
and includes the cost of concept computation. The time is given in seconds and represents the
average of five execution times of each one of the evaluated algorithms.

As shown in Figure 2, the execution time of our whole procedure is more important than
the one for the first two steps. However, the accuracy is improved in the former variant as
previously observed from Figure 1. The less performing algorithms are Crampes’s and Jay’s
procedures.

6 Conclusion

In this paper, we proposed a new method for detecting overlapping and hierarchically
nested communities in two-mode data networks. Our method does neither require a user-
predefined number of groups nor thresholds on metrics. It can automatically identify cohesive
and separable communities and their description through the shared features of formal concepts
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FIG. 2 – Execution time (in secs) for the tested community detection algorithms

using FCA-based metrics like stability and separation. Finally, it uses Silhouette coefficient to
refine communities, which combines both the cohesion and separation measures.

We tested our algorithm on a set of networks with or without ground-truth communities
and showed its accuracy and execution time against four other methods. Further empirical
studies are needed to better assess its efficiency and accuracy in large and dense datasets.

From a computational complexity point of view, there is still room for improvement. The
running time of the proposed algorithm can be further reduced using optimization techniques
(e.g., computing a subset of concepts) and/or other relevancy concept measures, or exploiting
the notion of context coverage (Ferjani et al., 2012) to identify core communities. We also plan
to extend our work to identify communities in multi-layer networks where nodes from a given
layer can be linked to some other nodes of another layer. Finally, we believe that when the set
of generated communities is large, a percolation step can be added to reduce such a set.
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Résumé
Les réseaux sociaux ont fréquemment des structures complexes comme ceux à deux modes

représentés par des graphes bipartis. Plusieurs travaux sur la détection de communautés mettent
l’accent soit sur l’identification de groupes disjoints ou chevauchants en procédant d’abord à
la projection des données à deux modes (dimensions) en deux tables à un seul mode qui sont
ensuite analysées. Cependant, cela entraîne une perte d’information et aboutit à des commu-
nautés mal définies. Ainsi, la détection précise des communités dans un graphe biparti reste un
défi majeur en analyse de réseaux sociaux. Dans cet article, nous introduisons une approche
à trois étapes pour la détection de communautés chevauchantes et même imbriquées dans les
graphes bipartis. Tout d’abord, on détermine les concepts formels à partir des données. Ensuite,
les concepts ayant une valeur élevée de la moyenne de la stabilité et de la séparation sont rete-
nues comme les communautés de base. Finalement, une analyse Silhouette permet de raffiner
l’identification des communautés. Des tests préliminaires sur des réseaux réels montrent que
notre approche permet d’identifier correctement des communautés chevauchantes.
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