
A generic modelling to capture the temporal evolution in
graphs

Landy Andriamampianina∗,∗∗, Franck Ravat∗

Jiefu Song∗,∗∗, Nathalie Vallés-Parlangeau∗

∗ IRIT - Université Toulouse 1 Capitole, 2 Rue du Doyen Gabriel Marty
F-31042 Toulouse Cedex 09

{firstname.lastname}@ut-capitole.fr,
∗∗ Activus Group, 1 Chemin du Pigeonnier de la Cépière,

31100 Toulouse
{firstname.lastname}@activus-group.fr

Abstract. A temporal graph is based on two aspects: it is a graph that models
the interconnection of data and that includes time dimension to model the tempo-
ral evolution of data. Temporal graphs are commonly used in different domains
to capture the different evolution types that occur in a graph over time. However,
existing modelling solutions of temporal graph do not allow to manage all tem-
poral evolution types in the real world. In this paper, we propose a generic model
that is able to manage the temporal evolution at different levels: at the schema
level to capture the temporal evolution in the graph data structure, and at the
instance level to capture the temporal evolution of data contained in entities and
their relationships as well as the temporal evolution of the graph topology. We
complete our proposed modelling solution with a set of translation rules compat-
ible with the property graph model. The feasibility of our proposal is illustrated
through an implementation of our model in the Neo4j database system.

1 Introduction

Graphs have been widely used to model complex relationships among interconnected enti-
ties in real applications (Holme and Saramäki, 2012). For example, in social networks, graphs
model relationships between users. Graph modelling is not only exploiting data contained in
entities and their relationships but also the graph topology 1, which is also a meaningful source
of information. For instance, the graph topology allows to discover the friend of a friend in a
social network.

It is also relevant to exploit the temporal evolution of a graph. For example, modelling the
activity of users in a social network requires to consider the evolution of the network through
time (Ahmed et al., 2010). Accordingly, the temporal graph model has been created not only
to exploit data contained in entities and their relationships as well as graph topology but also

1. Topology is the way in which the nodes and edges are arranged within a graph.

- 19 -



A generic modelling to capture the temporal evolution in graphs

to exploit different types of temporal evolution in the graph: the way that entities, relationships
and graph topology change over time (Zaki et al., 2016).

However, the temporal evolution of the graph data structure is not included in existing
temporal graph models. We describe the graph data structure as the organization of entities
and their relationships into types which consists in the specification of the attributes set of each
type. The temporal evolution of the graph data structure is a new source of information. As an
example, tracking the temporal evolution of the attributes set of an entity type allows to capture
the change in its meaning over time.

In a nutshell, current works on temporal graph model only focus on some temporal evolu-
tion types. Yet, some business domains require to study the complete aspect of evolution i.e.
the temporal evolution of data contained in entities and their relationships, the temporal evolu-
tion of the graph topology and the temporal evolution of the graph data structure. In this case,
it is necessary to have a generic model capable to manage these different types of evolution.

In this paper, we therefore address the problem of modelling temporal graph to integrate
any temporal evolution types. In response to this problem, we first analyze how current works
model the temporal evolution of graphs (Section 2). Second, we demonstrate the interest of
capturing different evolution types in a running example (Section 3). Then, we present our
contribution consisting in a temporal graph modelling which is generic enough to capture the
different evolution types we discuss in the previous paragraph. To do so, we consider different
abstraction levels in our modelling: (a) the schema level to capture the temporal evolution in
the graph data structure, and (b) the instance level to capture the temporal evolution in data
contained in entities and their relationships as well as the temporal evolution of the graph
topology (Section 4). Finally, we study the feasibility of our proposal by implementing our
model in the Neo4j database system (Section 5).

2 State of the Art

A graph is a collection of nodes with directed or undirected edges connecting them. Several
graph based modelling proposed in the literature combine graph theory and classical data mod-
els concepts (entity-relationship model or Unified Modelling Language), through the concepts
of entities represented by nodes, relationships represented by edges, entity and relationship
types and their attributes (Ebert and Franzke, 1994) (Ghrab et al., 2016) (Gómez et al., 2019).
Some works consider a schema level (entity and relationships types) and an instance level (en-
tity and relationship) in their modelling but the distinction between the two is not always clear
(Angles and Gutierrez, 2008).

According to Vernet et al. (2018), “a temporal graph varies over time and is defined over
a time horizon. The nodes and edges can be modified, as well as all other parameters that the
graph can have according to a model”. Sequence of graph snapshots 2 have been commonly
used in literature to model the temporal evolution in a graph (Borgwardt et al., 2006) (Chan
et al., 2008) (Fard et al., 2012) (Khurana and Deshpande, 2013). Each snapshot consists of a
copy of the entire graph at each time instance of its timeline. This results in a large number of
snapshots of little use when many small changes take place frequently (Maduako et al., 2019).

2. denoted G1, G2, ..., GT where Gi is an image of the entire graph at the time i and [1;T ] is the lifetime of the
graph.

- 20 -



L. Andriamampianina et al.

The temporal evolution of a graph refers to the changes on its parameters over time, namely
(a) its topology (the way nodes are connected by edges) and (b) data (data values of node and
edge attributes). The temporal evolution of the graph topology is discussed in the literature
through two types of evolution: edge evolution and node evolution (Zaki et al., 2016). Edge
evolution depicts the addition or deletion of edges at each time instance of the graph lifetime.
As an example, consider a road traffic network where each edge represents a road segment with
smooth traffic and each node a location. As traffic keeps changing over time, road segments
are added or deleted over time (Yang et al., 2014). Node evolution describes the addition or
deletion of nodes at each time instance of the graph lifetime. For instance, the interactions
between people in a social network over time are represented by the addition of a couple of
nodes connected by an edge at each time they communicate (Kostakos, 2009).

The temporal evolution of graph data is discussed in the literature through two types of
evolution: edge attributes evolution and node attributes evolution (Zaki et al., 2016). Each
evolution type depicts changes through time in the values of the attributes of a node or an
edge. For instance, Desmier et al. (2012) analyze data values of node attributes to observe
the evolution through time of authors’ publication number in a co-authorship network. Zhao
et al. (2020) examine data values of edge attributes in a transportation network to observe the
changes in the values of bus routes attributes (the departure time, the corresponding travel time,
the cost of the ticket, and the distance between stations) over time.

To sum up, the state-of-the-art approaches based on snapshots do not provide a straightfor-
ward solution to capture changes in a graph, since they require observing differences between
two snapshots of the graph. This implies some drawbacks (Maduako et al., 2019): (i) As time
is associated to each graph snapshot, it induces intensive computation requirements and query
complexity to retrieve temporal aspects of an individual graph component. (ii) Regarding the
memorization of data, it requires high memory on disk because even useless redundant data
(i.e. non changing data) are kept.

Regarding evolution types, most temporal graph models focus on capturing one evolution
type according to the specific need of their application. Thus, they are not reusable for other
application domains. Considering our discussion at the beginning of this section, the distinc-
tion between the schema level and instance level is not necessarily formalized in temporal
graph models. To the best of our knowledge, schema evolution has not been considered among
possible temporal evolution of the graph. Schema evolution refers to the creation, deletion
and modification of a type of node or edge (Bonifati et al., 2019). As an example, consider
a transportation network in which nodes are typed “bus stop” or “taxi stop” and edges, “bus
path” or “taxi path”. The apparition of Uber among transporation means provides a new type
of nodes and edges in the network.

The objective of our work is two-fold. First, we propose to manage the temporal evolution
of our model in a different manner than in the snapshots model. We consider the temporal
evolution at two levels of graph granularity: at the individual level of a graph component
(entity or relationship) and at the global level of the entire graph. While in the snapshots
model time is attached at the level of the entire graph, time is attached at each individual graph
component in our model. In that way, it is more easy to capture the temporal evolution of
an individual graph component. Moreover, we do not need to capture the temporal evolution
of the graph by modelling snapshots replication so the data redundancy is reduced. Second,
our model integrates two levels of abstraction - schema level and instance level - to capture

- 21 -



A generic modelling to capture the temporal evolution in graphs

different temporal evolution types we discuss. The schema level allows us to capture the
temporal evolution of the graph data structure. The instance level allows us to capture the
temporal evolution of data as well as the temporal evolution of the graph topology. In that
respect, our temporal graph model is generic enough to track temporal evolution at different
levels of graph granularity and to support any evolution types.

3 Running example
For a better illustration of our concerns, we consider the problem of tracking information

about the evolution of a product during its life cycle as a running example. During its life
cycle, a product goes through multiple phases: conception, manufacturing, ..., until its service.
Thus, the product goes through different states. The value of the product attributes changes
through time. Moreover, the set of the product attributes evolves conforming to the semantics
affected to the product by the department involved at each phase (Brunsmann, 2011). Then,
product life cycle includes different entities (the product, the product components, department,
suppliers etc.) at each phase. Thus, it requires to link data coming from each phase of the
life cycle. In conclusion, tracking the evolution of a product during its life cycle involves to
track the evolution at the instance level: (a) the temporal evolution of data i.e. the changes in
the values of product attributes and (b) the temporal evolution of the linked data topology i.e.
which data is added or deleted at each phase. Moreover, it includes the evolution of linked data
at the schema level, namely, the addition or removal of new entity types at each phase as well
as the addition or removal of attributes of the product through time.

4 Proposition
We propose a generic modelling of temporal graph for two purposes. First, we want a

model capable to manage the temporal evolution at a finer granularity than existing snapshot-
based approaches i.e. at the entity or relationship level. For that purpose, we assume that
each entity or relationship can evolve independently from the evolution of the entire graph
(Definitions 4.8, 4.9 and 4.10).

Second, we want a model capable to track different types of temporal evolution to be
easily adaptable to application domains, especially the ones that require all temporal evolution
aspects. For that purpose, we distinguish two abstraction levels in our modelling: the schema
level and the instance level. The schema level describes the data structure of the graph which
we denote schema. A schema describes the organization of entity and relationship types in the
graph (Definitions 4.2, 4.3, 4.4 and 4.5). The schema level of our model allows to capture the
temporal evolution of the graph schema:

1. the addition or deletion of entity and relationship types over time;
2. the modification of the set of attributes of an entity or relationship type over time, i.e.

the addition or deletion of an attribute in the attributes set.
The instance level describes the instantiation of our schema, that is entities and their re-

lationships (Definitions 4.6 and 4.7). The instance level of our model allows to capture the
temporal evolution of both data contained in entities and their relationships and graph topol-
ogy:

- 22 -



L. Andriamampianina et al.

FIG. 1 – Our temporal graph notation. A node represents an entity state. An edge represents
a relationship state.

Symbol Interpretation Illustration

X d Y X during Y

X ◦ Y X overlaps Y

TAB. 1 – ALLEN operators (Allen, 1983).

3. the addition or deletion of entities and relationships over time;
4. the change in the values of an entity or relationship attributes over time.

We first define formally what a temporal graph is and its structure (Definitions 4.1, 4.2,
4.3, 4.4, 4.6 and 4.7) before the presentation of the temporal evolution management (Defini-
tions 4.8, 4.9 and 4.10).

Definition 4.1. A Temporal Graph represents the entire content of the graph in a given lifetime
T = [t0; tN ]. It is denoted as TG = {SE ;SR} where SE is the set of all entity states and SR

the set of all relationship states through T . The Figure 1 presents our notation of a temporal
graph.

We define the time units we use. Time can be seen as a set of time grains endowed with an
order relation. It can be represented by a straight line on which each grain appears as a point
(Canavaggio, 1997). Accordingly, we use two time units in our model: (a) the instant which is
a particular point on the timeline and (b) the time interval which is a segment on the timeline
delimited by two specific instants. To describe the possible relations between time intervals,
we use two operators from the ALLEN temporal logic: d and ◦ (Table 1).

The schema level of our model describes the data structure of the graph in the following
definitions.

Definition 4.2. A schema describes the organization of entity and relationship types in a graph.
It is denoted as SC = {Y, Z} where Y = {Y1, ..., Yp} is a finite set of entity types represented
by nodes and Z = {Z1, ..., Zn} is a finite set of relationship types represented by edges. An
illustration of a schema is given in Figure 2.

- 23 -



A generic modelling to capture the temporal evolution in graphs

FIG. 2 – Illustration of a schema of a product life cycle.

Definition 4.3. An entity type describes a collection of entities having the same set of at-
tributes. It is denoted Yi = 〈nYi

, AYi
〉 where Yi ∈ Y , nYi

is the name of the entity type and
AYi

= {aYi
1 ; ...; aYi

n } its set of attributes.

Definition 4.4. A relationship type describes a collection of relationships having the same set
of attributes. It is denoted Zi = 〈nZi

, (Yj , Yp), AZi
〉 where Zi ∈ Z, nZi

is the name of the
relationship type, Yj is the source entity type of the relationship type, Yp is the destination en-
tity type of the relationship type and AZi

= {aZi
1 ; ...; aZi

n } the attributes set of the relationship
type.

Definition 4.5. Each entity or relationship attribute is denoted ai = 〈nai
, vai
〉where ai ∈ AYj

or ai ∈ AZj
, nai

is the name of the attribute and vai
is its value.

Example 4.1. Let’s take our running example in Section 3 considering the life cycle of a
bike. The Figure 2 illustrates how the different entity types of the bike life cycle are linked at
a schema level regardless of the temporal evolution. However, it gives us an idea about the
temporal information that we could extract for tracking the temporal evolution of the product:
the change in the product attributes value through its life cycle, the delivery date of the product
components by suppliers, the duration of the product components assembly, the duration of the
product transportation from a department to another, the duration of the product packaging,
the duration of the stay of the product in a department, and the sale date of the product to a
store.

The instance level of our model describes instantiated entities and relationships according
to the schema level in the following definitions.

Definition 4.6. E is the set of instantiated entities according to a schema SC. Each entity
Ei ∈ E is an instance of an entity type Yi ∈ Y . To identify an entity among the other entities
of the same type, it has an identifier idEi . An entity is denoted Ei = 〈idEi , nYi , AYi〉.

- 24 -



L. Andriamampianina et al.

FIG. 3 – Illustration of the states of an entity during a time window [t0; t3]. Each rectangle
illustrates a state at a time ti. Here we consider the validity time of each state as an instant.
Each attribute of an entity is illustrated by a circle with an unique color. The attributes are
colored as follows: a1 is in orange, a2 is in blue, a3 is in green and a4 is in purple. The change
in the attributes value is illustrated by the lightening of the attribute color. For instance, the
value of a1 and a2 changes between t2 and t3. The attributes set of an entity can also vary over
time. This is illustrated in this Figure by the addition of the attribute a3 between the states at
t1 and at t2 and the addition of the attribute a4 between the states at t2 and at t3.

Definition 4.7. R is the set of instantiated relationships according to a schema SC. Each
relationship Ri ∈ R connecting a pair of entities (Es, Ep) is an instance of a relationship type
Zi ∈ Z. It is denoted R = 〈nZi

, (Es, Ep), AZi
〉.

As we discussed at the beginning of this section, we manage the temporal evolution in our
model at the level of an entity or relationship. The mechanism of the temporal evolution is
based on the concept of states of an entity or relationship.

Definition 4.8. A state of an entity or a relationship is defined by the stability of the set of
attributes and their values during an interval of time or an instant called the validity time and
denoted TS d T . By default, we consider the validity time as a time interval.

We choose to distinguish an entity or a relationship from its states as illustrated in Figure 3.
At each change that occurs on an entity or relationship - i.e. the addition or deletion of an
attribute (referring to the evolution type 2 we state at the beginning of this section) or the
change in the values of an attribute (referring to the evolution type 4 we state at the beginning
of this section) - a new state of the entity or of the relationship is created. Naturally, as a state
is the lowest level of the graph granularity, it also carries the evolution type 1 and evolution
type 3 defined at the beginning of this section. Therefore, through its lifetime, an entity or
relationship can go through different states. The model enables to view the different states of
an entity or relationship in a time window (Example 4.2).

Definition 4.9. SEi = {SEi
1 , ..., SEi

p } is the set of states of an entity Ei during T . A state of
an entity Ei is denoted SEi

j = 〈idEi
, AYp

, T
S

Ei
j

〉 where idEi
is the identifier of the entity, AYp

- 25 -



A generic modelling to capture the temporal evolution in graphs

FIG. 4 – Illustration of the temporal graph representing the life cycle of a bike in a time
window [t4; t17]. Time is on the y-axis. Each entity type is on a lane of the x-axis. Nodes
in blue represent the different states by which the product identified by the name "Bike" goes
through the time window.

is the set of attributes and their associated values during the validity time T
S

Ei
j

d T in which
they are stable.

Definition 4.10. SRi = {SRi
1 , ..., SRi

p } is the set of states of a relationship Ri during T . A
state of a relationship Ri is denoted SRi

j = 〈(SEp

k , SEs

l ), AZn
, T

S
Ri
j

〉 where (S
Ep

k , SEs

l ) is a

pair of connected entity states, AZn
is the set of attributes and their associated values during a

validity time T
S

Ri
j

d T in which they are stable. In addition, a state SRi
j respects the following

constraints:
— S

Ep

k ∈ SEp ;
— SEs

l ∈ SEs ;
— I = T

S
Ep
k

◦ TSEs
l

is the time intersection between the validity time T
S

Ep
k

of SEp

k , and

the validity time TSEs
l

of SEs

l ;

— the validity time T
S

Ri
j

of the relationship state SRi
j is included in the interval of time I ,

that is T
S

Ri
j

d I .

- 26 -



L. Andriamampianina et al.

Our model concepts Property graph concepts
an entity state SEi

j a node
a relationship state SRi

j an edge
an entity type Yi a label tagged on a node

a relationship type Zi a label tagged on an edge
an entity identifier idEi

a property
a set of entity type attributes AYi

a set of properties
a set of relationship type attributes AZi

a set of properties
a validity time of an entity state T

S
Ei
j

two properties (start and end validity time)

a validity time of a relationship state T
S

Ri
j

two properties (start and end validity time)

TAB. 2 – Translation rules of our model into the property graph model.

Example 4.2. To track the temporal evolution of the bike life cycle, our model allows to select
the states of an entity or relationship in a time window. The Figure 4 illustrates a subgraph
of the temporal graph of the bike life cycle, i.e. the states of entities and relationships during
a time window W = [t4; t17]. We can see that the PRODUCT entity identified by the name
"Bike" has three states during W . Moreover, the SALE relationship has two states during W .
The other entities and relationships have only one state during W . We can track the different
temporal evolution types we discuss:

— The evolution type 1 and the evolution type 3 (defined at the beginning of this section)
are correlated. The entity type COMPONENT is only added during the interval of
time [t4; t5] as one of its instantiated entity is only added during this interval of time;

— The evolution type 2 (defined at the beginning of this section) is represented by:
(a) the deletion of the attribute "components" on the PRODUCT entity "Bike" be-
tween t10 and t12. Indeed, the PRODUCT entity "Bike" arrives at the sales depart-
ment at t12. The sales department does not need information about the components of
the "Bike" hence its deletion;
(b) the addition of the attribute "production" on the PRODUCT entity "Bike" be-
tween t10 and t12. The sales department must specify information about the production
place of the product "Bike" before its sale hence its addition;

— The evolution type 4 (defined at the beginning of this section) is illustrated by:
(a) the change in the value of the attribute "version" of the PRODUCT entity "Bike"
between t10 and t12;
(b) the change in the value of the attribute "quantity" of the relationship SALE be-
tween t15 and t17.

5 Temporal graph implementation
This section illustrates the feasibility of the implementation of our proposed modelling

solution with a specific data store. To do so, we first propose a set of translation rules to
convert our proposed generic modelling of temporal graph into a property graph model. Then,

- 27 -



A generic modelling to capture the temporal evolution in graphs

FIG. 5 – The temporal graph with a lifetime T = [t4; t17]. Nodes in blue represent the different
states of the product "Bike".

we implement our running example in a graph database system based on the translation rules.
Finally, we query the implemented temporal graph to validate that it is operational.

The property graph model is defined as a directed, labeled, attributed, multi-graph. The
edges are directed, nodes and edges are labeled, nodes and edges have associated key/value pair
attributes (i.e. properties), and there can be multiple edges between any two nodes (Rodriguez
and Neubauer, 2010). From a data modeling point of view, a node represents an entity, an edge
represents a relationship between entities, and a property represents a specific feature of an
entity or relationship (Angles, 2018). Therefore, we propose the translation rules in Table 2 to
convert our proposed generic modelling of temporal graph into a property graph data model.

The property graph model is widely supported by graph database systems such as Nep-

- 28 -



L. Andriamampianina et al.

FIG. 6 – A snapshot of the temporal graph at t5. t5 refers to the 10th January 2020. The query
language of Neo4j is Cypher. The date format in the Neo4j database system is year-month-day.

FIG. 7 – Selection of the temporal graph states at the time-window [t4; t12]. t4 refers to the 9th

January 2020 and t12 refers to the 22nd January 2020. Nodes in blue represent the different
states of the product "Bike". The query language of Neo4j is Cypher. The date format in the
Neo4j database system is year-month-day.

tune 3, CosmoDB 4, Neo4j 5 or OrientDB 6 (Angles, 2018). We choose to implement our model
in the Neo4j database system. Besides, our model is easily implementable in Neo4j thanks to
the translation rules we define.

We implement the entire temporal graph illustrated in Figure 4 in Neo4j. We have assigned

3. https://aws.amazon.com/neptune/
4. https://docs.microsoft.com/en-us/azure/ cosmos-db/introduction
5. https://neo4j.com/developer/graph-database/
6. https://orientdb.com/why-orientdb/

- 29 -



A generic modelling to capture the temporal evolution in graphs

real time values to each state validity time. In our case, a time ti corresponds to a day. The
result of our implementation is presented in Figure 5.

To verify that the temporal graph is operational, we first query the graph on the instant t5.
This results of the selection of the states having a validity time including t5 as illustrated in
Figure 6. We can only observe one state of the product "Bike". The result of this query is the
equivalent of a snapshot.

Then, we query the graph on the time window W = [t4; t12]. This results on the selection
of the states with a validity time overlapping W as illustrated in Figure 7. We observe two
states of the product "Bike". Therefore, it confirms that our model manage easily the individual
evolution of entities and relationships.

6 Conclusion

Modelling the temporal evolution in a graph requires to adopt a strategic approach. On
the one hand, it requires to include the temporal evolution type that the application wants
to capture. On the other hand, it requires to include a mechanism to manage the temporal
evolution.

In this paper, we have answered these two challenges. First, our model has the advantage
to capture different temporal evolution types as it relies on different abstraction levels. The
second advantage of our model is that it proposes a mechanism to manage the temporal evolu-
tion which is alternative to existing snapshots based models. Instead of replicating the whole
graph, our model only replicates the changing entities and their relationships through the con-
cept of states. This results in an easier evolution tracking of individual graph components.
The third advantage of our model is that it is easy to implement. It does not require specific
developments to be translated into a graph database model.

Our future research directions concern first the evaluation of the performance of our pro-
posal implementation in different graph database systems and then, the temporal graph manip-
ulation. Regarding the performance of the implementation of our proposal, our main concern
deals with scalability. We plan to test the scalability of our proposal according to the propor-
tion of evolution in a dataset. Regarding the temporal graph manipulation, our objective is to
define a high-level language for querying our temporal graph combining different principles:
extension and adaptation to our context of (i) database query languages based on versions (ii)
specific operators of temporal graphs and (iii) inferences on graphs.

References

Ahmed, N. K., F. Berchmans, J. Neville, and R. Kompella (2010). Time-based sampling
of social network activity graphs. In Proceedings of the eighth workshop on mining and
learning with graphs, pp. 1–9.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM 26, 832–843.

Angles, R. (2018). The Property Graph Database Model. In AMW.

- 30 -



L. Andriamampianina et al.

Angles, R. and C. Gutierrez (2008). Survey of graph database models. ACM Computing
Surveys (CSUR) 40, 1–39.

Bonifati, A., P. Furniss, A. Green, R. Harmer, E. Oshurko, and H. Voigt (2019). Schema
validation and evolution for graph databases. In International Conference on Conceptual
Modeling, pp. 448–456. Springer.

Borgwardt, K., H.-p. Kriegel, and P. Wackersreuther (2006). Pattern Mining in Frequent Dy-
namic Subgraphs. In Sixth International Conference on Data Mining (ICDM’06), Hong
Kong, China, pp. 818–822. IEEE.

Brunsmann, J. (2011). Semantic Exploration of Archived Product Lifecycle Metadata under
Schema and Instance Evolution. In SDA, pp. 37–47. Citeseer.

Canavaggio, J.-F. (1997). TEMPOS : an historical model for a temporal DBMS. Theses,
Université Joseph-Fourier - Grenoble I.

Chan, J., J. Bailey, and C. Leckie (2008). Discovering correlated spatio-temporal changes in
evolving graphs. Knowledge and Information Systems 16, 53–96.

Desmier, E., M. Plantevit, C. Robardet, and J.-F. Boulicaut (2012). Cohesive co-evolution
patterns in dynamic attributed graphs. In International Conference on Discovery Science,
pp. 110–124. Springer.

Ebert, J. and A. Franzke (1994). A declarative approach to graph based modeling. In Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, pp. 38–50. Springer.

Fard, A., A. Abdolrashidi, L. Ramaswamy, and J. Miller (2012). Towards Efficient Query
Processing on Massive Time-Evolving Graphs. In Proceedings of the 8th IEEE Interna-
tional Conference on Collaborative Computing: Networking, Applications and Workshar-
ing. IEEE.

Ghrab, A., O. Romero, S. Skhiri, A. Vaisman, and E. Zimányi (2016). Grad: On graph database
modeling. CoRR abs/1602.00503.

Gómez, L., B. Kuijpers, and A. Vaisman (2019). Online Analytical Processsing on Graph
Data. arXiv:1909.01216 [cs].

Holme, P. and J. Saramäki (2012). Temporal networks. Physics reports 519(3), 97–125.
Khurana, U. and A. Deshpande (2013). Efficient snapshot retrieval over historical graph data.

In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 997–1008.
IEEE.

Kostakos, V. (2009). Temporal graphs. Physica A: Statistical Mechanics and its Applica-
tions 388(6), 1007–1023.

Maduako, I., M. Wachowicz, and T. Hanson (2019). STVG: an evolutionary graph framework
for analyzing fast-evolving networks. Journal of Big Data 6, 55.

Rodriguez, M. A. and P. Neubauer (2010). Constructions from Dots and Lines.
CoRR abs/1006.2361.

Vernet, M., Y. Pigné, and E. Sanlaville (2018). Algorithmique dans les graphes dynamiques :
le cas des flots. In ROADEF 2018.

Yang, Y., J. X. Yu, H. Gao, J. Pei, and J. Li (2014). Mining most frequently changing compo-
nent in evolving graphs. World Wide Web 17(3), 351–376.

- 31 -



A generic modelling to capture the temporal evolution in graphs

Zaki, A., M. Attia, D. Hegazy, and S. Amin (2016). Comprehensive Survey on Dynamic Graph
Models. International Journal of Advanced Computer Science and Applications 7, 573–582.

Zhao, A., G. Liu, B. Zheng, Y. Zhao, and K. Zheng (2020). Temporal paths discovery with
multiple constraints in attributed dynamic graphs. World Wide Web 23, 313–336.

Résumé
Un graphe temporel est basé sur deux aspects: c’est un graphe qui modélise l’intercon-

nexion des données et qui inclut une dimension temporelle pour modéliser l’évolution tempo-
relle des données. Les graphes temporels sont couramment utilisés dans différents domaines
pour capturer les différents types d’évolution qui se produisent dans un graphe au fil du temps.
Cependant, les solutions de modélisation du graphe temporel existantes ne permettent pas de
gérer tous les types d’évolution temporelle dans le monde réel. Dans cet article, nous proposons
un modèle générique capable de gérer l’évolution temporelle à différents niveaux: au niveau
du schéma pour capturer l’évolution temporelle dans la structure de données du graphe, et au
niveau d’instance pour capturer l’évolution temporelle des données contenues dans les entités
et leurs relations ainsi que l’évolution temporelle de la topologie du graphe. Nous complétons
notre proposition de solution de modélisation avec un ensemble de règles de traduction com-
patibles avec le modèle de graphe de propriétés. La faisabilité de notre proposition est illustrée
par une implémentation de notre modèle dans le système de base de données Neo4j.

- 32 -


	Articles longs
	A generic modelling to capture the temporal evolution in graphs Landy Andriamampianina, Franck Ravat, Jiefu Song, Nathalie Vallès-Parlangeau


