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Abstract. To optimize queries in relational databases, two categories of
optimization techniques have been proposed : the Rule-Based Approach
(RBA), and the Cost-Based Approach (CBA). In the RBA, the optimizer
uses rule transformations using the relational algebra. In the CBA, the
optimizer uses a cost model to estimate the potential cost of each ope-
ration using statistics about the database and the tables involved in the
query. Usually both categories are implemented by commercial DBMSs
and are often intermixed. In multidimensional databases however, most of
query optimization techniques follow only the CBA to select optimization
structures such as : materialized views, advanced indexing schemes and
data partitioning. No approach has been proposed yet to rewrite OLAP
queries using a multidimensional algebra. In this paper, we show that
the RBA can be applied to multidimensional databases by rewriting each
OLAP query to obtain an efficient rewritten query that can be executed
using a CBA. In particular, we show that the RBA can be used to take
into account one of the specificities of OLAP which is the visualization
of the OLAP query result. We propose a multidimensional algebra that
represents the core of our RBA optimization, and we show how rewritten
queries can be processed using the CBA proposed for multidimensional
databases.

1 Introduction

A data warehouse (DW) integrates massive amounts of data from multiple
sources. In a DW, users access very large databases to carry out strategic analy-
sis for maintaining business competitiveness by executing complex OLAP queries
[Karloff et Mihail, 1999]. This complexity is due to the presence of join and aggre-
gation operations. Therefore, an efficient query processing becomes a critical issue. To
optimize these complex queries, several techniques were proposed that we can divide
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into two categories : redundant-structures and non redundant-structures. In the first
category, we can find materialized views [Gupta, 1997, Kotidis et Roussopoulos, 1999,
Ross et al., 1996, Theodoratos et Sellis, 1997, Yang et al., 1997] and indexing schemes
(b-tree, bitmap, join indexes, bitmap join indexes, etc.) [Chaudhuri, 2004]. All these
structures need a space storage and a maintenance overhead. Structures in the second
category are those which do not need an extra storage space. For example, horizon-
tal and vertical data partitioning [Bellatreche et al., 2004, Sanjay et al., 2004], parallel
processing [Molina et al., 1998]. All these structures are supported by commercial sys-
tems [Zilio et al., 2004, Sanjay et al., 2004].

We focus on relational data warehouses, where a data cube is stored using a star
schema [Kimball, 1996]. The database thus consists of a huge fact table and multiple
dimensions tables. Dimensions are hierarchically structured. Queries typically perform
aggregations on the fact table based on selection among the available dimension levels.
These queries are called star join queries which can be optimized using redundant
structures as bitmap indexes. But these structures still involve substantial processing
and I/O cost for high cardinality attributes and thus high storage overhead.

In the traditional databases, query optimization is done using two approaches : rule
based approach (RBA), and cost-based approach (CBA). In the RBA, the optimizer
uses rule transformations using the relational algebra. A set of rewriting rules can be
used to generate directly the optimized form of the query. In general, these rewriting
rules are based on relational algebra equivalences. For example, since a selection can
commute with a join (joins are typically expensive operations [Lei et Ross, 1998]), a
classical rewriting rule pushes the selection conditions ahead of the joins, or picks the
most ”promising” relation to join next (Oracle). In the CBA, a cost model assigns an
estimated cost to any partial or complete plan in the search space. It also determines
the estimated size of the data stream for output of every relational operator (selection,
projection, join, etc.) in the plan. This cost model can estimate the CPU and I/O costs
of query execution for every operator, by taking into account the statistical properties
of its inputs data streams, or its existing access methods. The accuracy of the cost
estimation depends on both the quality of the cost model and on the accuracy of the
statistical information used. Most of commercial systems offer the two approaches.

In an OLAP environment, no approach has been proposed yet to rewrite OLAP
queries using a multidimensional algebra. In this paper, we show that the RBA can
be applied to multidimensional databases by rewriting each OLAP query to obtain an
efficient plan that can be executed using a CBA (see Figure 1). In particular, we show
that the RBA can be used to take into account one of the specificities of OLAP which
is the visualization of the OLAP query result.

To reach this goal, we propose to describe both datacubes and their structure in a
single logical model. Then, we translate the main OLAP operators in our model and
give rewriting rules involving these operators. These rewriting rules can be used to
obtain the optimized form of an OLAP query. For example, to optimize aggregation
operation, we propose a rewriting rule that pushes the selection conditions on members
ahead of the aggregates. Note that in this paper we do not take into account the physical
definition of the algebraic operators.

In this framework, we also study the possibilities of optimizing OLAP queries based
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on the visualization of a cube on a screen. Our proposed optimization technique consists
in determining which part of the query output will be displayed on the screen. In
general, this part is the first two-dimensional slice of the cube, which is also a cube. In
this article, we show that this slice can be computed by adding selection conditions to
the initial OLAP query. Note these conditions are mainly obtained by computing the
structure of the cube to be visualized.

The intuition behind our optimization approach is as follows : given a cube C and
an OLAP query q over C, let us denote by q(C) the answer to q. We first compute
the selection conditions ϕ that defines the first two-dimensional slice of C ′ = q(C).
This step requires the computation of the structure of the cube C ′. Then, we add
the selection conditions ϕ to the initial OLAP query and we use the rewriting rules to
push them ahead of the aggregates and joins. The rewriting process is done in the main
memory without accessing base tables. Finally, the rewritten query will be executed
using CBA.

Rule-based rewriting
Cost-based execution

Userquery
Algebra

Cost-Model

MainmemoryDisk
Fig. 1 – The Execution Strategy using our Approach

To the best of our knowledge, this is the first paper combining RBA and CBA
approaches to optimize OLAP queries. The main contributions of this paper are that :
(a) we propose a logical model to describe both datacubes and their structures, this
model represents the core of our RBA approach (Section 3 and 4), (b) we propose an
optimization technique of OLAP queries using rewriting rules (Section 5), and (c) we
show the utility of combining the two approaches through a cost model (Section 6).
We start by motivating our approach in the next section.

2 A Motivating Example

Let us consider the cube C0, inspired by the example given in [Corporation, 1998],
and the star schema of which is presented Figure 2. The dimensions of this cube are :
Y ear (the different years), Quarter (the months grouped in quarters), Location (the
cities grouped in regions and countries), Product (the items grouped in categories),
and Salesman (the different salespersons).
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Fig. 2 – The star schema of the cube C0

All the dimensions are hierarchically structured, for example the hierarchy of di-
mension Quarter is : All Quarter → quarter → month.

Consider now the following OLAP query q that aims to at presenting the cumulated
sales of food and cumulated sales of beer and wine, detailed by salespersons and
quarters. Using the MDX language proposed by Microsoft [Corporation, 1998], q
can be expressed by :

WITH MEMBER drink.Mydrink AS ’wine + beer’
SELECT
{[quarter].MEMBERS} ON COLUMNS,
CROSSJOIN([Name].MEMBERS, [North].CHILDREN) ON ROWS
{Mydrink, Food} ON PAGES
year.MEMBERS ON SECTIONS
FROM Co
WHERE [sales]

The final output of this query is presented Figure 3. Note that in this figure, we
only visualize the first two-dimensional slice of the answer of the query. Indeed, we only
see the cumulated sales of drinks beer and wine for year 1988. Thus, in order to obtain
the visualization presented Figure 3, it is neither necessary to compute the cumulated
sales of food, nor the cumulated sales of drinks beer and wine for years other than year
1988. In our approach, it means that we will add to the initial query q the selection
conditions (category = drink) and (year = 1988). Then, we will push these selection
conditions ahead of the aggregates.

In our approach, we know precisely that the data visualized Figure 3 are the cumu-
lated sales of drinks beer and wine for year 1988. It follows from the fact that in our
model, the position of the members on the axes are explicitly represented. Thus, if the
user wants to see the cumulated sales of another category of product or for another
year, he has to use the restructuring operators of the language. For example, he can
switch the position of year 1988 with the position of another year to see the cumulated
sales for another year. Or he can nest the axes A2 and A4 to visualize the cumulated
sales of beer and wine for every year.
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A1 A3

bill north lille 40 60 60 70 drink
blois 10 20 30 20 ↑
paris 30 90 50 60 beer,wine

...
john north lille 70 70 50 50 A4

blois 20 30 20 20 1988
paris 50 50 90 80

A2 q1 q2 q3 q4

Fig. 3 – Visualization of the MDX query q

3 Cube Model

Our notion of cube extends the classical star-schema model [Kimball, 1996] by ad-
ding a structure component. This structure component defines how the cube is to be
displayed to the user. The structure component models a multidimensional cross-tab,
and allows to precisely describe e.g., on which axis the members of a dimension are
located and in which order. In our approach, cubes are manipulated mainly by using
the classical restructuring OLAP operators like nest or switch [Marcel, 1999]. We now
turn to the formal definition.

Cube An N -dimensional cube C is a triple C = 〈D, F, S〉 where :
– D = {D1, . . . , DN} is the set of dimension tables Di of C, i ∈ [1, N ],
– F is the fact table of C, that describes the facts at a particular level of detail,
– S is the structure of C.
The components D, F and S of a given cube C are defined and illustrated below.
As usual in a star-schema, a dimension is a relation that represents each level of

details of a hierarchy over which the facts can be aggregated.

Dimension tables A dimension Di, i ∈ [1, N ], is a relation of schema sch(Di) =
{L0

i : dom(L0
i ), L

1
i : dom(L1

i ), . . . , L
qi

i : dom(Lqi

i )}.
Each attribute Lj

i represents a level of detail j in the dimension i, and thus dom(Lj
i )

is the set of members at level j for dimension Di. qi is the deepest level of detail for
dimension Di. If v ∈ Lj

i is a member, the ancestor anc(v) of v is v′ ∈ dom(Lj−1
i ) such

that v′ = πLj−1
i

(σLj
i=v(Di)).

Example 1 We consider two cubes :
– The cube C0 of Section 2, and the star schema of which is presented Figure 2. In

our model, C0 is a tuple C0 = 〈D0, F0, S0〉.
– The cube C6 which is the result of the query q of Section 2 over the cube C0, and

which first slice can be seen Figure 5. In our model, C6 = 〈D6, F6, S6〉.
Let us detail the dimensions of cubes C0 and C6.
D0 = {Y ear,Quarter, Location, Product, Salesman} with :
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– sch(Y ear) = {All Y ear, year}, – sch(Quarter) =
{All Quarter, quarter,month},

– sch(Location) = {All Location, country, region, city},
– sch(Product) = {All Product, category, item},
– sch(Salesman) = {All Salesman, name}.

Let us detail the dimension Quarter of the cube C0. This dimension is a relation
over the schema sch(Quarter) = {All Quarter, quarter,month}. The domains of the
attributes All Quarter, quarter and month are respectively : dom(All Quarter) =
{all}, dom(quarter) = {q1, q2, q3, q4}, dom(month) = {jan, . . . , dec}. A tuple of this
dimension is 〈all, q1,mar〉. Obviously we have that anc(mar) = q1.

The dimensions of the cube C6 are the following :
D6 = {Y ear′, Quarter′, Location′, P roduct′, Salesman′} where :

– sch(Y ear′) = {year}, – sch(Quarter′) = {quarter},
– sch(Location′) = {region, city} , – sch(Product′) = {category, item},
– sch(Salesman′) = {name}.

Note that the dimension Quarter′ of the cube C6 is a relation over the schema
sch(Quarter′) = {quarter}, since quarter is the only attribute of the dimension
Quarter the user wants to see for the cube C6.

As for the dimensions, the fact table is defined in much the same way as in a star-
schema.

Fact table A fact table F is a relation of schema sch(F ) =
{Ld1

1 : dom(Ld1
1 ), . . . , LdN

N : dom(LdN

N ),m1 : dom(m1), . . . ,mp : dom(mp)}
such that, for every i, 0 ≤ di ≤ qi.

An instance of F is the set of facts of the cube at level di for dimension Di. The
mi are attributes describing the measures.

Example 2 The fact table of the cube C0 is a relation over the schema sch(F0) =
{year,month, city, item, name, sales}, where sales is a measure attribute and the facts
are presented at the deepest level of details in each dimension. An example of fact in
F0 is the tuple 〈1988, jan, paris,milk, john, 07〉.

The fact table of the cube C6 is a relation over the schema sch(F6) =
{year, quarter, city, category, name, sales}. An example of fact in F6 is the tuple
〈1988, q1, paris, drink, john, 50〉.

To precisely describe the cross-tab used to display a cube, we need to know the
following information : the number of axes of the cross-tab, what are the dimensions
on the different axes, what are the positions of the members on an axis, and at which
level of details the measures are represented.
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The structure The structure S of the cube is a 4-tuple S = 〈K, axis, pos, depth〉
where :

– K is the number of axes.
– axis is a function that defines which dimensions appear on which axis, and spe-

cifies the order of the dimensions on each axis. It mapps each integer i in [1,K]
to a totally ordered set (Ei,≺i) where Ei ⊆ D.

– pos is a function that associates to every attribute Lj
i of each dimension Di a

total order on it. pos(Lj
i ) specifies the order of the members on an axis.

– depth indicates the level of detail of a fact for a given dimension. It is a function
defined from D to

⋃
Di∈D sch(Di). We can note that depth(Di) = Ldi

i if sch(F ) =
{Ld1

1 , . . . , LdN

N }.
Example 3 The structure of the cube C0 is S0 = 〈5, axis, pos, depth〉 where :

– The function axis is defined by :
– axis(1) = ({Y ear},≺1), – axis(2) = ({Quarter},≺2),
– axis(3) = ({Location},≺3), – axis(4) = ({Product},≺4) and
– axis(5) = ({Salesman},≺5).
Note that since the ordered sets axis(k), k ∈ [1, 5] are singletons, the orders ≺k

are trivial.
– Let <year, <category and <item be the total orders associated by function pos to

attributes year, category and item, respectively. They are such that :

– 1988 <year . . . <year 2004, – drink <category . . . <category food,
– milk <item . . . <item beer.

– The function depth is defined by depth(Y ear) = year, depth(Quarter) = month,
depth(Location) = city, depth(Product) = item and depth(Salesman) = name.

The visualization of C6 of Figure 5(c) shows a case of nesting several dimensions
on the same axis. The structure of the cube C6 is S6 = 〈4, axis′, pos′, depth′〉 where :

– The function axis′ is defined by :
– axis′(1) = ({Salesman,Location},≺′1) with Salesman ≺′1 Location,
– axis′(2) = ({Quarter},≺′2), – axis′(3) = ({Product},≺′3),
– axis′(4) = ({Y ear},≺′4).

– For every attribute Lj
i , pos′(Lj

i ) is the restriction of pos(Lj
i ) to adom(Lj

i ).
– The function depth′ is defined by depth′(Y ear) = year, depth′(Quarter) =

quarter, depth′(Location) = city, depth′(Product) = category and
depth′(Salesman) = name.

4 Operations

In this section, we translate the most typical OLAP operators [Marcel, 1999] into
our model. We consider the following OLAP operators, that are classified according to
3 categories :
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A1 A3

2004 04 02 alll
2003 30 30 ↑
2002 20 70 france
2001 10 60 ↑
2000 10 40 north
1999 20 02 ↑
1998 15 06 paris

ally 1997 20 30 A4

1996 02 05 allp
1995 20 60 ↑
1994 10 40 drink
1993 01 40 ↑
1992 02 20 milk
1991 60 02 A5

1990 30 40 alls
1989 10 08 ↑
1988 07 70 john

jan . . . dec
q1 . . .

A2 allq

The first 2-dimensional slice of C0

A1 A3

2004 10 20 20 10 north
2003 50 70 50 60 ↑
2002 60 60 80 80 paris
.
..
1995 40 50 80 70 A4

1994 50 80 30 50 drink
1993 10 70 40 50 ↑
1992 10 80 40 30 milk
..
.
1989 40 50 50 10 A5

1988 20 50 70 80 john
A2 q1 q2 q3 q4

(b) C2 = πyear(πquarter(πregion,city(
πcategory,item(name(C1)))))

A1 A3

2004 10 20 20 10 alll
2003 50 70 50 60 ↑
2002 60 60 80 80 france
2001 70 50 40 70 ↑
2000 40 80 10 80 north
1999 50 30 10 10 ↑
1998 50 30 70 10 paris

ally 1997 40 50 30 70 A4

1996 10 40 50 10 allp
1995 40 50 80 70 ↑
1994 50 80 30 50 drink
1993 10 70 40 50 ↑
1992 10 80 40 30 milk
1991 80 40 50 10 A5

1990 70 70 10 50 alls
1989 40 50 50 10 ↑
1988 20 50 70 80 john

q1 q2 q3 q4

A2 allq

(a) C1 =
Aggregatemonth→quarter,sum(sales)(C0)

A1 A3

2004 40 30 20 40 north
2003 50 50 40 50 ↑
2002 60 40 30 50 paris
.
.. A4

1992 70 80 50 70 drink
1991 60 40 60 80 ↑
1990 60 70 50 40 beer
1989 50 50 30 10 A5

1988 30 40 70 70 john
A2 q1 q2 q3 q4

(c) C3 =
σmember

item=beer∨item=wine∨category=food(C2)

Fig. 4 – Outputs of steps 1-3. On each figure, the left-hand side displays the first
2-dimensional slice of the cube, and the right-hand side displays the member at the
lowest position for each hidden axis.
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A1 A3

2004 60 60 40 50 north
2003 80 90 90 90 ↑
2002 70 50 70 80 paris
... A4

1992 80 90 60 80 drink
1991 80 50 70 90 ↑
1990 70 80 60 50 beer,wine
1989 90 90 50 20 A5

1988 50 50 90 80 john
A2 q1 q2 q3 q4

(a) C4 = Aggregateitem→category;sum(sales)(C3)

A1 A3

bill 30 90 50 60 north
rose 30 10 90 90 ↑
irma 70 60 70 10 paris
kate 90 60 50 10 A4

lara 90 90 70 10 drink
averell 10 30 30 90 ↑
jack 10 60 50 60 beer,wine
joe 90 70 30 10 A5

john 50 50 90 80 1988
A2 q1 q2 q3 q4

(b) C5 = Permute5,1(C4)

A1 A3

bill north lille 40 60 60 70 drink
blois 10 20 30 20 ↑
paris 30 90 50 60 beer,wine

.

..
john north lille 70 70 50 50 A4

blois 20 30 20 20 1988
paris 50 50 90 80

A2 q1 q2 q3 q4

(c) C6 = Nest1(3)(σregion=north(C5))

Fig. 5 – Outputs of steps 4-6

– Restructuring operators that change the viewpoint on data. Operators in this
category are Permute, Switch, Nest, Order by.

– Operator that change the level of detail. We consider the Aggregate operator that
groups the members of a dimension and then aggregates the measures accordingly.

– Filtering operators, that are mainly the extension of classical selection and pro-
jection to cubes.

We introduce the different operators on an example, the formal definitions are given
in the Appendix.

Example 4 We use as an example the following query over C0, which is the translation
of the query q of Section 2 into our algebra :

Nest1(3)(σmember
region=north(Permute1,5(Aggregateitem→category;sum(sales)(

σmember
item=beer∨item=wine∨category=food(πyear(πquarter(πregion,city(

πcategory,item(πname(Aggregatemonth→quarter;sum(sales)(C0)))))))))))

We decompose the query and examine the different steps independently. The first
step, i.e. :
C1 = Aggregatemonth→quarter;sum(sales)(C0), allows to present the data at level quarter
by rolling up from the current level month of the C0 cube.

We now illustrate the filtering operations in step 2 and 3 of the query :

– step 2 : C2 = πyear(πquarter(πregion,city(πcategory,item(πname(C1)))))
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– step 3 : C3 = σmember
item=beer∨item=wine∨category=food(C2)

The outputs of these two steps are given in Figure 4(b) and 4(c), respectively, where
we see the first slice of the resulting cubes. These two steps reduce the amount of
displayed facts (for selection) and displayed hierarchies (for projection).

Remark 1 Note that after step 3, the displayed slice has changed. This is due to the
fact that the item milk, that was at the lowest position on axis A4 in C2 is no more
selected in cube C3. Then among the selected items, the one at the lowest position, beer,
is displayed first. Note also that in our formalism, a selection on members changes the
dimension part of the cube in such a way that a dimension represents the hierarchy
that has been used to aggregate the data. Thus, for a given dimension, selection on
members cannot be applied on a member attribute that identifies a level deeper than the
level currently displayed (e.g., selection cannot be applied on the item level if the facts
are depicted at the category level). Otherwise the measures displayed would no more
correspond to the hierarchy displayed. The same remark holds for the projection opera-
tion. Finally, note that the projection operation allows to choose among all the levels
of a hierarchy, the ones that the user wants to see, since by default all the hierarchical
levels are displayed.

Step 4, i.e. C4 = Aggregateitem→category;sum(sales)(C3) illustrates a way of changing
the level of detail of the cube. Intuitively, the Aggregate operation groups and aggregates
the data according to the groupings defined by the dimensions. The output of step 4 is
given in Figure 5(a).

The last operations to be considered are the restructuring operations. These operations
allow to exchange the positions of two axes (Permute), exchange the positions of two
members (Switch), nest two axes (Nest) or order the members on an axis (Orderby).
Permute and Nest are illustrated by the following steps :

– step 5 : C5 = Permute5,1(C4) – step 6 : C6 = Nest1(3)(σregion=north(C5))

The outputs of these two steps are given in Figure 5. Note that these operations do
not change the facts of the cubes, but only the way they are displayed.

Summary of the operators The table of Figure 6 summarizes the influence of the
operators over the three components D, F and, S of a cube C = 〈D, F, S〉.

Note that q can be decomposed in q1, q2, q3 such that : C ′ = 〈q1(D), q2(F,D), q3(S)〉.
This follows from the definition of the algebraic operators and the definition of a cube.
For example the structure of a cube is independent from both its facts and its dimen-
sions, and thus the structure of the result of a query can be computed independently
from its facts and dimensions.

Rewriting rules Figure 7 shows the rules we defined for transforming any OLAP
query. Note that the last rule r13 is valid since in our formalism, selection cannot
be applied on an attribute that identifies a level deeper than the displayed level (see
Remark 1). For example, on cube C6 displayed in Figure 5(d), selection on item, e.g.,
item = beer is not allowed, because facts are displayed at the category level. To express
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Changes D F S
Permute

√
Switch

√
Nest

√
Order by

√
Project members

√ √
Project measures

√
Aggregate

√ √
Select members

√ √ √
Select measures

√

Fig. 6 – Influence of the algabraic operators

Nesti(j)(Permutek,l(C)) = Permutek′,l′(Nesti(j)(C)) if i, j /∈ {k, l} r1

Nesti(j)(Permutei,l(C)) = Permutei′,l′(Nestl(j)(C)) if l /∈ {i, j} r2

Nesti(j)(Permutej,l(C)) = Rotate[l′,j′](Nesti(l)(C)) if l /∈ {i, j} r3

Nesti(j)(Permutek,j(C)) = Rotate[k′,j′](Nesti(k)(C)) if k /∈ {i, j} r4

Nesti(j)(Permutei,j(C)) = Rotate[i′,j′](Nestj(i)(C)) r5

Nesti(j)(SwitchLl
k
;v,v′(C)) = SwitchLl

k
;v,v′(Nesti(j)(C)) r6

Nesti(j)(πL
j1
i ,..., L

jp
i

(C)) = π
L

j1
i ,..., L

jp
i

(Nesti(j)(C)) r7

Permutei,j(SwitchLl
k
;v,v′(C)) = SwitchLl

k
;v,v′(Permutei,j(C)) r8

Permutei,j(π
L

j1
i ,...,L

jp
i

(C)) = π
L

j1
i ,...,L

jp
i

(Permutei,j(C)) r9

Switch
L

j
i ;v,v′(πL

j1
i ,...,L

jp
i

(C)) = π
L

j1
i ,...,L

jp
i

(Switch
L

j
i ;v,v′(C)) r10

σϕ(Op(C)) = Op(σϕ(C)) r11

Aggregate
L

di
i →L

j
i ; f(m)

(Op(C)) = Op(Aggregate
L

di
i →L

j
i ; f(m)

(C)) r12

σmembers
ϕ (Aggregate

L
di
i →L

j
i ; f(m)

(C))) = Aggregate
L

di
i →L

j
i ; f(m)

(σmember
ϕ (C))) r13

Fig. 7 – Rewriting rules for OLAP algebra. In r1, r4 : if j < k then k′ = k − 1 else
k′ = k. In r1, r2, r3 : if j < l then l′ = l− 1 else l′ = l. In r2, r5 : if j < i then i′ = i− 1
else i′ = i. In r3, r4, r5 : if l < j, k < j or i < j then j′ = j − 1 else j′ = j.

the rules in an user-friendly way, we define the Rotate operation as follows (◦ denotes
the composition of operations) :

(a) Rotate[i,j](C) = (◦j−1
k=iPermutek,k+1)(C)) if i < j, and

(b) Rotate[i,j](C) = (◦j
k=i−1Permutek,k+1)(C)) if i > j.

In this figure, Op ∈ {Permute, Switch,Nest, π}, σ denotes a selection on measures or
members and π denotes a projection on measures or members.

Example 5 As an example, consider the translation of query q into our algebra (see
Example 4). This query can be rewritten using rule r11 and r13 to push selections ahead
of aggregations, projections and permute. The rewritten query is :

Nest1(3)(Permute1,5(Aggregateitem→category;sum(sales)(πyear(πquarter(
πregion,city(πcategory,item(πname(Aggregatemonth→quarter;sum(sales)(
σmember

region=north(σmember
item=beer∨item=wine∨category=food(C0)))))))))))
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5 Optimization

In this section, we propose an optimization technique at the logical level for OLAP
queries. We first introduce this technique informally.

5.1 Intuition

Our optimization technique consists in the following two steps :
1. Determine which part of the query output will be displayed on the screen. As-

suming that we can visualize data in V dimensions, this part is the first V-
dimensional slice of the cube, which is also a cube. This slice can be computed
by adding selection conditions to the initial query. These conditions are obtained
by only computing the dimensions and structure of the answer to the query.

2. Once the selection conditions are added to the query, the rewriting rules are used
to push the selections ahead of the Aggregate operations, assuming this operation
is the most costly.

We now illustrate these two steps.

Step 1 : Let C = 〈D, F, S〉 be a N -dimensional cube, q be a query over C and
C ′ = q(C) = 〈D′, F ′, S′〉 be the results of the query. Evaluating q means computing the
different parts D′, F ′ and S′ of C ′, which can be written C ′ = 〈q1(D), q2(F,D), q3(S)〉.
To find the first V-dimensional slice of C ′, we only need to know what are the members
on the axes of C ′ and what are the positions of these members, so computingD′ = q1(D)
and S′ = q3(S) is sufficient. If only V dimensions are used to display the cube C ′, V
axes are fully displayed, and the facts displayed are the facts for the members at the
lowest positions on the remaining axes (called the hidden axes). This defines the first
V-dimensional slice of C ′. Hence, this slice can be seen as the cube C ′ on which we have
selected the members at the lowest positions on the hidden axes. Determining these
selection conditions is done by the function FirstSliceSelection, presented Figure 9.

Step 2 : The selection conditions computed in Step 1, referred to as ϕ, are added to
the selection conditions of the original query q, resulting in a new query σmember

ϕ (q(C)).
The rewriting rules are then used to obtain a query q′ where the selections are pushed
ahead of aggregations. This query q′ is such that q′ = 〈q′1(D), q′2(F,D), q′3(S)〉. It is
then sufficient to compute q′2(F,D) since :

1. q′1(D) ⊆ q1(D) and q1(D) has already been computed in step 1,
2. q3(S) = 〈K3, axis3, pos3, depth3〉 has already been computed in step 1, and q′3(S)

is 〈K, axis3, pos′3, depth3〉 where, for all attributes Lj
i , pos′3(L

j
i ) is the restriction

of pos3 to the active domains of the attributes.
The principle of our optimization technique is summarized in Figure 8.

5.2 The optimization algorithm

The function FirstSliceSelection is presented Figure 9. Let us examine each step
of the function :
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q(C)
↓ FirstSliceSelection

σmember
ϕ (q(C))

↓ rewriting rules
q′(C) = 〈q′1(D), q′2(F, D), q3(S)〉

↓ evaluation of q′2
F ′ = q′2(F, D)

Fig. 8 – Summary of the optimization technique

Function FirstSliceSelection

Input : A cube C and an OLAP query q
Output : A selection condition ϕ such that σmembers

ϕ (q(C)) is the first V -dimensional
slice of q(C)

Use : The size V of the slice to be visualized

1. Compute the structure S′ of cube C′ = q(C)
2. Compute the dimensions D′ of cube C′ = q(C)
3. Let D′ = {D′1, . . . , D′N}
4. Let S′ = 〈K′, axis′, pos′, depth′〉 and ϕ = true
5. For l = V + 1 to K′ do
6. Let (El,≺l) = axis′(l)
7. For every D′i ∈ El do
8. Let v = minpos′(depth′(D′i))

(πdepth′(D′i)
(D′i))

9. ϕ = ϕ ∧ (depth′(D′i) = v)
10. End for
11. End for
12. Return ϕ

Fig. 9 – Identification of the first V -dimensional slice of a cube
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Optimization Algorithm

Input : A cube C and an OLAP query q
Output : An optimized query q′

1. Let ϕ = FirstSliceSelection(C, q)
2. Rewrite σmember

ϕ (q(C)) using the rewriting rules
3. Return q′ the rewritten query

Fig. 10 – The optimization algorithm

1 This step computes the structure of the result.
2 This step computes the dimensions of the result.
4 This steps initialises the selection condition.
5 This loop explores each hidden axis.
7 This loop explores every nested dimension on the hidden axis.
8 This step finds the member at lowest position for the level of the dimension at

which the facts are displayed.
The full algorithm is presented in Figure 10. We illustrate the different steps of the

algorithm on an example.

Example 6 Consider the cube C6 = 〈D6, F6, S6〉, and recall that
S6 = 〈4, axis′, pos′, depth′〉. Suppose that V = 2, meaning that we can only visualize
the first two-dimensional slice of C6. Thus there are two hidden axes, and l varies
from 3 to 4. Let us detail the execution of the body of the loop of step 5 in function
FirstSliceSelection.

When l = 3, we have axis′(3) = ({Product},≤′3) and category = depth′(Product′).
Let <′category be the total order associated by pos′ with attribute category. We have
drink = min<′category

(πcategory(Product′)}), and thus ϕ = ϕ ∧ (category = drink).
When l = 4, we have axis′(4) = ({Y ear},≤′4) and year = depth′(Y ear′). Let <′year

be the total order associated by pos′ with attribute year.
Since 1988 = min<year (πyear(Y ear′)}), we have ϕ = ϕ∧ (year = 1988) = (category =
drink)∧ (year = 1988) which concludes the execution of function FirstSliceSelection.
After application of the rewriting rules of Figure 7, the optimized query is :

Permute1,5(Nest1(3)(πyear(πquarter(πregion,city(πcategory,item(πname(
Aggregateitem→category;sum(sales)(Aggregatemonth→quarter,sum(sales)(
σmember

ϕ (C0))))))))))
where ϕ = (region = north ∧ (item = beer ∨ item = wine ∨ category = food)) ∧
(year = 1988 ∧ category = drink). Moreover it is easy to see that ϕ can be simplified
as (region = north ∧ (item = beer ∨ item = wine) ∧ year = 1988).

6 Translation into the relational algebra

In our cube model, the parts D and F are regarded as the components of a star
schema. Thus a straightforward translation of the optimized query into the relational
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algebra can be given by considering only the algebraic operators that operate on these
parts (see the table of Figure 6). We illustrate this translation on an example.

Example 7 Let F0 be the fact table of cube C0. The fact table F ′ of the result of q′,
the optimized version of q is :
F1 = πyear,quarter,city,item,name,sum(sales)(πsch(F0)(F0 ./city σregion=north(Location)

./item σitem=beer∨item=wine(Product) ./year σyear=1988(Y ear)) ./month Quarter)
F ′ = πyear,quarter,city,category,name,sum(sales)(F1 ./item Product)

The dimensions of the result are :
– Y ear′ = πyear(σyear=1988(Y ear)),
– Quarter′ = πquarter(Quarter)),
– Location′ = πregion,city(σregion=north(Location)),
– Salesman′ = πname(Salesman),
– Product′ = πcategory,item(σitem=beer∨item=wine(Product)).

Thus, if the query q′ is evaluated on the star schema of cube C0, the join sequence of q′

can be noted F0 ./city σregion=north(Location) ./item σitem=beer∨item=wine(Product)
./year σyear=1988(Y ear)) ./month σtrue(Quarter) ./name σtrue(Salesman).

7 Cost-based Approach

We consider a DW modeled by a star schema. Let q be a star join query. Let
Dsel = {Dsel

1 , ..., Dsel
k } be the set of dimension tables having selection predicates. Each

selection predicate pj has two selectivity factors, one defined on a dimension table (Di)
used by this predicate and denoted by Sel

pj

Di
(Sel

pj

Di
∈ [0, 1]) and another defined on

the fact table denoted by Sel
pj

F . Note that Sel
pj

Di
6= SelFpj

, as it is shown in the following
example :

Example 8 Let us consider the selection predicate quarter=q1 defined on the dimen-
sion table Quarter (Figure 2). Its selectivity factor is 0.25. But sales for quater q1 may
represent 70% of sale activities.

Now we present a cost model to show the utility of our approach by considering
a Large Memory Hypothesis (LMH) : all dimension tables are in the main memory
because their sizes are very small [Corp., 1997]. This assumption becomes more and
more realistic as the size of main memory keeps increasing because of fall in main
memory prices. The selection conditions are always pushed down onto the dimension
tables like in [Labio et al., 1997]. This model computes the Inputs/outputs cost for
reading and writing data between disk and main memory. The notations used by this
cost model are summarized in Table 1.

Let M be the number of selection predicates defined on dimension tables. The cost
of executing the query q without using our RBA is given by :

JCW =
M∏

i=1

Selpi

F × |F | (1)
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Selection predicate p1
. . .

Selection predicate pn
Di
Dj

Generation
of fact selectivity:

ϕϕϕϕF Loading
of relevant
fact tuples

Fig. 11 – Execution strategy using RBA

Symbol Meaning

PS Page size of the file system (in bytes)
w(Tj) Width, in bytes, of a tuple of a table Tj

||Tj || Number of tuples present in a table Tj

|Tj | Total number of pages occupied by a table Tj

Sel
pj

Di
Selection factor of the predicate pj defined on dimension table Di

Sel
pj

F Selection factor of the predicate pj defined on the fact table F

Tab. 1 – Symbols and their Meanings

where |F | =
⌈
||F ||×w(F )

PS

⌉
(representing the number of pages occupied by the fact table).

By using our RBA, we get a new query q′ with M ′ (M ′ ≥ 1) new selection predicates
(see Figure 11). Therefore, the cost of executing q′ is given by :

JC =
M+M ′∏

j=1

Sel
pj

F × |F | (2)

where M ′ represents the number of new predicates added by the RBA.
Our optimization technique reduces the I/O cost of the query q if and only if :

JC
JCW < 1 =⇒

QM+M′
i=1 Sel

pi
F ×|F |QM

j=1 Sel
pj
F ×|F | < 1 =⇒ ∏M+M ′

i=M ′+1 Selpi

F < 1.

In the reality, this can be always true because a selectivity factor of a fact table is
always less than 1. If we consider the example of section 2, the new added selection
predicates were year = 1988 and category = drink. The product of the selectivity
factors of these predicates is usually less than 1.

To execute the rewritten query q′, we can force the optimizer to use bitmap join
indexes already defined on the new added predicate selection attributes using hints
available on commercial systems (like Oracle).

Example 9 Let consider the query defined in the motivating example section. The new
selection attributes are : year and category. To extract the relevant tuples of the fact
tables, the query can use the two bitmap join indexes, defined as follows :
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CREATE BITMAP INDEX Year_sales_bji ON Sales(Year.year)
FROM Sales, Year
WHERE Sales.year = Year.year;

CREATE BITMAP INDEX Product_sales_bji ON Sales(Product.category)
FROM Sales, Product
WHERE Sales.product = Product.product;

This example shows clearly the benefit of the combination of RBA and CBA approaches
in optimizing OLAP queries. The new added selection predicates can also be used
to provide a fragmentation schema (since the data partitioning process is based on
selection predicates defined on OLAP queries) of the star schema of the data warehouse
and also in selecting a set of materialized views and indexing schemes (as in previous
example).

8 Conclusion

In this paper, we addressed a framework for combining Rule-Based Approache
(RBA) and Cost-Based Approach (CBA) to optimize OLAP queries. In order to use
the RBA in the data warehousing environment, we developed a logical model to des-
cribe both datacubes and their structures. The main OLAP operators are translated
into this model, and a set of rewriting rules involving these operators are proposed.
These rules are similar to those defined on relational algebra (e.g., pushing down se-
lection operations in query trees). An optimization algorithm is proposed based on
the visualization of a cube on a screen. This algorithm is implemented using Java and
generates new selection predicates over the dimension tables of a given OLAP query
and therefore a new rewritten query is generated. These new predicates contribute in
optimizing queries. Finally, the rewritten query can be executed by CBA. To show the
utility of our framework, we developed a simple cost model for reading and writing
data between disk and main memory. Our proposed approaches can be incorporated
in the existing systems without modifying the existing optimization techniques.

To show the effectiveness of our approach, we are now evaluating the performance
of our approach using a benchmark (TPC-H or APB-1) with a large set of queries.
Our future works include : the study in more details of the combination of our RBA
and materialized views, index and partitioning schema selections algorithms, the study
of the optimization of sequences of OLAP queries, and the extension of the algebra
towards more sophisticated OLAP operators.
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Appendix

In this appendix, we give the formal definitions of the algebraic operators of the
language. Note that for this language, we consider only atomic operators, i.e., Permute
only exchanges two axes, Switch only exchanges two members. In this framework, the
non atomic Rotate can be expressed as a combination of Permutes and Switches.

In what follows, let C = 〈D, F, S〉 be an N -dimensional cube with D =
{D1, . . . , DN} and S = 〈K, axis, pos, depth〉. We note adom(L) the active domain
of attribute L.

Permute : Let i, j ∈ {1, . . . ,K}. Permutei,j(C) is a cube C ′ = 〈D, F, S′〉 where
S′ = 〈K, axis′, pos, depth〉 such that :
– axis′(k) = axis(k) for all k ∈ [1,K] \ {i, j}.
– axis′(i) = axis(j). – axis′(j) = axis(i).

Switch : Let Lj
i ∈ sch(Di) and let v, v′ ∈ adom(Lj

i ) such that anc(v) = anc(v′).
SwitchLj

i ;v,v′(C) is a cube C ′ = 〈D, F, S′〉 where S′ = 〈K, axis, pos′, depth〉 and pos′

is defined by :
– For every Ll

k ∈
⋃

D∈D sch(D) such that Ll
k 6= Lj

i , pos′(Ll
k) = pos(Ll

k).
– Let < and <′ be the total orders associated with attribute Lj

i by the functions
pos and pos′ respectively. If v < v′, then v′ <′ v, else v <′ v′. Moreover, for every
x ∈ adom(Lj

i ) \ {v, v′}, we have :
– If x < v, then x <′ v′, else v′ <′ x. – If x < v′, then x <′ v, else v <′ x.

Nest : Let i, j ∈ {1, . . . , K} and such that i 6= j. Nesti(j)(C) is a cube C ′ = 〈D, F, S′〉
where S′ = 〈K − 1, axis′, pos, depth〉 is defined by :

1. axis′(k) = axis(k) for all k such that 1 ≤ k ≤ K

2. axis′(i) = (Eij ,≺ij) where Eij = Ei ∪ Ej if axis(i) = (Ei,≺i) and axis(j) =
(Ej ,≺j), and ≺ij is defined by :
– For every D,D′ ∈ Ei, if D ≺i D′, then D ≺ij D′.
– For every D,D′ ∈ Ej , if D ≺j D′, then D ≺ij D′.
– For every (D, D′) ∈ Ei × Ej , we have D ≺ij D′.

3. axis′(k) = axis(k + 1) for all k such that j ≤ k ≤ K − 1.

Order by Let Lj
i ∈ sch(Di), and let < be an order on dom(Lj

i ). orderbyLj
i ,<(C) is

a cube C ′ = 〈D, F, S′〉 where S′ = 〈K, axis, pos′, depth〉 and pos′ is defined by :
– ∀(k, l) 6= (i, j), pos′(Ll

k) = pos(Ll
k),

– pos′(Lj
i ) is the restriction of < to adom(Lj

i ).
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Projection on members : Let X = {Lj1
i , . . . , L

jp

i } such that X ⊆ sch(Di) and
depth(Di) ∈ X. πmembers

X (C) is a cube C ′ = 〈D′, F, S′〉 where D′ = (D \ {Di}) ∪ {D′
i}

with D′
i = πX(Di) and S′ = 〈K, axis′, pos′, depth〉 is defined by :

– Let k ∈ {1, . . . ,K} such that axis(k) = (Ek,≺k) and Di ∈ Ek. For every l ∈
{1, . . . , K}, if l 6= k, then axis′(l) = axis(l). On the other hand, axis′(k) =
(E′

k,≺′k) where E′
k = (Ek \ {Di}) ∪ {D′

i} and ≺′k is defined by :
– For every D,D′ ∈ E′

k \ {D′
i}, if D ≺k D′, then D ≺′k D′.

– For every D ∈ E′
k \ {D′

i}, if D ≺k Di, then D ≺′k D′
i.

– pos′ is the restriction of pos to
⋃

D∈D′ sch(D).

Projection on measures Let sch(F ) = {Ld1
1 : dom(Ld1

1 ), . . . , LdN

N : dom(LdN

N ),m1 :
dom(m1), . . . , mp : dom(mp)} and let {mj1 , . . . , mjp

} ⊆ {m1, . . . ,mp}. πmeasures
mj1 ,...,mjp

(C)
is a cube C ′ = 〈D, F ′, S〉 where F ′ = π

L
d1
1 ,...,L

dN
N ,mj1 ,...,mjp

(F ).

Aggregate : Let Ldi
i ∈ sch(F ), Lj

i ∈ sch(Di) such that di > j. Let f1, . . . , fp be
aggregate functions.

Aggregate
L

di
i →Lj

i ; f1(m1),...,fp(mp)
(C) is a cube C ′ = 〈D, F ′, S′〉 such that :

– sch(F ′) = {Ld1
1 , . . . , L

di−1
i−1 , Lj

i , L
di+1
i+1 , . . . , LdN

N ,m1, . . . , mp}
F ′ = π

L
d1
1 ,...,L

di−1
i−1 ,Lj

i ,L
di+1
i+1 ,...,L

dN
N ; f(m)

(Fon
L

di
i

Di)

– S′ = 〈K, axis, pos, depth′〉 with :

– depth′(Dk) = depth(Dk), for all k ∈ [1, N ] \ {i}. – depth′(Di) = Lj
i .

Selection on members : Let Lj
i ∈ sch(Di) be such that j ≤ di where Ldi

i =
depth(Di). Let v ∈ dom(Lj

i ). σmembers
Lj

i=v
(C) is a cube C ′ = 〈D′, F ′, S′〉 where

– D′ = {D1, . . . , Di−1, D
′
i, Di+1, . . . , DN} with D′

i = σLj
i=v(Di)

– F ′ = πsch(F )(F on
L

di
i

σLj
i=v(Di))

– S′ = 〈K, axis, pos′, depth〉 where pos′(Ll
k) = pos(Ll

k) if Ll
k 6= Lj

i and pos′(Lj
i ) is

the restriction of pos(Lj
i ) to adom(Lj

i ).

Selection on measures : Let m ∈ {m1, . . . , mp} and c ∈ dom(m). σmeasures
m=c (C) is

a cube C ′ = 〈D, F ′, S〉 where F ′ = σm=c(F ).
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