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1 Introduction

This paper treats the calculation of the effect of an intervention (also called causal
effect) on a variable from a combination of observational data and some theoretical
assumptions. Observational data implies that the modeler has no way to do experiments
to assess the effect of one variable on some others, instead he possesses data collected
by observing variables in the domain he is investigating.

The theoretical assumptions are represented by a semi-Markovian causal model
(SMCM), containing both arrows and bi-directed arcs. An arrow indicates a direct
causal relationship between the corresponding variables from cause to effect, meaning
that in the underlying domain there is a stochastic process P(effect |cause) specifying
how the effect is determined by its cause. Furthermore this stochastic process must
be autonomous, i.e., changes or interventions in P(effect |cause) may not influence the
assignment of other stochastic processes in the domain. A bi-directed arc represents a
spurious dependency between two variables due to an unmeasured common cause (Tian
and Pearl, 2002), this is also called a confounding factor between the corresponding
variables.

Deciding if a causal effect is identifiable (i.e. can be computed) in a SMCM amounts
to assessing whether the assumptions of a diagram are sufficient to calculate the effect of
the desired intervention from observational data. When all variables of a domain can be
observed, all causal effects are identifiable. In the presence of unmeasured confounders,
identifiability becomes an issue (e.g. the causal effect of X on Y is not identifiable in
the causal diagram of Figure 1, since we can not distinguish causal influence from X
to Y form the influence via the unobserved confounder (Pearl, 2000).

X Y

Fig. 1 – The causal effect of X on Y is not identifiable in this SMCM.

In this paper we introduce an algorithm for the identification of causal effects in a
context where no agent has complete access to the overall domain. Instead we consider a
multi-agent approach where several agents each observe only a subset of the variables.
The main advantages of the multi-agent solution is that the identification of causal
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effects can be assessed in cases where information of a local agent cannot be disclosed to
other agents for reasons of sensitivity or limited time. Our approach allows to perform
causal inference in situations where parts of models are kept confidential by their
distributors.

Imagine for example the bi-agent causal model of Figure 2 (based on (Nadkarni
and Shenoy, 2001)), where a company wants to assess the influence of its product

pricing strategy on product decision, this is whether a new product is launched or not.
Furthermore this company consists of two divisions, one modeled by agent1, roughly
responsible for external issues such as the market situation, and one modeled by agent2

pertaining to internal issues such as research & development. With the techniques
introduced in this paper the 2 divisions could use the information stored in both their
models to calculate the wanted effect, while only communicating over shared variables.
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Fig. 2 – Example of a multi-agent causal model of a product decision model.

2 Notations and Definitions

In this work uppercase letters V are used to represent variables or sets of variables,
while corresponding lowercase letters v are used to represent their values. Pa(V ) and
Ch(V ) are used to represent the observed parents and children of variable V respecti-
vely. Furthermore, Pa(v) represents the values of the parents of V .

Let a path entirely composed of bi-directed edges be called a bi-directed path. In
a semi-Markovian model the set of variables can be partitioned into disjoint groups
by assigning two variables to the same group if and only if they are connected by a
path only consisting of bi-directed links. We call such a group a c-component (from
”confounded component”) (Tian and Pearl, 2002).
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In multi-agent causal models (MACM) (Maes et al., 2003) we no longer assume
that there is a central agent having access to all the variables, instead a collection of
agents has access to non-disjoint subsets Vi of all observable domain variables V .

A MACM consists of n agents Mi, each of which is represented by :
Mi = 〈VMi

, GMi
, P (VMi

), Ki〉 for i ∈ {1, 2}.
– VMi

is the subset of variables agent-i can access.
– GMi

is the causal diagram over variables VMi
.

– P (VMi
) is the joint probability distribution over VMi

.
– Ki stores the intersections Vi,j with other agents j, {VMi

∩VMj
}. We assume that

the agents agree on the structure and the distribution of their intersections.
An example MACM is given in Figure 2. In this case VM1

= {X, X1, . . . , X9} and
VM2

= {X7, . . . , X11, Y }, while V1,2 = {X7, X8, X9}.
Our goal is to use MACMs for the identification of Px(y) in cases where variables

X and Y are not modeled by the same agent.

3 Bi-Agent Identification

Without loss of generality we assume that agent1 contains the intervention variable
X and agent2 contains the variable to be studied Y . Our bi-agent identification algo-
rithm is based on a single agent algorithm due to Tian and Pearl (Tian and Pearl,
2002). It is based on a factorization of semi-Markovian models into distributions over
c-components. The c-factor Q[Sj] of c-component Sj is defined as (Tian and Pearl,
2002) :

Q[Sj ] =
∑

nj

∏

{i|Vi∈Sj}

P (vi|Pa(vi), u
i)P (nj) (1)

In (Maes et al., 2005a), we introduce methods for calculating c-factors in a bi-agent
causal model under the assumption that for each c-component Sj , the distribution
of the variables Sj ∪ Pa(Sj) is visible in one of both agents. In the same article,
we propose a method for deriving the c-factors of subsets of SX , the c-component
containing variable X , from Q[SX ]. These subsets are noted as DX

j .
Our final formula for calculating Px(y) is as follows :

Px(y) =
∑

D1∩(D2\Y )

(2)

∑

D1\K1




∏

j

Q[DX
j ]

∏

i

∑

S1

i
\D1

Q[S1

i ]



 (3)

∑

D2\(K2∪Y )




∏

i

∑

S2

i
\D2

Q[S2

i ]



 (4)

The part on line (3) involves only variables of agent1 and the part on line (4)
involves only variables of agent2. The results of the summations on these two lines
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yield distributions over variables in the intersection and variables X and Y respecti-
vely. Finally, the summation over variables in the intersection on line (2), yields the
distribution over X an Y .

So we have introduced an algorithm for the identification of Px(y) in a bi-agent cau-
sal model, where each agent combines confidential information stored in its local model
with information concerning the intersection with the other agent and the variables
being studied (in this case X and Y ). In this algorithm no information concerning
other variables than the intersection and the variables X and Y is being disclosed.

4 Future Work

We stress that in a MACM, agents are assumed to be honest and to cooperate to
solve a problem, without disclosing their private information. Disclosure of confidential
information via inference based on the combination of multiple non-confidential query
results is a well known problem in statistical databases (Boyens et al., 2004). Inves-
tigating whether the solutions to this problem proposed there can be incorporated in
our approach would be valuable future work.

Other possible future work would be to study identification algorithms with more
than two agents. Preliminary results on this topic can be found in (Maes et al., 2005b).
Another obvious extension of this research would be to devise a way to perform multi-
agent causal inference when the assumption that every c-component and the parents
of its constituents must belong to the same agent, does not hold. Finally, a method for
calculating Pt(s), where both T and S are sets, would also be an interesting extension
of this work.
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models. In Proceedings of Modèles Graphiques Probabilistes pour la Modélisation
des Connaissances, Atelier of EGC 05, pages 53–62.

Maes, S., Meganck, S. et Manderick, B. (2005b). Identification in chain multi-agent
causal models. Accepted at the Special Track on Uncertain Reasoning of FLAIRS
2005.

Maes, S., Reumers, J. et Manderick, B. (2003). Identifiability of causal effects in a
multi-agent causal model. In Proceedings of the 2003 IEEE/WIC International
Conference on Intelligent Agent Technology (IAT).

Nadkarni, S. et Shenoy, P. P. (2001). A bayesian network approach to making inferences
in causal maps. European Journal of Operational Research, 128 :479–498.

Pearl, J. (2000). Causality : Models, Reasoning and Inference. MIT Press.

Tian, J. et Pearl, J. (2002). On the identification of causal effects. Technical Report
(R-290-L), UCLA C.S. Lab.

- 76 -RNTI-E-5




