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Résumé. Le clustering semi-supervisé combine l’apprentissage supervisé
and non-supervisé pour produire meilleurs clusterings. Dans la phase ini-
tiale supervisée de l’algorithme, un échantillon d’apprentissage est pro-
duit par selection aléatoire. On suppose que les exemples de l’échantillon
d’apprentissage sont étiquetés par un attribut de classe. Puis, un algo-
rithme incrémentiel développé pour les données catégoriques est utilisé
pour produire un ensemble de clusters pur (tels que les exemple de chaque
cluster ont la même étiquette), qui servent de “seeding clusters” pour la
deuxiéme phase non-supervisée de l’algorithme. Dans cette phase, l’al-
gorithme incrémentiel est appliqué aux données non étiquetées. La qua-
lité du clustering est évaluée par l’index de Gini moyen des clusters. Les
expériences démontrent que des très bons clusterings peuvent être obtenus
avec des petits échantillons d’apprentissage.

1 Introduction

Clustering is a process that aims to partition data into groups that consists of similar
objects. Similarity among objects is measured using some metric defined on the set of
objects or, whenever possible, using pre-existing classifications of objects. In general,
clustering is an unsupervised activity. In other words, clustering takes place without
any intervention of an exterior operator that assigns objects to classes. Assuming that
the class of an object is determined by the other characteristics of the object, a good
clustering algorithm should generate clusters that are as homogeneous as possible.

The core of the clustering algorithm is the incremental construction of a clustering
partition of the set of objects such that that the total distance from this partition to
the partitions determined by the attributes is minimal. A special challenge of clustering
categorical data stems from the fact that no natural ordering exists on the domains of
attributes of objects. This leaves only the Hamming distance as a dissimilarity measure,
a poor choice for discriminating among multi-valued attributes of objects.

Semi-supervised clustering of categorical data entails two phases : the first phase
consists of a supervised process that is applied to a training set obtained randomly
sampling the data set. Clusters are formed using an incremental clustering algorithm
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that is appropriate for categorical data. Then, these clusters are split into homogeneous
clusters that form the seeding clusters for the second phase of the algorithm. In the
second unsupervised phase, objects are incrementally added to the existing clusters
without using any class label. Finally, clusterings are evaluated using the average Gini
index.

Incremental clustering can be traced to (Hartigan 1975) and (Carpenter et al.,
1990). This was followed by a seminal paper by Fisher (Fisher 1987) who created
COBWEB, an incremental clustering algorithm that involved restructurings of the
clusters in addition to the incremental additions of objects. Incremental clustering
related to dynamic aspects of databases were discussed in (Can 1993) and (Can et
al., 1995). It is also notable that incremental clustering has been used in a variety of
applications (Langford et al., 2001), (Lin et al., 2004), (Charikar et al., 2997), (Ester
et al.,1998).

The other main paradigm applied here, semi-supervised clustering, has recently
received lots of attention (Cheung and Yeung 2004), (Bilenko et al., 2004), (Cohn et
al.,2003), (Zhu et al., 2002), mostly related to numerical data. Our focus here is on
categorical data which requires a specific approach.

Incremental clustering insures that the main memory usage is minimal since there
is no need to keep in memory the mutual distances between objects ; therefore, the
algorithms are very scalable with respect to the size of the set of objects and the
number of attributes. Semi-supervised clustering, acting as a wrapper for the underlying
incremental clustering improves the quality of the clustering.

2 Partitions and Clusterings

Let S be a set. A partition on S is a non-empty collection of non-empty subsets
of S indexed by a set I, π = {Bi | i ∈ I} such that

⋃
i∈I Bi = S and i 6= j implies

Bi ∩ Bj = ∅. The sets Bi are the blocks of the partition π. The set of partitions on S
is denoted by PART(S).

For π, σ ∈ PART(S) we write π ≤ σ if every block B of π is included in a block of σ,
or equivalently, if every block of σ is an exact union of blocks of π. This partial order
generates a lattice structure on PART(S) ; this means that for every two partitions
π, π′ ∈ PART(S) there is a least partition π1 such that π ≤ π1 and π′ ≤ π1 and there
is a largest partition π2 such that π2 ≤ π and π2 ≤ π′. The first partition is denoted
by π ∨ π′, while the second is denoted by π ∧ π′.

To introduce a metric on the set of partitions of a finite set we define the mapping
v : PART(S) −→ R by v(π) =

∑n
i=1 |Bi|2, where π = {B1, . . . , Bn}.

The mapping v is a lower valuation on PART(S), that is,

v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) (1)

for π, σ ∈ PART(S) (see Appendix 5 for a proof).
For every lower valuation v the mapping d : (PART(S))2 −→ R defined by d(π, σ) =

v(π) + v(σ) − 2v(π ∧ σ) is a metric on PART(S) (see (J.P. Barthélemy et B. Leclerc,
1995), (J.P. Barthélemy, 1978), (Monjardet, 1981). A special property of this metric
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allows the formulation of an incremental clustering algorithm which is used as a part
of the semi-supervised clustering.

An object system is a pair S = (S, H), where S is set called the set of objects of S,
H = {A1, . . . , Am} is a set of mappings defined on S. For each mapping Ai (referred to
as an attribute of S) there exists a nonempty set Ei called the domain of Ai such that
Ai : S −→ Ei for 1 ≤ i ≤ m. The value of an attribute Ai on an object t is denoted
by t[Ai]. This is consistent with the terminology used in relational databases, where
a table can be regarded as an object system ; however, the notion of object system is
more general because objects have an identity as members of the set S, instead of being
regarded as just m-tuples of values. In this spirit, we shall refer to t[Ai] as projection
of t on Ai.

An attribute A of an object system S = (S, H) generates a partition πA of the set
of objects S, where two objects belong to the same block of πA if they have the same
projection on A. We denote by BA

a the block of πA that consists of all tuples of S
whose A-component is a. Note that for relational databases, πA is the partition of the
set of rows of a table that is obtained by using the group by A option of select in
standard SQL.

A clustering of an object system S = (S,H) is defined as a partition κ of S. The
blocks of the partition κ are the clusters of κ.

3 A Semi-Supervised Incremental Clustering Algo-
rithm

A semi-supervised clustering of an object system S = (S,H) begins with the as-
sumption that an oracle provides the value of a special attribute K of objects referred
to as the class of the object for a subset T of the object set S.

In the first phase of the algorithm an incremental clustering algorithm A is applied
to the object set T which yields an initial clustering σ of this set. In general, these
clusters are not pure relative to the class K, that is, we may find in the same class
objects that have distinct values of the attribute K. Then, each of the clusters of T
is split into pure clusters. The partition κ0 of T obtained in the manner contains the
seeding clusters for the clustering of the full set of objects.

The second, unsupervised phase of the algorithm starts with the partition κ0 of
the set T . Using the incremental clustering algorithm, objects from the set S − T are
added to existing clusters or form new clusters. The class attribute (if existent) plays
no role in this phase. The final clustering extends the partition κ0 of T to a clustering
partition κ of the entire set of objects.

We begin by discussing our incremental clustering algorithm. For an object system
S = (S, H) we seek a clustering κ = {C1, . . . , Cn} ∈ PART(S) such that the total
distance from κ to the partitions of the attributes :

D(κ) =
n∑

i=1

d(κ, πAi)
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has a local minimum. The definition of d allows us to write :

D(κ) =
n∑

i=1

|Ci|2 +
mA∑

j=1

|BA
aj
|2 − 2

n∑

i=1

mA∑

j=1

|Ci ∩BA
aj
|2,

Let t be a new object, t 6∈ S, and let let Z = S ∪ {t}. To form a clustering of the set
Z the object t may added to an existing cluster Ck, or a new cluster Cn+1, may be
created that consists only of t.

If t is added to an existing cluster Ck, the new clustering is

κ(k) = {C1, . . . , Ck−1, Ck ∪ {t}, Ck+1, . . . , Cn},

and the new attribute partition is

πA′ = {BA
a1

, . . . , BA
t[A] ∪ {t}, . . . , BA

amA
}

Now, we have :

d(κ(k), π
A′)− d(κ, πA)

= (|Ck|+ 1)2 − |Ck|2 + (|BA
t[A]|+ 1)2 − |BA

t[A]|2 − 2(2|Ck ∩BA
t[A]|+ 1)

= 2|Ck|+ 1 + 2|BA
t[A]|+ 1− 4|Ck ∩BA

t[A]| − 2

= 2|Ck ⊕BA
t[A]|,

where ⊕ is the symmetric difference of sets given by X ⊕ Y = (X ∪ Y )− (X ∩ Y ) for
every sets X, Y .

When t is forming a new cluster we have the partitions

κ′ = {C1, . . . , . . . , Cn, {t}}
πA′ = {BA

a1
, . . . , BA

t[A] ∪ {t}, . . . , BA
amA

}

which yield
d(κ′, πA′)− d(κ, πA) = 2|BA

t[A]|.
Consequently,

D(κ′)−D(κ) =

{∑
A 2 · |Ck ⊕BA

t[A]| in Case 1∑
A 2 · |BA

t[A]| in Case 2.

Thus, the choice between adding an object to an existing cluster and creating a new
cluster is based on comparing the numbers

min
k

∑

A

|Ck ⊕BA
t[A]| and

∑

A

|BA
t[A]|.

If the first number is smaller, we add t to a cluster Ck for which
∑

A |Ck ⊕ BA
t[A]| is

minimal ; otherwise, we create a new one-object cluster.
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Input : data set S,
fraction of supervised set p,
‘‘not-yet’’ threshold α

Output : clustering C1, . . . , Cn

Method :obtain a random sample of objects T from

the set of objects S such that |T |
|S| = p ;

compute the seed clustering of the set T
κ0 = {D1, . . . , D`} = A(T, α)

compute the final clustering
κ = C(S, T, κ0, α)

Fig. 1 – Pseudocode of the semi-supervised clustering algorithm

For incremental clustering algorithms certain object orderings may result in rather
poor clusterings. To diminish the ordering effect problem we expand the initial algo-
rithm by adopting the “not-yet” technique introduced in (Roure and Talavera, 1998).
A new cluster is created only when the effect of adding the object t on the total distance

is significant enough. This is the case when
P

A |BA
t[A]|

mink

P
A |Ck⊕BA

t[A]|
< α, where α ≤ 1 is a

parameter provided by the user. Otherwise, the object t in placed in a NOT-YET buffer.
All experiments described in Section 4 used α = 0.95.

When
P

A |BA
t[A]|

mink

P
A |Ck⊕BA

t[A]|
> 1, the object t is placed in an existing cluster Ck that

minimizes
∑

A |Ck ⊕BA
t[A]|. This approach limits the number of new singleton clusters

that would be otherwise created. After all objects of the set S have been examined, the
objects contained by the NOT-YET buffer are processed with α = 1. This prevents new
insertions in the buffer and results in either placing these objects in existing clusters
or in creating new clusters.

Thus, the construction of the final clustering κ of S starts with an initial clustering
partition κ0 of a subset T and with a parameter α. We denote the final clustering κ by
C(S, T, κ0, α).

The partition created on the initial set of objects T is denoted by κ0 = A(T, α) and
it uses the same algorithm as above.

The algorithm is given next :

4 Experimental Results

We applied the semi-supervised clustering to several categorical databases obtained
from the UCI data set (C. L. Blake et C. J. Merz, 1998). Each experiment was applied
using a series of increasing percentages for the semi-supervised data set, averaged over
five random samples.

The quality of the clustering for categorical data requires a specialized treatmet
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since distances between objects cannot be defined naturally. We evaluated clusterings
using the averaged Gini index of the clusters (Demiriz et al., 1999).

Let K the class attribute and let {BK
k1

, . . . , BK
kp
} be the partition of the object set

S. The class-impurity of a set of objects U is defined as the Gini index of the “trace
partition” {U ∩BK

kj
| 1 ≤ j ≤ p} :

giniK(U) = 1−
p∑

j=1

( |U ∩BK
kj
|

|U |

)2

.

Note that if a cluster U is pure, that is, it contains objects that belong to only one
class, then giniK(U) = 0.

For a clustering κ = {U1, . . . , U`} of the set of objects S the average Gini index is
given by

impK(κ) =
∑̀

i=1

|Ui|
|S| giniK(Ui).

Clearly, low values of impK(κ) indicate good clusterings.
The algorithm was applied to the MUSHROOM data set. This data set contains 8124

mushroom records and is typically used as test set for classification algorithms, where
the task is to construct a classifier that is able to predict the poisonous/edible character
of the mushrooms based on the values of the attributes of the mushrooms. The clusters
show quite a remarkable degree of purity. For example, for a semi-supervised portion
of 10% we obtained the following clusters :

Cluster Instances edib./pois. Percent of
number dominant group
1 4225 3575/650 84.615
2 165 0/165 100
3 3055 0/3055 100
4 394 393/1 99.746
5 2 0/2 100
6 55 48/7 87.273
7 36 0/36 100
8 192 192/0 100

It is quite remarkable that five of the eight clusters obtained in this manner are pure
and the remaining clusters have a high degree of purity. For other sizes of the supervised
sample we obtained the following results :
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Fig. 2 – Impurity Decrease with Sample Size for MUSHROOMS

Mushroom database
Percent Number of Impurity Time
supervised clusters (ms)
5% 8 0.15362536 2443
10% 8 0.1371508 2454
15% 8 0.12705285 2444
20% 8 0.10735634 2374
25% 9 0.09911141 3545
30% 9 0.0816238 3415

The dependency of the impurity measure on the fraction of the supervised sample is
shown in Figure 2.

A similar, albeit slower improvement of the quality of clustering can be observed
for ZOO, another categorical data set from UCI (C. L. Blake et C. J. Merz, 1998) :
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Fig. 3 – Impurity Decrease with Sample Size for SOLAR FLARES

Zoo database
Percent Number of Impurity Time
supervised clusters (ms)
5% 3 0.39802246 110
10% 4 0.37841779 90
15% 4 0.37841779 110
20% 6 0.28431165 130
25% 7 0.33374854 141
30% 7 0.33981398 114

The variation of the average impurities for five experiments with each sample size for
the SOLAR_FLARES database is shown in Figure 3.

5 Conclusion and Future Work

Semi-supervised incremental clustering is an efficient clustering algorithm for ca-
tegorical data that generates almost homogeneous clusters relative to classifications
based on attribute values.

A natural idea for development of the semi-supervised approach would be to use
a boosted model (Freund, 1995) of the semi-supervised incremental clustering where
several small training samples would be used to generate clusterings ; an object would
then be classified according to its positions relative to the ensemble of clusters.
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We will explore the semi-supervised incremental clustering in the context of clus-
tering streams of objects, which is an important type of data in internet mining and
network security. The ordering of objects is irrelevant in this realm since objects must
be dealt with as they arrive.

References
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A proof of inequality (1)

Let π, σ be two partitions of the finite set S, such that π = {B1, . . . , Bm} and
σ = {C1, . . . , Cn}. It is known (see (Birkhoff 1973), for example) that π ∧ σ consists
of all sets of the form Bi ∩ Cj such that Bi ∩ Cj 6= ∅. On another hand, π ∨ σ has a
more complicated description ; namely, x, y ∈ S belong to the same block D of π ∨ σ
if there exists a sequence of elements of S, z0, . . . , zk such that x = z0, zk = y and for
each pair (zp, zp+1) there is a block Bi of π or a block Cj of σ such that both zp and
zp+1 belong to Bi or to Cj for 1 ≤ p ≤ k − 1.

Consider the bipartite graph Gπ,σ whose set of vertices consists of the blocks of π
and the blocks of σ. An edge (Bi, Cj) exists only if Bi ∩ Cj 6= ∅. If K is a connected
component of this graph it is easy to see that

⋃{Bi ∈ π | Bi ∈ K} =
⋃{Cj ∈ σ |

Cj ∈ K}. Further, each block D of π ∨ σ equals the union of the blocks of π (or the
blocks of σ) that belong to a connected component K of Gπ,σ.

Example 5.1 Let S = {ai | 1 ≤ i ≤ 12} and let π = {Bi | 1 ≤ i ≤ 5} and
σ = {Cj | 1 ≤ j ≤ 4}, where

B1 = {a1, a2}, C1 = {a2, a4},
B2 = {a3, a4, a5}, C2 = {a1, a3, a5, a6, a7},
B3 = {a6, a7}, C3 = {a8, a11},
B4 = {a8, a9, a10}, C4 = {a9, a10, a12},
B5 = {a11, a12}.

The graph Gπ,σ shown in Figure 4 has two connected components that correspond to
the blocks

D1 = {a1, a2, a3, a4, a5, a6, a7}
= B1 ∪B2 ∪B3

= C1 ∪ C2,

D2 = {a8, a9, a10, a11, a12}
= B4 ∪B5

= C3 ∪ C4.
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a1, a3, a5, a6, a7

a2, a4

B1

B2

B3

B4

B5

C1

C2

C3

C4

Fig. 4 – The graph Gπ,σ

of the partition π ∨ σ.

The partition π ∧ σ consists of 9 blocks that correspond to the edges of the graph :

B1 ∩ C1 = {a2}, B1 ∩ C2 = {a1}, B2 ∩ C1 = {a4},
B2 ∩ C2 = {a3, a5}, B3 ∩ C2 = {a6, a7}, B4 ∩ C3 = {a8},
B4 ∩ C4 = {a9, a10}, B5 ∩ C3 = {a11}, B5 ∩ C4 = {a12}.

Let D1, . . . , Dr be the blocks of the partition π ∨ σ. For a block Dk define the sets
Ik ⊆ {1, . . . , m} and Jk ⊆ {1, . . . , n} where Ik = {i | Bi ∩ Dk 6= ∅} and Jk = {j |
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Bi ∩Dk 6= ∅}. Note that

v(π ∨ σ) =
r∑

k=1

|Dk|2,

v(π ∧ σ) =
r∑

k=1

∑

i∈Ik

∑

j∈Jk

|Bi ∩ Cj |2,

v(π) =
r∑

k=1

∑

i∈Ik

|Bi|2

=
r∑

k=1

∑

i∈Ik


 ∑

j∈Jk

|Bi ∩ Cj |



2

,

v(σ) =
r∑

k=1

∑

j∈Jk

|Cj |2

=
r∑

k=1

∑

j∈Jk

(∑

i∈Ik

|Bi ∩ Cj |
)2

.

It is immediate to verify the inequality :
(∑

i∈Ik

∑
j∈Jk

|Bi ∩ Cj |
)2

+
∑

i∈Ik

∑
j∈Jk

|Bi ∩ Cj |2

≥ ∑
i∈Ik

(∑
j∈Jk

|Bi ∩ Cj |
)2

+
∑

j∈Jk

(∑
i∈Ik

|Bi ∩ Cj |
)2

This is equivalent to :

|Dk|2 +
∑

i∈Ik

∑
j∈Jk

|Bi ∩ Cj |2

≥ ∑
i∈Ik

(∑
j∈Jk

|Bi ∩ Cj |
)2

+
∑

j∈Jk

(∑
i∈Ik

|Bi ∩ Cj |
)2

Adding up the similar inequalities for 1 ≤ k ≤ r we have the desired inequality :
v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ).,

Summary

Semi-supervised clustering combines supervised and unsupervised learning to pro-
duce better clusterings. In the initial supervised phase of the proposed algorithm a
training set is generated by sampling. It is assumed that the examples of the training
set are labelled by a class attribute. Then, an incremental algorithm developed for
categorical data is used to produce a set of pure clusters (such that the instances of
each cluster have the same label) that serve as “seeding clusters” for the second, unsu-
pervised phase. In this phase the incremental algorithm is applied to unlabelled data.
The quality of the clustering is evaluated by the average Gini index of the clusters.
Experiments demonstrate that very good clusterings can be obtained with relatively
small training sets.

RNTI - 1

RNTI-E-3 200




