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Abstract. The aim of this paper is to prove that the question “is a scheduling
functionally deterministic for a given set of periodic real time tasks and a given
conservative scheduling policy” is decidable. For thar purpose, we encode the
tasks and the scheduler by an acyclic stopwatch automaton. We show then that
the previous question can be encoded by a decidable reachability problem.

1 Introduction
Embedded systems architecture is classically decomposed into three main parts. The con-

trol software is often designed by a set of communicating functional modules, also called tasks,
usually encoded with a high level programming language (e.g. synchronous language) or a low
level one (e.g. Ada or C). Each functional module is characterized by real-time attributes (e.g.
period, deadline) and a set of precedence constraints. The material architecture organizes hard-
ware resources such as processors or devices. The scheduler decides in which order functional
modules will be executed so that both precedence and deadline constraints are satisfied.

Behavioral correctness is proved as the result of the logical correctness, demonstrated with
the use of formal verification techniques (e.g. theorem proving or model-checking) on the
functional part, and the real-time correctness which ensures that all the computations in the
system complete within their deadlines. This is a non trivial problem due both to precedence
constraints between tasks, and to resource sharing constraints. This problem is addressed
by the real-time scheduling theory which proposes a set of dynamic scheduling policies and
methods for guaranteeing/proving that a tasks configuration is schedulable.

However, in spite of their mutual dependencies, these two items (functional verification
and schedulability) are seldom addressed at the same time: schedulability methods take into
account only partial information on functional aspects, and conversely the verification problem
of real-time preemptive modules has been shown undecidable (Ermont and Boniol, 2007).
To overcome this difficulty, a third property is often required on critical systems, especially
for systems under certification: determinism, i.e. all computations produce the same results
and actions when dealing with the same environment input. The benefit of this property, if
ensured, is to limit the combinatorial explosion, allowing an easier abstraction of real-time
attributes in the functional view. For instance, preemptive modules may be abstracted by non
preemptive ones characterized by fixed beginning and end dates. The interesting consequence
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is to allow separated functional and real-time analyses. For ensuring determinism, two ways
can be followed: either to force it, or to prove it.

Several approaches were proposed in order to guarantee determinism. One of the simplest
manner is to remove all direct communications between tasks. This seems quite non realistic
but it can be achieved by developing an adequate architecture, for instance, current computed
data are stored in a different memory while consumed input are the ones produced in a prece-
dent cycle. The execution order between tasks within each cycle does not impact the produced
values. However, the main disadvantage is to lengthen the response time of the system. This
solution is then not suitable for systems requiring short response time.

A second approach is based on off-line non preemptive strategies, such as cyclic schedul-
ing. Provided that functional modules are deterministic, the global scheduled behavior will
also be deterministic. This solution is frequently followed by aircraft manufacturer for imple-
menting critical systems such as a flight control system. However this strategy has two main
several drawbacks. Firstly this scheduling leads to a low use of resources because tasks are
supposed to use their whole worst case execution time (WCET). To overcome this first prob-
lem, tasks are required to be as small as possible. Secondly, off-line scheduling strategies often
need for over-dimensioning the system in order to guarantee acceptable response times to ex-
ternal events. For that purpose, tasks periods are often to be reduced (typically divided by 2)
compared to the worse period of the polled external events.

The guaranty that WCET and BCET (resp. worst and best case execution times) coincide
provides a third interesting context. Any off-line scheduling is then deterministic and it is
possible to modify the task model to produce a deterministic on-line scheduling. Unfortunately,
warranting that BCET is equal to WCET is hardly possible. This can limit the programming
task (no use of conditional instruction, or on the contrary use of dead code to enforce equality).

Other more recent approaches are based on formal synhronous programming languages.
Systems are specified as deterministic synchronous communicating processes, and are imple-
mented either by a sequential low level code which enforces a static execution order, or by
a set of tasks associated with static or dynamic scheduling policies (Scaife and Caspi, 2004;
S. Tripakis and Caspi, 2005). Implementation is correct-by-construction, i.e., it preserves the
functional semantics (and then determinism). These approaches are interesting, for they allow
to by-pass the determinism verification problem. They are implemented by existing indutrial
tools such as the Simulink Real Time Workshop code generator. However, they often are based
on “ideal” zero-time semantics. If such a semantic model is suitable for homogenous and reg-
ular control systems (e.g., a flight control system), it is less appropriate for complex systems
composed of non synchronous tasks developed by several teams and integrated into a same
digital infrastructure (as in integrated modular avionics).

Previous solutions are not suitable for highly dynamic non synchronous systems with high
workload. On-line preemptive scheduling strategies are often optimal, easy to implement,
but deeply non deterministic when associated to asynchronous communication models. Prob-
lematic configuration appears when there are temporal undeterminism on execution time and
preemption. Let us consider for instance the three tasks NA, NF and GF depicted in figure 1
and scheduled by an on-line preemptive scheduling strategy. Depending on the execution times
of NF and GF, two runs depicted figure 1 are possible. Considering that task NA produces xn

at time n, there are two possibilities, either NF and GF consume xn or NF cannot complete its
execution before n + 1. In that case xn is overriden by xn+1 and then GF consumes xn+1.
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FIG. 1 – Example of non deterministic configuration

Consequently, if on-line preemptive scheduling policies are needed (for performance rea-
sons for instance), it is the necessary to verify determinism. The aim of this article is to answer
the question is a scheduling deterministic for a particular multi-periodic tasks model and a
given policy? The result is that the determinism problem is decidable even in case of pre-
emptive on-line scheduling policies. As stated previously, we consider multi-periodic tasks.
We propose a formal definition of functionally deterministic scheduling, and we prove the de-
cidability result. For that purpose, we encode the problem with a synchronized product of
stopwatch automata and a particular extended timed automaton. The response can then be
checked, in a decidable way, by a reachability analysis.

In the rest of the paper, we only consider single-processor systems.

2 Functional Determinism in Real-Time Scheduling
Real-time scheduling theory provides a formal framework for checking the schedulability

of a tasks configuration and finding feasible, as well as optimal, scheduling. The aim of this
section is to give a brief overview of this framework, and afterwards to introduce the notion of
functional determinism.

2.1 Recall on Real-Time
Task Model. A task is an executable program implementing one and only one functional

module. A task may be periodic or sporadic. In most cases, especially in the context of critical
systems, tasks are supposed to be periodic. In the following, we only consider periodic tasks.

According to the Liu-Layland model (Liu and Layland, 1973), periodic task may be char-
acterized by static parameters (T, r,D,B,W ) where T is the task period, r is the release date
(first activation), D is the (relative) deadline, B and W are the best and worst execution time
(BCET and WCET). B and W depends on multiple elements: the processor, the compiler, the
memories. . . Estimation of these parameters is a wide research area which is considered out of
the scope of the paper.

Communication Model. Tasks are supposed to communicate by producing and consum-
ing data in an asynchronous way: emissions and receptions are non blocking, emitter writes in
a non blocking memory and receiver always consumes the last emitted value. Such a model is
obviously non blocking and is often suitable for timed critical systems. Moreover, in order to



Functionally Deterministic Scheduling

ensure determinism, we assume tasks always read input data at the beginning of their execution
and produce output data at the end. We assume also that these input and output part can not be
suspended, and that their execution time is negligible.

Real-Time Constraints. Execution of real-time tasks must satisfy three type of con-
straints. Timing constraints enforce each task instance to complete its execution before D
after the date the task is released (D is a relative deadline); precedence constraints force par-
tially task instance order and the read of current data values; resource constraints represent the
exclusive access to shared resources. The scheduling problem is then to decide if a set of tasks
can be executed on a given architecture while satisfying these three types of constraints.

Scheduling Policies. A scheduling strategy consists in organizing the execution of a tasks
set under constraints. Usually, scheduling strategies are classified as preemptive versus non-
preemptive, and off-line versus on-line policies. In non-preemptive case, each task instance,
when started, completes its execution without interruptions. Conversely, in preemptive case,
the scheduling unit can suspend a running task instance if a higher priority task asks for the
processor. Off-line scheduling is based on a schedule which is computed before run-time and
stored in a table executed by a dispatcher. One of the most popular off-line scheduling strategy
is cyclic executive approach. With this method, tasks are executed in a predefined order, stored
in a cyclic frame whose length is the least common multiple of the tasks periods. Each task
can then be executed several times in the frame according to its period. Conversely, the idea of
on-line scheduling is that scheduling decisions are taken at run-time whenever a running task
instance terminates or a new task instance asks for the processor.

The three most popular on-line scheduling strategies are Rate Monotonic (RM), Deadline
Monotonic (DM) and Earliest Deadline First (EDF) (Liu and Layland, 1973; J. Leung, 1980;
Leung and Whitehead, 1982). RM is an on-line preemptive static priority scheduling strategy
for periodic and independent tasks assuming that Tt = Dt (period equals deadline) for each
task t. The idea is to determine fixed priorities by task frequencies: tasks with higher rates
(shorter periods) are assigned higher priority. DM is a generalization of RM with tasks such
that Tt 6= Dt. In that case, tasks with shorter deadlines are assigned higher priority. EDF is a
more powerful strategy. It is an on-line preemptive dynamic priority scheduling approach for
periodic or aperiodic tasks. The idea is that, at any instant, the priority of a given task instance
waiting for the processor depends on the time left until its deadline expires. Lower is this time,
higher is the priority.

2.2 Towards a definition of deterministic scheduling

Definition 1 (Functionally Deterministic Scheduling) Let T = {ti = (Ti, ri, Di, Bi,Wi),
i = 1 . . . n} be a finite set of tasks and P a scheduling policy (EDF, RM . . . ) such that
T is schedulable. We say that the scheduling is functionally deterministic if for all possible
executions, the output values are the same.

A sufficient condition for determinism is that whenever two tasks t and t′ are such that t
produces data to t′, then either t always completes before t′, or t never completes before t′.

As said before, off-line non preemptive scheduling is always deterministic. This is not the
case for the other scheduling techniques. As it was done for the schedulability property, the
question is then: for a given tasks configuration and for a given on-line scheduling policy (pre-
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FIG. 2 – Stopwatch Automaton Associated to a Task t

emptive or non preemptive), is it possible to prove that the system is functionally deterministic?
Answering this question is the purpose of the following section.

3 Decidability Result

The aim of this section is to prove that the question is a scheduling functionally determin-
istic for a given policy is decidable and is equivalent to a reachability analysis in a acyclic
stopwatch automaton. For that purpose, we firstly show that a real-time task can be formal-
ized with a stopwatch automaton (Alur et al., 1992) and a scheduler can be represented with a
timed automaton extended with a data structure. We then prove that the synchronized product
of these automata is loop free. We finally express the decision is a scheduling functionally
deterministic for a policy by a temporal formula, and we show that checking this formula is
equivalent to a reachability problem on acyclic stopwatch automata. Since this last question
is decidable on loop less stopwatch automata, we conclude that the determinism question of a
tasks configuration under a scheduling policy is decidable.

Let us note T a finite set of tasks. The first step of the decidability proof consists in
encoding the tasks and a scheduler with respectively stopwatch and timed automata.

Task Unrolling on the Maximal Period. Since the tasks are periodic without direct depen-
dencies and are under a conservative scheduling policy, it is sufficient to study their behavior in
the feasibility interval [0,maxi(ri)+2LCMi(Ti)], where maxi(ri) is the the maximal release
date and LCMi(Ti) is the least common multiple of all the task period (J. Leung, 1980; Pailler,
2006). Let us note F = maxi(ri)+2LCMi(Ti). For each task t = (T, r,D,B,W ), we unroll
it into n aperiodic tasks ti, appearing only one time in the feasibility interval, such that n is the
greatest integer satisfying n×T ≤ F and for all i ∈ [0, n−1], ti = (∞, r+T×i,D,B,W ) (we
note period of ti equals∞ to mean that ti is an aperiodic unrolled task). We note U−1(ti) = t
to express that ti is an unrolled instance of t. We note T ∗ the set of unrolled tasks of T .

Task Real-Time Behavior. Let us consider an unrolled task t = (∞, r,D,B, W ). Then,
its behavior is depicted in the automaton given in figure 2. The task begins by waiting in state
0 for a start command, and then, enters the running state (state 1). In case of preemption by the
scheduler, its enters state 2 waiting for a new start command, until it completes its execution
(state 3). Stopwatch y denotes the execution time (suspended in state 2), and x denotes the
real-time. The task must complete before x reaches the deadline D, and can complete when y
is between the task BCET B and WCET W parameters.

Scheduler Automaton. The scheduler is encoded by a timed automaton extended with
a list of set of tasks. This encoding generalizes the results of Fersman et al. (2007) for the
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FIG. 3 – Stopwatch automaton associated to a scheduler for n unrolled tasks

extended Liu-Layland model. The list l managed by the scheduler automaton is ordered by a
priority relation @ between tasks depending on the scheduling policy. More formally, the list l
is either the empty list [] if no task is asking for the processor, or a list l = [{t11, . . . , t1n1

}, . . . ,
{tp1, . . . , tpnp

}] meaning that: (1) tasks t11 . . . tpnp
are waiting for the processor (their release date

are elapsed), (2) for all i ≤ p, for all k, k′ ∈ 1 . . . ni, tasks tik and tik′ have the same priority,
and (3) for all i, j ≤ p such that i < j, for all k ∈ 1 . . . ni and k′ ∈ 1 . . . nj , then tik @ tjk′ , i.e.,
task tik has a higher priority than tjk′ .

The order relation encodes the scheduling policy. For Earliest Deadline First schedul-
ing policy, tasks are ordering according to the time left until their deadline expires. Dead-
lines are then relative. Consider then two (unrolled) tasks t = (∞, r,D,B, W ) and t′ =
(∞, r′, D′, B′,W ′) in T ∗. Then t @ t′ at time θ iff r + D − θ < r′ + D′ − θ. This definition
does not depend on the date θ. It means that order priority is fixed for unrolled tasks. But, two
unrolled tasks t and t′ of a same “rolled” task from T may have different priorities.

Let us define LT ∗,@, in short L, the set of lists l of set of tasks from T ∗ and sorted by a
order relation @. We introduce four functions operating on list l: (a) new:L × R≥0 7→ L, (b)
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select:L 7→ T ∗, (c) remove:L× T ∗ 7→ L, and (d) hd:L 7→ T ∗. new(l, r) returns an ordered
list by inserting in l tasks whose release date is r. select(l) returns one task in l with the highest
priority. select can be non deterministic whenever several tasks have the same highest priority.
remove(l, t) returns l′ = l\t. If after removing t the head of the resulting list is the empty
set, then this set is also removed from l. And finally hd(l) returns the set of tasks in l with the
highest priority.

We can now build the timed automaton encoding the behavior of the scheduler for one
hyperperiod. This automaton is depicted figure 3. It is organized as a chain of n + 1 states
where n is the number of different release dates of tasks in T ∗. The scheduler enters the initial
state (state 0) and immediately (a) creates the list l of tasks whose release date is r0 = 0 and
(b) starts one of the most priority task. It waits then in state 1 until the global time δ reaches the
release date r1. Whenever the running task ends, it is removed from l, and another priority task
is started (note that states tagged by letter U are instantaneous, i.e. no time can elapse). When
the time reaches the second release date r1, the scheduler computes the new list l by adding
and sorting tasks whose release date is r1, and it enters the instantaneous state 1′. If the running
task is one of the priority one, its execution continues, else it is suspended and higher priority
task is started (arriving in state 2). This behavior is repeated during the feasibility interval until
all release dates are elapsed. The whole behavior of the system (tasks + scheduler) is then
obtained by synchronizing the previous automata.

Flattening into an Acyclic List Free Automaton. The second step of the proof consists
in showing that this whole behavior (tasks + scheduler) can be transformed in an acyclic list
free automaton. The number of tasks in T ∗ is finished and each task can occur one and only
once in the list l. Consequently, l can be encoded by a finite automaton. This entails that
the scheduler automaton can be transformed into a finite list free timed automaton. The task
automaton depicted figure 2 contains a loop taken whenever event preempt is emitted by the
scheduler. A task can only be preempted a finite number of times, at most n times (n is the
number of different release dates). Consequently, the synchronized product of the tasks and
the scheduler automata can be unrolled into a loop free stopwatch automaton.

Determinism as a Reachability Problem. Finally the deterministic property is encoded
by a reachability formula. Following definition 1, a scheduled system is functionally deter-
ministic if whenever reads and writes occur, the data have always the same value. A nec-
essary condition for that purpose is the communicating tasks execution’s order is always the
same. In other words, let be t1 and t2 two tasks in T ∗ such that t1 produced data to t2.
Then, the scheduled system is considered as deterministic if either t1 always ends its exe-
cution before t2 begins, or t2 always begins before t1 completes. Formally, the system is
deterministic with respect to t1 and t2 if the following formula reach(. . . , 3, . . . , 0, . . .) ⇒
not reach(. . . , s, . . . , 1, . . .) is satisfied where s ∈ {0, 1, 2} and reach(. . . , i, . . . , j, . . .) means
that the global state including local state i for t1 and local state j for t2 can be reached. This
formula stands for: if t1 can reach state 3 (execution is completed) while t2 is still in state 0
(execution is not yet begun), then it is impossible to reach a state where t2 is running while t1
is not completed. Such a formula can be checked by 4 reachability analyses. The reachability
analysis being decidable upon loop free stopwatch automata, as consequence of Adélaïde and
Roux (2002), verification of the formula above is then decidable.
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4 Conclusion and Perspectives
A long discussion has pointed some implementation solutions of a software to deal with

functional determinism. With the increasing complexity in the hardware and in the functional-
ities, these solutions may become insufficient or difficult to manage. This is the reason why we
propose a first step in the study of preemptive (on-line) scheduling for high critical systems.
In this paper, we have proved that deciding if a scheduling respects functional determinism
is decidable. This opening is insufficient since we do not explain how a non deterministic
scheduling can be modified to become deterministic. For a RM policy, any communicating
tasks at the same period entail non determinism. We have implemented the algorithm with
the tool HYTECH but, because of its complexity, it is perfectly illusive to use this method.
We are currently developing a new methodology and evaluate the concrete complexity. This
discussion will be the next step of the reflexion.

References
Adélaïde, M. and O. Roux (2002). A class of decidable parametric hybrid systems. In

AMAST’02, pp. 132–146.
Alur, R., C. Courcoubetis, T. A. Henzinger, and P.-H. Ho (1992). Hybrid automata: An algo-

rithmic approach to the specification and verification of hybrid systems. In Hybrid Systems,
pp. 209–229.

Ermont, J. and F. Boniol (2007). Verification of embbeded systems with preemption: a negative
result. In ISOLA’07.

Fersman, E., P. Krcal, P. Pettersson, and W. Yi (2007). Task automata: Schedulability, decid-
ability and undecidability. International Journal of Information and Computation.

J. Leung, M. M. (1980). A note on preemptive scheduling of periodic real-time tasks. Infor-
mation Processing Letters 11(3), 115–118.

Leung, J. Y.-T. and J. Whitehead (1982). On the complexity of fixed-priority scheduling of
periodic real-time tasks. Performance Evaluation 2(2), 237–250.

Liu, C. L. and J. W. Layland (1973). Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM 20(1), 46–61.

Pailler, S. (2006). Analyse hors ligne d’ordonnançabilité d’applications temps réel comportant
des tâches conditionnelles et sporadiques. Ph. D. thesis, Université de Poitiers.

S. Tripakis, C. Sofronis, N. S. and P. Caspi (2005). Semantics-preserving and memory-efficient
implementation of inter-task communication under static-priority or edf schedulers. In 5th
ACM Intl. Conf. on Embedded Software (EMSOFT’05).

Scaife, N. and P. Caspi (2004). Integrating model-based design and preemptive scheduling
in mixed time- and event-triggered systems. In Euromicro Conference Real-Time Systems,
ECRTS04.


